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F O  R E W O R D 
 

  This book is the outcome of teaching, for more than ϯϬ�ǇĞĂƌƐ͕�Ă�ĐŽƵƌƐĞ�ƟƚůĞĚ��
"statistical quality control" to B.S. students using many books especially   the 
book written by Dr Grant & Dr. Leavenworth and the one written by  Dr Kaoru 
Ishikawa on this subject.  

  dŚĞ� ďŽŽŬ� ŝƐ� ĚŝǀŝĚĞĚ� ŝŶƚŽ� ϭϰ� ĐŚĂƉƚĞƌƐ that cover the materials on statistical 
quality control ŶĞĞĚĞĚ�ĨŽƌ�Ă�ĐŽƵƌƐĞ�ŽĨ�ĂƉƉƌŽǆŝŵĂƚĞůǇ�ϰϴ�ŚŽƵƌƐ�ƉĞƌ�ƐĞŵĞƐƚĞƌ (two 
ƟŵĞƐ� Žƌ� ϯ� ŚŽƵƌƐ� Ă� ǁĞĞŬͿ.  Due to the importance of control charts and 
Acceptance Sampling Standards, most chapters of the book deal with the control 
charts and  Standard Sampling Tables.  

�ŚĂƉƚĞƌ�ϭ introduces basic concepts of quality control.  

�ŚĂƉƚĞƌ�Ϯ deal with Dr Shewhart's  control charts for monitoring the variable  
characteristics of a product i.e.��ഥ ,R, S, SϮ control charts.   

 �ŚĂƉƚĞƌ�ϯ is concerned with the way subgroups or samples have to be arranged; 
and with the process capability indices.  

 An introduction to probability in presented in CŚĂƉƚĞƌ�ϰ. 

Chapters  ϱΘ�ϲ deal with Dr Shewhart 's control charts for monitoring the attribute 

characteristics of a product i.e. p & np, c, u and  D control charts.   

 Some adaptation of control charts are introduced in CŚĂƉƚĞƌ�ϳ. 

�ŚĂƉƚĞƌ�ϴ introduces the so called Cumulative-Sum control charts for monitoring 
the process mean. 

The precision, accuracy and errors of measuring systems are briefly discussed in 
CŚĂƉƚĞƌ�ϵ. 

�ŚĂƉƚĞƌ� ϭϬ� ƚŽ� ϭϯ deal with standard sampling tables including Dodge-Rimg's, 
Cameron's,  /^KϮϴϱϵ�ĂŶĚ�/^K�ϯϵϱϭ�dĂďůĞƐ�ƵƐĞĚ�ĨŽƌ�ĂĐĐĞƉƚance sampling.  

�ŚĂƉƚĞƌ� ϭϰ is concerned with product or system reliability and the related concepts 

including acceptance sampling tables based on product lifetime. 



xv 

 

It has been tried to mention the source of the examples, figures or the tables.  
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��������ͳ    Introduction  and Basic Concepts 
Aims 
   In this chapter a history of quality control is provided; online and offline 
quality control are described and in this regard one of the ideas of 
Japanese Engineer Taguchi, entitled Quality Loss Function, is introduced.   
The chapter also briefly introduces some quality manuals used in 
automotive industry(FMEA, MSA, PPAP, APQ) and well known statistical 
process control tools(cause and effect diagram, scatter diagram, control 

charts,�).  Other materials such as central limit theorem and  some basic 

concepts of descriptive statistics, are also dealt in this chapter. 

 
ͳǤͳ Introduction 
    Quality has been known as an important influencing factor on the 
success and competitiveness of production and service institutions in the 
internal and world markets.  The return of capital is the result of good 
quality plans.  Appropriate quality strategies lead in fruitful results.  Some 
of the objectives of  controlling the quality  are the followings: 

Assuring that the product specification  comply with the design 
specifications, 
Reducing the scrap and rework 
Increasing  the customer satisfaction and the organization reputation 
Increasing the profit 

 

1.1.1 History  of  Quality Control 
FeiŐĞďĂƵŵ;ϭϵϵϭͿ summarizes the  phases  in the evolution of quality 
control as follows: 

ϭ͘  KƉĞƌĂƚŽƌ��ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů͕�ƵƉ�ƚŽ�ƚŚĞ�ĞŶĚ�ŽĨ�ϭϵth century 
Ϯ͘  Foreman quality control  
ϯ͘  /ŶƐƉĞĐƟŽŶ��ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů�ŝŶ�ϭϵϮϬƐ�ĂŶĚ�ϭϵϯϬƐ 
ϰ͘  Statistical quality control,  
ϱ͘� Total quality control era [begun ĨƌŽŵ�ϭϵϲϬ΁ 
The following phase could be added to the above phases 
ϲ͘�  /^K�ϵϬϬϬ�Ɛtandards ĞƌĂ�ďĞŐŝŶŶŝŶŐ�ŝŶ�ϭϵϴϳ͘ 
For  a brief  ĚĞƐĐƌŝƉƟŽŶ�ŽĨ�ƚŚĞ�ĮƌƐƚ�ϱ��ƉŚĂƐĞƐ�ƐĞĞ�Feigenbaum;ϭϵϵϭͿ�ƉĂŐĞ�ϭϱ;  
however a some sentences from  the book  on the phases is followed: 
Dr. Feigenbaum writes 
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    � The first step in the development of the quality field i.e.  operators 
quality control, was inherent in the manufacturing  job up to the end of 
nineteenth century. Under that system, one worker or at least a very small 
number of workers, was responsible for the manufacture of the entire 
product; and therefore  each worker could totally control the quality of 
personal work. 
    /Ŷ�ƚŚĞ�ĞĂƌůǇ�ϭϵϬϬƐ�ǁĞ�ƉƌŽŐƌĞƐƐĞĚ�ƚŽ�ĨŽƌĞŵĂŶ�ƋƵĂůŝƚǇ�ĐŽntrol. This period 
saw the large-scale advent of our modern factory concept, in which many 
individuals performing a similar task were grouped so that they could be 
directed by a foreman who then assumed responsibility for the quality of 
their work. 
   The manufacturing system became more complex during World War I, 
involving large numbers of workers reporting to each production foreman. 
As a result, the first full-time inspectors appeared on the scene, initialing 
the third step, which we can call inspection quality control. 
   dŚŝƐ� ƐƚĞƉ� ƉĞĂŬĞĚ� ŝŶ� ƚŚĞ� ůĂƌŐĞ� ŝŶƐƉĞĐƟŽŶ�ŽƌŐĂŶŝǌĂƟŽŶ� ŽĨ� ƚŚĞ� ϭϵϮϬƐ� ĂŶĚ 
ϭϵϯϬƐ͕�ƐĞƉĂƌĂƚĞůǇ�organized from production and big enough to be headed 
by superintendents. This program remained in vogue until the tremendous 
mass-production requirements of World War II necessitated the fourth 
step of quality control, which we now identify as statistical quality  control. 
In effect, this made big inspection organizations more efficient.   Inspectors  
were provided with a few statistical tools, such as sampling and control 
charts. The most significant contribution of statistical quality control was that 
it provided sampling inspecƟŽŶ�ƌĂƚŚĞƌ�ƚŚĂŶ�ϭϬϬ�% inspection. The work of 
quality control, however, remained restricted to production areas and 
grew rather slowly....   Recommendations resulting from the statistical 
techniques often could not  be handled by existing decision making 
structures.  Certainly they were not effectively handled by the existing 
inspection group�.This brought us to the fifth step, total quality  
control...."( Feigenbaum,ϭϵϵϭͿ� 
   The present  book  focuses  on the statistical techniques used in quality 
control, necessitated from the tremendous mass production  requirement, 
because statistical quality control utilizing sampling and control charts, 
provides ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�ŝŶƐƚĞĂĚ�ŽĨ�ϭϬϬ�ƉĞƌĐĞŶƚ�ŝŶƐƉĞĐƟŽŶ͘ 

