This book is archived and will be removed July 6, 2022. Please use the updated version.

How We See the Invisible World

Introduction to How We See the Invisible World

When we look at a rainbow, its colors span the full spectrum of light that the human eye can detect and differentiate. Each hue represents a different frequency of visible light, processed by our eyes and brains and rendered as red, orange, yellow, green, or one of the many other familiar colors that have always been a part of the human experience. But only recently have humans developed an understanding of the properties of light that allow us to see images in color.

Over the past several centuries, we have learned to manipulate light to peer into previously invisible worlds—those too small or too far away to be seen by the naked eye. Through a microscope, we can examine microbial cells and colonies, using various techniques to manipulate color, size, and contrast in ways that help us identify species and diagnose disease.

Figure 1 illustrates how we can apply the properties of light to visualize and magnify images; but these stunning micrographs are just two examples of the numerous types of images we are now able to produce with different microscopic technologies. This chapter explores how various types of microscopes manipulate light in order to provide a window into the world of microorganisms. By understanding how various kinds of microscopes work, we can produce highly detailed images of microbes that can be useful for both research and clinical applications.

The left image shows a clear background with chains of solid purple rods and larger circular cells. The larger cells contain darker purple blotches inside each cell. The right image shows a black background with thin, glowing spirals.
Figure 1. Different types of microscopy are used to visualize different structures. Brightfield microscopy (left) renders a darker image on a lighter background, producing a clear image of these Bacillus anthracis cells in cerebrospinal fluid (the rod-shaped bacterial cells are surrounded by larger white blood cells). Darkfield microscopy (right) increases contrast, rendering a brighter image on a darker background, as demonstrated by this image of the bacterium Borrelia burgdorferi, which causes Lyme disease. (credit left: modification of work by Centers for Disease Control and Prevention; credit right: modification of work by American Society for Microbiology)

License

Icon for the Creative Commons Attribution 4.0 International License

Microbiology by OpenStax is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book