 
1.1.2 Classification of  quality control  activities 
   The activities of quality control  are classified into offline and online.  
Quality control activities at the product planning, design and production 
engineering phases is referred to  as offline quality control  or quality 
engineering, whereas the quality control activities during actual running of 
production process is referred to as online quality control (Taguchi et al, ϭϵϴϵͿ. 
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ͳǤͳǤʹǤͳ�Online Quality  Control 
   Online quality  control  deals with those quality activities which are done  
during the actual the implementation of the production process. According 
to Taguchi, the daily activities to control process conditions by observing 
either quality characteristics of product or process parameters are online 
quality control activities ;dĂŐƵĐŚŝ�Ăƚ�Ăů͕�ϭϵϴϵ ƉĂŐĞϴͿ͘�Once the details of the 
design and production process are ready and the process is running, possible 
unfavorable events in the production line are necessary to be identified  
and remedied on time ;  events such as the quality loss of the input of the 
line, fault in the machine setting or error in  its softwares, carelessness of 
the operator  and the manager.   Two conventional statistical techniques 
used in online quality control are control charts and acceptance sampling.  
The use of control charts helps to identify whether the process is � in  
control� or �out of control�.  An application of acceptance sampling could 
be preventing inferior material to enter the production.  
 
ͳǤͳǤʹǤʹ�Off line quality control 
   Quality   control activities at the product planning , design and production 
engineering phases is referred to as offline quality control (Teguchi et al , 
ϭϵϴϳ�ƉĂŐĞ�ϰͿ͘���dŚĞƐĞ�ĂĐƟǀŝƟĞƐ�ĚĞĂů�ǁŝƚŚ the activities required before the 
start of the actual production. It has become widely recognized that producing 
a quality product at a reasonable cost requires an emphasis  on its design.  
A part of  the design might include determining factors such as pressure, 
temperature  and types of catalyst to employ.  Determining the optimal 
chokes for the factors  can often be approximated  by a statistical analysis 
of a designed  experiment (Derman &RŽƐƐ͕ϭϵϵϳͿ͘���One  of  the contribution 
of  Taguchi is developing an important statistical  approach for the design 
of experiments (DOE)  used in off-line quality control.   For a description of 
DOE one could refer to such references as ZŽǇ�;ϮϬϬϭͿ͘   
   Quality loss function is another concept introduced by Taguchi in the field 
of offline quality control.   A description of this concept follows.  
 
1.1.3 Quality loss function(QFL) 
    The quality loss is operationalized  through the so-called quality loss 
function, a quadratic function which shows that a reduction in variability 
around the target leads in a decrease in loss and a subsequent  increase in 

quality.  Loss is minimum when the product is on ߠ ൌ ௎ା௅
ଶ  ;<ĞůĞŵĞŶ͕�ϮϬϬϯͿ. 

Taguchi proposed the quadratic  symmetric  function ܮሺܺǡ  :ሻ as followsߠ

( , ) ( )L x C x   2  
 
where  
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X  The actual value of a selected feature of the product 
C Constant of the proportionality 
è  The nominal  value of the product  featureൌ ௎ା௅

ଶ  

( , )L X   Quality  loss   

X  The mean value of the feature resulted from the production 

X  
The standard deviation of the feature resulted from the production 

 
The mean of the loss values in the quality, denoted here  by QLF, is measured in 

the following manner 

     
 

2

2 2 2

2 2

, , ( ) ,

[ ( ) ( ) ]

( ) [ ( ) ]

X X

X X

L X C X QLF E L X

CE X C E X

QLF C

   

   

   

     

     

  

 

&ŝŐƵƌĞ�ϭ-ϭ�illustrates  L(X, ) function. 

 
Fig. 1-1 Taguchi symmetric function, L(X,ࣂ). 

 
  The value of C determines the slope of the function, the larger the value 
of C the steeper the parabola. This is a symmetric function because it is 
assumed that there is a constant C for the whole loss function. The value of 
C is a major component in the loss function. This value  which represents 
the intangible quality costs of a product could be calculated from (Kim and 
>ŝĂŽ͕�ϭϵϵϰͿ͗ 

C= k/dϮ 
where: 

k = loss associated with the feature specification limit(L or U), and 
d = deviation of the specification from the target value( )i.e.�
d x    

The applications of QLF and DOE are discussed in many books such as 
dĂŐƵĐŚŝ�Ğƚ�Ăů;ϭϵϴϳͿ͕ ZŽǇ;ϮϬϬϭͿ. 
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Example ϭ͘ϭ 
   ��ƉƌŽĚƵĐƚ�ŵŝŐŚƚ�ďĞ�ƉƌŽĚƵĐĞĚ�ƵƐŝŶŐ�Ϯ�ĚŝīĞƌĞŶƚ�ŵĞƚŚŽĚƐ͘� �The weight of 
ƚŚĞ� ƉƌŽĚƵĐƚ� ƉƌŽĚƵĐĞĚ� ďǇ� DĞƚŚŽĚ� ϭ� ĨŽůůŽǁƐ a normal distribution with 
parameters 9 9 , 1   ǁŚŝůĞ�ƚŚĞ�ǁĞŝŐŚƚ�ďǇ�DĞƚŚŽĚ�Ϯ�follows a uniform 
ĚŝƐƚƌŝďƵƟŽŶ�ŝŶ�ƚŚĞ�ŝŶƚĞƌǀĂů�΀ϵϳ����ϭϬϯ΁͘��/Ĩ�ƚŚĞ�ƚĂƌŐĞƚ�ŝƐ�ϭϬϬ͕�ƵƐĞ�Y>& with the 
same constant to select a method. 
 
Solution 

 
Let X  denotes 
 ƚŚĞ�ǁĞŝŐŚƚ�ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ�ŵĂŶƵĨĂĐƚƵƌĞĚ�ďǇ�DĞƚŚŽĚ�ϭ�.   
and Y 
 the weight of the prŽĚƵĐƚ�ŵĂŶƵĨĂĐƚƵƌĞĚ�ďǇ�DĞƚŚŽĚ�ϭ�. 
 
To compare the quality functions, we write  

( ) [ ( ) ] [ ( ) ]X X XQLF C C C         2 2 21 99 100 2  
( )

( ) [ ( ) ] [ ]X Y YQLF C C C    
     

2
2 2 103 97 0 312    Since����	ଡ଼ ൏ ��	ଢ଼ , it is concluded the method having the normal distribution  

is preferred despite the deviation of its mean from the target. 
 
Example ϭ͘Ϯ 
  When the diameter of a steel pipe exceeds its nominal value as much as 
Ϭ ͘ϱ͕�ƚŚe product could be reworked with a cost of  Ϯ�ĚŽůůĂƌƐ͘����ĂůĐƵůĂƚĞ�ƚŚĞ� 
constant of the quality loss function for the production process. 
 
Solution 

( ) .

( . )

XL C x x L

C C

     

  

2

2
0 5 2

2 0 5 8  
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ͳǤʹ  ������������ͷ quality manuals  (FMEA, MSA, PPAP, 
APQP, SPC)ͳ 
   Automotive Industry Action Group(AIAG) is an association where auto 
industry members collaborate to develop  common global standards for 
quality.  Among the publications of this association are AIAG core tools 
APQP, PPAP, FMEA, SPC, and MSA. These tools provide a framework for 
identifying areas that may need improvement and allow each work unit to 
analyze processes and work spaces to  help an organizations in its journey 
through the never ending quest for continual improvement.    The tools 
were primarily used in automotive industry but can be applied universally 
to identify defects at an early stage, sometimes much before actual start of 
production or service, and to qualify processes before bulk processing and 
to mitigate risks effectively.  
 There are many references which deal with these tools including  Supplier 
Quality Assurance Manual posted on the VOLVO supplier portal 
(http://www.brunel.ac.uk/~emstaam/material/pcm/Volvo-Advanced-Product-Quality-Planning.pdf). 

A brief discussion of each of the  tools follows.   
 
1.2.1 FMEA 
  

   Failure mode and effects analysis (FMEA), also sometimes referred as 
FMECA (Failure mode  effect and criticality analysis) is a prevention based 
early warning system used widely in Six Sigma, TSϮ ϭϲϵϰϵ͕ Reliability 
Engineering, Product Development and Operations Management.  FMEA is 
a team activity which identifies potential failure modes based on past 
experience with similar products or processes or based on common failures 
to prevent such failures in advance and saving potential losses, cost and 
time.  
 
1.2.2 MSA 
     Measurement System Analysis (MSA) is a collection of statistical analysis 
methods of evaluating variability in measurement processes. Some popular 
methods of MSA include Gauge R&R analysis, Bias study, Linearity study, 
Measurement uncertainty etc.  MSA is also widely used in d^�ϭϲϵϰϵ, Six Sigma 
and quality improvement projects. Just as processes that produce a product 
may vary, the process of obtaining measurements and data may have variation 
and produce defects. A Measurement Systems Analysis evaluates the test 
method, measuring instruments, and the entire process of obtaining 
measurements to ensure that variability of measurement system is within 
acceptable limits and to evaluate its impact on process acceptance indicators. 
 

                                                           
1This section is based on a lecture at class by Mr Maysam Yousefi, a graduate of our university.� 
Ϯ�ISO/TS 16949 is a quality management system designed exclusively for automotive sector. Any organizations in 
automotive supply chain can claim certification against this standard �� See   http://www.qualicon.in/iatf-16949.php  

http://www.qualicon.in/iatf-16949.php
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1.2.3 PPAP 
   Part Approval Process (PPAP) is the mechanism of qualifying a process for 
production during various stages e.g. Prototype development, Pre-launch 
and routine / bulk production.  In d^�ϭϲϵϰϵ system, a supplier obtains PPAP 
approval from customer based on fulfillment of process qualification 
requirements set by customer or as per PPAP manual where no specific 
requirements are set by customer.  PPAP in d^�ϭϲϵϰϵ  ŚĂƐ�ϱ�ůĞǀĞůƐ�ĂŶĚ�ϭϵ�
requirements, each level having slightly different submission requirements. 
dŚĞ� ϭϵ� ƌĞƋƵŝƌĞŵĞŶƚƐ� ŝŶĐůƵĚĞ� WĂƌƚ� ^ƵďŵŝƐƐŝŽŶ� tĂrrant (PSW), FMEA, 
Control Plan, Appearance approval reports, Dimensional reports etc. 
 
1.2.4 APQP 
      Advanced product quality planning(APQP) is a framework of procedures 
and techniques used to develop products in industry, particularly the 
automotive industry.  It is a product development methodology followed 
in d^�ϭϲϵϰϵ.  The purpose of APQP is "to produce a product quality plan 
which will support development of a product or service that will satisfy the 
customer."  
   APQP covers all stages of Development, Production and Corrective 
action or Feedback in 5 phases: 
 Plan and define program 
 Product design and development verification 
 Process design and development verification 
 Product and process validation and production feedback 
 Launch assessment and corrective action. 
Major elements of APQP include: 
  Understanding the needs of the customer 
  Proactive feedback and corrective action 
 Designing within the process capabilities 
 Analyzing and mitigating failure modes 
 Verification and validation 
 Design reviews 
 Control special / critical characteristics. 

 
 

ͳǤ͵  Statistical Quality Control   
                   Statistical Quality Control is a number  of statistical techniques  used in all 

stages of  industrial production(design of the product, labratory testing of the 
resulting design actual implementation of the production process ,testing 
the incoming supplies and material�)  to ensure and measure the constant 
quality of the production process.    With the objective of producing high -
quality and reasonable -cost items, the statistical techniques are used in all 
steps of the production process including  the design phase, laboratory 
testing of the prototype,  performing the actual implementation of the 
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manufacturing  operations and in the control of the quality of incoming 
materials. 

   The contributions   of Dr Walter A. Shewhart,  at the Bell Telephone 
Laboratories ŝŶ� ϭϵϮϬƐ� ďǇ� ďƌŝŶŐŝŶŐ� � ƚŽŐĞƚŚĞƌ� ƚŚĞ� disciplines of statistics, 
engineering and economics,  could be regarded as the beginning of  the field 
of statistical quality control.  At that time two other researchers in the Bell 
company i.e. Harald Dodge and Harald Romig introduced   Acceptance 
Sampling.  /Ŷ�ϭϵϯϭ��ƌ�^ŚĞǁŚĂƌƚ�ƉƵďůŝƐŚĞĚ�Ă�ďŽŽŬ  titled �Economic Control 
of Quality of Manufactured Product.�   It challenged the inspection-based 
approach to quality and introduced the modern era of quality management.   
Up until this time, statistical process control was largely a Bell Telephone 
quality tool.   Shewhart�s book popularized statistical control and its use 
ƚŚĞŶ� ƐƉƌĞĂĚ� ƚŚƌŽƵŐŚŽƵƚ� ŝŶĚƵƐƚƌǇ͘� � � � /Ŷ� ϭϵϳϬƐ� ĂŶĚ� ϭϵϴϬs the ideas of an 
international consultant in the field of quality control and assurance, Dr  
Genichi Taguchi, grew.  Design of  experiment s(DOE) and  Quality loss 
function are two ideas developed by Dr Taguchi. 
 
1.3.1 SPC tools (QC tools) 
   Statistical process control tool  box(SPC tools)  is a collection of 
statistical methods used to control a process within desired limits and to 
identify patterns of normal (random or chance cause) variation and 
special (assignable cause) variation in order to identify opportunities for 
intervention in the process and to take correct decision on process and 
product acceptance.  They are also called quality control tools or simply 
quality tools.   These quality control tools are very useful in Quality 
Management. Here follows a brief description of the tools i.e. 
 
 Check sheets  
 Flow Chart (Process Flow Diagram) 
 Cause and Effect Diagram 
 Scatter Diagrams  
 Pareto Chart(Pareto Diagram)  
 Histograms 
 Control Charts 
the detailed description could be found in many  references.  
 
ͷǤ͹ǤͷǤͷ�Check Sheets and Check lists 
( summarized from http://www.ifm.eng.cam.ac.uk/research/dstools/tqm-tools/) 
 

  A Check sheet is a data recording form that has been designed to  
readily interpret results from the form itself. It needs to be designed  
for the specific data it is to gather.  
 A Check list contains items that are important or relevant to a specific 

http://www.ifm.eng.cam.ac.uk/research/dstools/tqm-tools/
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 issue or situation. Checklists are used under operational conditions to 
 ensure that all important steps or actions have been taken.  
 
ͷǤ͹ǤͷǤ͸  Process Flow Diagram 
  This is a schematic diagram that shows the flow of the product or service 
as it moves through the various processing stations or operations 
 
ͷǤ͹ǤͷǤ͹� Cause and Effect Diagram (Fishbone or  Ishikawa Diagram) 
  The Cause and effect or fishbone diagrams, introduced by Kaoru Ishikawa 
;ϭϵϭϱ-ϭϵϴϵͿ� ŝƐ�Ă method for analyzing process dispersion. The purpose of 
the diagram  is to relate causes and effects.   It used to analyze complex 
situations in a way that clarifies what the root issues are.  

 
Fig1- 2  A sample Cause and effect Diagram  

(from http://www.ifm.eng.cam.ac.uk/research/dstools/tqm-tools/) 
 

ͷǤ͹ǤͷǤͺ Scatter Diagram(Scatter plot) 
  The Scatter Diagram graphs pairs of numerical data to look for a relationship 
between them.   In other words, the  plot is a graphical representation of 
two variables taken from a data set.  The Y axis is conventionally used for 
the characteristic whose behavior we would like to predict.  &ŝŐƵƌĞ�ϭ-ϯ�ŝƐ�Ă�
typical scatter plot.  
 
 
 

http://www.ifm.eng.cam.ac.uk/research/dstools/tqm-tools/
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Fig.1-3    A sample Scatter   Plot
(after http://www.managementtutor.com/project

A sample application of  is to determine relationship between the 
production speed of an operation and the number of defective parts made.
 
ͳǤ͵ǤͳǤͶPareto Chartsͳ 
   
  Pareto charts, Proposed by Walras Pareto while at the 
Lausanne ŝŶ� ϭϴϵϲ͕  are used to identify and prioritize problems to be 
resolved immediately. These charts are based on the idea
number of problems are caused by small number of causes
   The Pareto principle suggests that most effects come from
ĐĂƵƐĞƐ͘�/Ŷ�ƋƵĂŶƟƚĂƟǀĞ�ƚĞƌŵƐ͗�ϴϬй�ŽĨ�ƚŚĞ�ƉƌŽďůĞŵƐ�ĐŽŵĞ�ĨƌŽŵ�ϮϬй�ŽĨ�ƚŚĞ�
ĐĂƵƐĞƐ� ;ŵĂĐŚŝŶĞƐ͕� ƌĂǁ� ŵĂƚĞƌŝĂůƐ͕� ŽƉĞƌĂƚŽƌƐ� ĞƚĐ͘Ϳ͖� ϴϬй� ŽĨ� ƚŚĞ� ǁĞĂůƚŚ� ŝƐ�
ŽǁŶĞĚ�ďǇ�ϮϬй�ŽĨ�ƚŚĞ�ƉĞŽƉůĞ�ĞƚĐ͘�dŚĞƌĞĨŽƌĞ�ĞīŽƌƚ�ĂŝŵĞĚ�Ăƚ�ƚŚĞ�ƌŝŐŚƚ�ϮϬй�
ĐĂŶ�ƐŽůǀĞ�ϴϬй�ŽĨ�ƚŚĞ�ƉƌŽďlems. 
of defects.  The manufacturer could concentrate on r
the defects causing a considerable
 
   Pareto charts are used when products are 
but the defects are occurring at a different frequency.
company will concentrate reducing defects having major chunk or 
eliminate defects which cause financial loss. 
 
ϭ͘ϯ͘ϭ͘ϰ͘ϭ�Constructing Pareto chart��
Following are the steps for constructing 

➤Identify the defects which occur as a result of the completed 
process.  Denote these defects by D
➤Take a sample of size

                                                          
ϭ
(http://www.managementtutor.com/project

� 

Control 

ϭϭ 

 

 
A sample Scatter   Plot 

http://www.managementtutor.com/project-management/7-Quality-Control-Tools.html) 
 

o determine relationship between the 
speed of an operation and the number of defective parts made.  

Walras Pareto while at the University of 
are used to identify and prioritize problems to be 

resolved immediately. These charts are based on the idea  that large 
aused by small number of causes,  

The Pareto principle suggests that most effects come from relatively few 
ĐĂƵƐĞƐ͘�/Ŷ�ƋƵĂŶƟƚĂƟǀĞ�ƚĞƌŵƐ͗�ϴϬй�ŽĨ�ƚŚĞ�ƉƌŽďůĞŵƐ�ĐŽŵĞ�ĨƌŽŵ�ϮϬй�ŽĨ�ƚŚĞ�
ĐĂƵƐĞƐ� ;ŵĂĐŚŝŶĞƐ͕� ƌĂǁ� ŵĂƚĞƌŝĂůƐ͕� ŽƉĞƌĂƚŽƌƐ� ĞƚĐ͘Ϳ͖� ϴϬй� ŽĨ� ƚŚĞ� ǁĞĂůƚŚ� ŝƐ�

ƉĞŽƉůĞ�ĞƚĐ͘�dŚĞƌĞĨŽƌĞ�ĞīŽƌƚ�ĂŝŵĞĚ�Ăƚ�ƚŚĞ�ƌŝŐŚƚ�ϮϬй�
lems.   A production line may experience a range 

of defects.  The manufacturer could concentrate on reducing or eliminating 
considerable percentage of monetary loss. 

harts are used when products are suffering from different defects 
but the defects are occurring at a different frequency.  In this situation, the 
company will concentrate reducing defects having major chunk or 
eliminate defects which cause financial loss.  

areto chart
steps for constructing a Pareto chart: 
the defects which occur as a result of the completed 
enote these defects by D1,�, Dk. 

a sample of size n from the product. 

                   
(http://www.managementtutor.com/project-ŵĂŶĂŐĞŵĞŶƚͬϳ-Quality-Control-Tools.html) 

http://www.managementtutor.com/project
http://www.managementtutor.com/project


      ➤check  the n product 
fill a table like the following
defects 1D,�., kD  

WƌŽĚƵĐƚ�Ϯ��WƌŽĚƵĐƚ�ϭ��Defect 

����
1D��

����
2D�� ���������

����
kD��

 

 

 

 

 

 

 

 

   ➤Sort the defects from maximum frequency to the 

( )kD is the defect in the sample 

( )D 1  is the defect in the sample with minimum frequency

   ➤Show ( ) (1),...,kD D  on the 

the corresponding frequencies (
defect on the left-hand
figure like the following

Fig.1-4-a  An Example 

Defect ( )kD  
Frequency ( ) maxkf f

Relative 
Frequency 

( )

k

i

f




1

�ŚĂƉƚĞƌ�ϭ����/ŶƚƌŽĚƵĐƟŽŶ��ĂŶĚ��ĂƐŝĐ��ŽŶĐĞƉƚƐ 
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product  individually for possible defects and 
a table like the following to find the frequencies of the 

Frequency��Product n ���������WƌŽĚƵĐƚ�Ϯ

1f��������

2f��������

��������
kf��������

Sort the defects from maximum frequency to the minimum:  
the sample with maximum frequency ( )kf  and 

t in the sample with minimum frequency  ( )f 1 . 

on the horizontal axis of an X-Y plot; and 

frequencies ( or relative frequencies) of the 
hand vertical axis.  The result could be a 

following. 

 
An Example of a Pareto Diagram 

 

 . . . ( )D 1  
( ) maxkf f  . .  ( ) minf f1  

( )k

k

i
i

f

f



1

    ( )

k

i
i

f

f



1

1
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Usually  a vertical axis is added to the right-hand side of the plot, 
showing the cumulative relative frequencies of the defects.  Figure 1-4-b 
shows the result of a study in an automotive plant1.  A sample  of 
headlight s were checked against   11 different defects on a 4-month 
horizon; the frequencies of the defects were recorded.  The details of 
the study and the corresponding Pareto diagram are shown in the 
Figure. 

 
Fig.1-4-b  The result of study of defects of a car headlight  and the  
                  Pareto Diagram   
 
ͳǤ͵Ǥͳ.ͷ  Histogram  
  Without using some form of graphic tools it can be difficult to analyze, 
recognize or identify the pattern of the variations of data.   A histogram is a 
graphic summary of variations in a set of data. It enables us to see patterns 
that are difficult to see in a simple table of numbers. In this graph the 
continuous variable is clustered into categories and the value of each cluster 
is plotted to give a series of bars as above.   A histogram helps us to see the 
distribution of a set of product measurements is symmetric or skew.   If we 

                                                           
ϭ�From a report by a former student of  Shahid Bahonar University of Kerman, Iran  (Mr 
�ŵŝŶ�zŽƵƐĞƉŚŝ�ͿŝŶ�ϮϬϬϵ͘ 



would like to know whether the distribution
exponential �;  an  initial evaluation
histogram. In summary, histograms 
the data set.  Fig. 1-5 reveals the skewed distribution of a set of 
measurements that remain nevertheless within specified limits
 

Fig. 1-5   The histogram of a set of data

ͳǤ͵ǤͳǤͷǤͳConstructing Histogram 
  Student should know how to construct a histogram
he/she uses software, to be sure he understand
for drawing a histogram are:  

  ϭ)  Given  a sample of data, 
subtracting  the largest  value from the smallest  value
interval between the smallest  and the largest  observations 
So the  range  needed on the horizontal axis

  ϮͿ   Choose a reasonable number of "classes"  or  " bins
range.  There is no set rule, but as a rough guide the range
ĚŝǀŝĚĞĚ�ďǇ�ĮǀĞ�ĨŽƌ�ƐŵĂůů�ƐĞƚƐ�ŽĨ�ĚĂƚĂ�ĂŶĚ�ϮϬ�ĨŽƌ�ůĂƌŐĞƌ�ƐĞƚƐ
has given the following formula for approximating the 

2 10 101 log 1 3.32193k n n n      
Where  
k   is the number of classes  
n   is the size of sample data. 
If  Ŷ�ŝƐ�Ă�ƉŽǁĞƌ�ŽĨ�Ϯ͕�ŝƚ�ŝƐ�ĂĚǀŝƐĞĚ�ƚŽ�ƵƐĞ��
A  simple alternative to Sturges rule 

�ŚĂƉƚĞƌ�ϭ����/ŶƚƌŽĚƵĐƟŽŶ��ĂŶĚ��ĂƐŝĐ��ŽŶĐĞƉƚƐ 
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would like to know whether the distribution of a set of data is normal, 
al evaluation could be made by plotting the 

In summary, histograms can be used to draw conclusions about 
 reveals the skewed distribution of a set of 

measurements that remain nevertheless within specified limits 

 
histogram of a set of data 

 

Constructing Histogram by hand 
tudent should know how to construct a histogram by hand; even if 

software, to be sure he understands the process.  The  steps 

 determine the range of the  sample  by 
largest  value from the smallest  value.  This gives  the 

n the smallest  and the largest  observations of the data set.  
horizontal axis is known. 

number of "classes"  or  " bins" to divide  the 
but as a rough guide the range should be 

ĚŝǀŝĚĞĚ�ďǇ�ĮǀĞ�ĨŽƌ�ƐŵĂůů�ƐĞƚƐ�ŽĨ�ĚĂƚĂ�ĂŶĚ�ϮϬ�ĨŽƌ�ůĂƌŐĞƌ�ƐĞƚƐ.   Sturges ;ϭϵϮϲͿ�
the following formula for approximating the  number of classes:    

2 10 101 3.32193 log 1 3.3logk n n n        

Ŷ�ŝƐ�Ă�ƉŽǁĞƌ�ŽĨ�Ϯ͕�ŝƚ�ŝƐ�ĂĚǀŝƐĞĚ�ƚŽ�ƵƐĞ��݇ ൌ ͳ ൅ ���ଶ ݊Ǥ  
simple alternative to Sturges rule  is the Rice Rule  presented as:   
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32 nk  . 
Another alternative is��݇ ൌ ξ݊��utilized by MATLAB.  
Decide on a reasonable bin size k.  If necessary, round up  k to the nearest 
integer.  

 3)Determine  the class width (h)by dividing the range(R) to k.   
R

h
k

  

 
 Classes are usually equal-length segments; the first class will include the 
minimum data value and the final class includes the maximum data value. 
If the distribution is approximately normal,  class width could be calculated 
ĨƌŽŵ;^ĐŽƩ͕�ϭϵϳϵͿ: 

35.3 nh s  
where 
 s   is the standard deviation of the data  sample, 
n   is the sample size ( number of observations). 
 
   Always modify h  calculated from the above formulas to reach a 
reasonable choice and make the resulting graph easy to read.   An example 
of unreasonable choices would be to use a bin size of Ϯ͘ϰ�ĂŶĚ� ƐƚĂƌƚ� ŝƚ� Ăƚ�
ϭϰ͘ϳ.  Instead use a bŝŶ�ƐŝǌĞ�ŽĨ�Ϯ�ƐƚĂƌƟŶŐ��Ăƚ�ϭϱ͘ 

  Each observation should fit into exactly one category.  For observations 
exactly on an endpoint, make some reasonable decision about whether 
you will put it into the lower interval or the upper interval and then do it 
consistently for the entire histogram (http://www.austincc.edu) .  

  ϰͿThe next step is to make a table of frequencies. Begin with a column 
that lists the classes in increasing order. The next column should have a 
tally for each of the classes. The third column is for the count or frequency 
of data in each class. Another  column might be added  for the relative 
frequency of each class. This indicates what proportion of the data lies  in 
that particular class.   

  ϱͿStart through the data, making a tally mark  for each observation in the 
correct class. When finished, count the tally marks  to know the frequency 
for each class.   
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   ϲͿDraw the histogram, with the bins along the  horizontal axis and the 
frequencies up the vertical axis.   The steps are illustrated in the following 
example .  

Exampleϭ͘ϯ 
   ��ƐĂŵƉůĞ�ŽĨ��ƐŝǌĞ�ϵϴ containing canned fish was randomly selected from a 
production line and weighed; the results are: 
XϭсϮϬϬ͘Ϭ͕��yϮсϭϴϯ͘ϱ͕�yϯсϭϲϰ͘Ϭ͕   Xϰс�ϮϬϭ͘ϱ͕   Xϱс�ϭϵϰ͘Ϭ͕�� XϲсϭϳϬ͘Ϭ͕�yϳсϭϵϱ͘Ϭ, 
..., XϵϮсϭϱϴ͘ϱ͕�Xϵϯсϭϳϰ͘Ϭ͕�yϵϴсϭϵϲ͘Ϭ.   Draw a histogram for the weights. 
 
Solution: 
^ƚĞƉ�ϭͿ��ƐƵƉƉŽƐĞ�ƚŚĞ�ƐŵĂůůĞƐƚ�ĂŶĚ�ůĂƌŐĞƐƚ�ǁĞŝŐŚƚ�ĂƌĞ��ϭϱϴ͘ϱ��ĂŶĚ�ϮϬϭ͘ϱ�ƚŚĞŶ 
ZсϮϬϭ͘ϱ-ϭϱϴ͘ϱсϰϯ͘Ϭ 

^ƚĞƉ�ϮͿ                     
32 98 9k      

^ƚĞƉ�ϯͿ�������������������Ś ൌ Z

Ŭ
ൌ ϰϯ

ϵ
ൌ ϰǤϳϴ ՜ ϱ 

 
tĞ�ĐŚŽŽƐĞ�ϵ�ďŝŶƐ��ŽĨ�ůĞŶŐƚŚ�ϱ�ƐƚĂƌƟŶŐ�Ăƚ��ϭϱϳ͘ϱ͘ 
 
  Steps ϰ Θϱ� ) A tally mark for each weight is put in the corresponding 
subgroup.  Tally is only partially shown, in order to shows how it should be 
done.  After finishing putting a tally mark for each weight, the frequency 
column is filled using the result of counting them. dŚĞ� ƌĞƐƵůƚ�ŽĨ� ƐƚĞƉ�ϰ� ŝƐ�
shown in the table  below: 
 

Class No.(i) Class  limits Tally Frequency (fi) 
1 ͳͷ͹Ǥͷ ൑ ܺ ൏ ͳ͸ʹǤͷ | 1 
2 ͳ͸ʹǤͷ ൑ ܺ ൏ ͳ͸͹Ǥͷ |||   3 
3 ͳ͸͹Ǥͷ ൑ ܺ ൏ ͳ͹ʹǤͷ |       etc 13 
4 ͳ͹ʹǤͷ ൑ ܺ ൏ ͳ͹͹Ǥͷ ||      etc 17 
5 ͳ͹͹Ǥͷ ൑ ܺ ൏ ͳͺʹǤͷ  20 
6 ͳͺʹǤͷ ൑ ܺ ൏ ͳͺ͹Ǥͷ ||      etc 18 
7 ͳͺ͹Ǥͷ ൑ ܺ ൏ ͳͻʹǤͷ  11 
8 ͳͻʹǤͷ ൑ ܺ ൏ ͳͻ͹Ǥͷ |    etc 8 
9 ͳͻ͹Ǥͷ ൑ ܺ ൑ ʹͲʹǤͷ |||   etc 3 

 
and the histogram,  is shown in the following figure: 

��
��
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1.3.1.5.2   Making  histogram in MATAB 
   If  all observations are available, to make a  histogram in MATLAB, 
give all data in a vector as input; e.g. 
X= 
΀�ϮϬϬ͘Ϭ͕��ϭϴϯ͘ϱ͕�ϭϲϰ͘Ϭ͕���ϮϬϭ͘ϱ͕���ϭϵϰ͘Ϭ͕��ϭϳϬ͘Ϭ͕�ϭϵϱ͘Ϭ͕�͕͘͘͘�ϭϱϴ͘ϱ͕�ϭϳϰ͘Ϭ͕ϭϵϲ͘Ϭ΁͖͛� 
then use hist command in MATLAB: 
         hist(X). 
 
  If a frequency table  is given instead of all observations,  
gŝǀĞ�ƚŚĞ�ŵŝĚƉŽŝŶƚƐ�ĂŶĚ�ĨƌĞƋƵĞŶĐŝĞƐ��ŽĨ�ƚŚĞ�ƐƵďŝŶƚĞƌǀĂůƐ��ŝŶ�Ϯ�ƐĞƉĂƌĂƚĞ�
vectors; e.g. 
zс΀ϭϲϬ�ϭϲϱ�ϭϳϬ�ϭϳϱ�ϭϴϬ�ϭϴϱ�ϭϵϬ�ϭϵϱ�ϮϬϬ΁͖� 
      ŶŶс΀�ϭ�����ϯ����ϭϯ����ϭϳ����ϮϬ����ϭϴ����ϭϭ�����ϴ�����ϯ΁Ζ͖ 
then Use bar command  to make the histogram:       
   bar(Y,nn,'hist') 
 
1.3.1.6 Frequency Polygon  
  A frequency polygon is a line graph that represents the shapes of the 
statistical distributions. To draw the graph, simply  join the top middle 
points of the bins  of the histogram with a straight line.   
&ŝŐƵƌĞ��ϭ͘ϲ��ŝůůƵƐƚƌĂƚĞƐ�ƚŚĞ��ƉŽůǇŐŽŶ��ƌĞůĂƚĞĚ�ƚŽ�ƚŚĞ�ƉƌĞǀŝŽƵƐ�ĞǆĂŵƉůĞ.  
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           Fig 1-6  Frequency Polygon for the data of  Example 1.3 
 
Since bar charts as well as  histograms are used to compare the sizes of 
different groups, a short description of the chart follows. 

1.3.1.7 Bar  chart  
    Bar charts  are used to display and compare the number, frequency or 
other measures(e.g. mean) for different discrete categories or groups, such 
as the amount of rainfall that occurred during different months of a year, 
or the average salary in different states or countries. The  graph is 
constructed such that the heights or lengths of the different rectangular 
bars are  proportional to the size of the category they represent.    Since 
the horizontal axis represents  the different categories, it has no scale. The 
vertical axis does have a scale which  indicates the units of measurement.  
The bars can be plotted vertically or horizontally; however,  they  are most 
commonly drawn vertically.  A vertical bar chart is sometimes called a line 
graph.   Here is the main difference between bar charts and histograms: 
With bar charts, each column represents a group defined by a category  or 
group ; and with histograms, each column represents a group defined by a 
ƋƵĂŶƟƚĂƟǀĞ�ǀĂƌŝĂďůĞ͘�����&ŝŐƵƌĞ�ϭ-ϳ�ƐŚŽǁƐ��Ă�ƐĂŵƉůĞ�ďĂƌ�ĐŚĂƌƚ͘ 
 

 
Fig 1-7   Sample  bar- chart 
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1.3.1.5.3  Histogram with unequal-length segments  
  Some times it is not necessary to use equal-length bins for costructing 
histograms, One such  case is when the  frequencies of  some bins are small 
and they shoud be merged. When constructing a histogram with non-
uniform (unequal) class widths, we must ensure that the  areas of the 
rectangles are proportional to the class frequencies.  This means that we 
would need to consider the widths in order to etermine the height of each 
rectangle. The following example illustrates how to construct a histogram 
with non-uniform bin width. 
 
Exampleϭ͘ϰ 

                The following frequency distribution gives the range of the income of  a 
sample of  2049,913 taxpayers. Draw a histogram of the relatve frequency 
to illustrate the data. 

 
 

Income ($) 
Less 
than 
1000 

 
1000-
1999 

 
2000- 
2999 

 
3000-
4999 

 
5000- 
10000 

 
10000-
20000 

Frequency 12299 209091 274688 600625 746169 207041 

 
Solution: 
Determining  each class widths: 
 

 
Income ($) 

Less 
than 
1000 

1000- 
Less than 

2000 

2000- 
Less than 

3000 

3000- 
Less than 

5000 

5000- 
Less than 

10000 

10000-
20000 

Frequency 12299 209091 274688 600625 746169 207041 
Class width 1000 1000 1000 1000 5000 10000 

 
Since the class widths are not equal, we choose a convenient width  such 
ĂƐ�ϭϬϬϬ͕�ǁŚŝĐŚ�ŝƐ�ƚŚĞ�ƐŵĂůůĞƐƚ�width, as a standard and adjust the heights 
of the rectangles accordingly. The other widths are then multiples of the 
standard width. The following table shows the calculations of the heights 
of the rectangles.  
   

Income ($) 
Less than 

1000 

1000- 
Less than 

2000 

2000- 
Less than 

3000 

3000- 
Less than 

5000 

5000- 
Less than 

10000 
10000-20000 

Frequency 12299 209091 274688 600625 746169 207041 
Relative 

Frequency% 
0.6 10.1 13.4 29.3 36.3 10.1 

 
Class width 

1000 1000 1000 2000 5000 10000 

standard standard standard 2ൈ 
standard 

5ൈ 
standard 

10ൈ 
standard 

Rectangle�s height 
in histogram 

0.6 10.1 13.4 
29.3/2= 
14.25 

36.3/5= 
7.28 

10.1/10= 
1.01 
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The following  figures  show the histogram and the polygon 

 
 
 

ͳǤͶ   Control Charts 
Definition 
The control chart may be defined as  
     "A graphical method for evaluating whether a process is or is not in a � 
state of statistical control ��(Feigenbaum, 1991). 
Statistical control charts could be regarded a  tool for continuous testing a 
hypothesis regarding the parameters of a process.  
The concept of statistical in-control will be defined later.  Dr Walter 
Shewhart was the first researcher who worked in the field of control charts 
(in 1920's at Bell Telephone Company). 
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Forms  other than  forms of Shewhart�s control charts  such as CuSum  
control charts (for mean, range and defects) have come in use in recent 
years.  A control chart 1 

�is a proven technique for improving productivity; 
�is effective in defect prevention; 
�prevents unnecessary process adjustment; 
�provides diagnostic information; 
�provides information about process capability. 
 
 
1.4.1 Attributes and variables 
    Basically, there are two types of data to collect as a part of a problem-
solving process: Attribute data and variable data. 
Attribute data, or pass/fail or  yes/no type  or  go/no-go information  are 
features, characteristics or qualities given to an entity  to describe it.  
Attributes are discrete in nature, for example, the number of nonfunctioning 
light bulbs, the proportion of broken eggs in a carton, the number of 
scratches on a tile.  Attributes of  instant coffee, for example, may include 
its aroma, flavor, color,  packaging and presentation, etc. Attributes have 
only two possible ratings (negative or positive)  expressed as acceptable or 
unacceptable, desirable or undesirable, good or bad, etc. 
(www.businessdictionary.com/definition/attribute.html) 
 
 Variable data, is acquired through measurements, such as length, time, 
diameter, strength, height, temperature, density, thickness, pressure, and 
height.  A variable, as the name implies, is� something that varies�. It may 
be weight, density, hardness, internal  diameter  and so on. 
   Sometimes variables are  treated as attributes.   For example when you can 
check the internal diameter of a bushing with a go-not- go measuring 
device, you are r treating the variable an attribute. 
In statistical quality control, some of the control charts and standards ( such 
as np-control chart and ISO 2859 )deal with the quality attributes of 
products  and some deal with variable characteristics of products ( such as 
X chart and ISO 3951). 
 
 
 

                                                           
ϭ�(ŚƩƉƐ͗ͬͬĂǇϭϰ-
ϭϱ͘ŵŽŽĚůĞ͘ǁŝƐĐ͘ĞĚƵͬƉƌŽĚͬƉůƵŐŝŶĮůĞ͘ƉŚƉͬϴϭϴϰϭͬŵŽĚͺƌĞƐŽƵƌĐĞͬĐŽŶƚĞŶƚͬϬͬ/^Ǉ�ϱϭϮͺ�ŚĂƉƚĞƌйϮϬϱйϮϬŵŽĚŝĮĞĚ͘ƉĚĨͿ 
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1.4.2 General View of   Dr. Shewhart's control charts 
 
   Dr. Shewhart's control charts  look like the following figure: 
 

 
Fig 1-8  A sample Shewatrt's  control chart��

 
The control charts he introduced have  horizontal and vertical axes, central 
line, upper and lower control  limits calculated for a process.  Sampled 
measures are regularly plotted about a central line between the limits.    

   The plotted lines  corresponds to the stability/trend of the process. Action 
can be taken  based on trend rather than on individual variation. This 
prevents over-correction/compensation for random variation, which would 
lead to many rejects. 
 
 
ͷǤͺǤ͸Ǥͷ�Basic Model of Shewrt's  Control Charts 
  To calculate the  upper limit,  the lower limit and the central line of  Dr  
Shewhart�s control charts (Fig1.9), let us suppose we would like to 
determine the so-called 3- sigma limits of  a hypothetical control chart  
entitled Y chart; where  Y is a characteristic of a product.   The limits  are 
calculated as follows: 
Upper Control Limit  ���ଢ଼ ൌ �ሺ�ሻ ൅ ͵ɐଢ଼  
Center   Line=��� ൌ �ሺ�ሻ 
Lower Control Limit ���ଢ଼ ൌ �ሺ�ሻ െ ͵ɐଢ଼ 
where 
UCLY = upper  control limit  of   the    control chart  for  a parameter, say Y, 
of the process 
LCLY =Lower  control limit  of   Y   control chart 
E(Y)= the mean of parameter Y 

௒ߪ   =The standard deviation of  parameter Y 
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Note that only in X chart ͕� ǁĞ� ĐĂŶ� ƐĂǇ� ƚŚĂƚ� Ϭ͘Ϯϳй� ŽĨ� ƚŚĞ� ƐĂŵƉůĞƐ� ĂƌĞ�
expected to lie outƐŝĚĞ� ƚŚĞ� ϯ-sigma limits; because the  statistical  

distribution of  sample mean ( X ) is approximately normal; while in other 
charts we could only say that this percent is low.  

��
Fig 1-9  General view of the limits of Dr Shewhart�s  charts 
 

��
1.4.3 Types of control charts 
  The control  charts  used in statistical quality control are classified into two 
general categories: control charts for variables  and control charts for 
attributes. 
 
ͷǤͺǤ͹Ǥͷ Control charts for variables 
   Control charts for variables monitor characteristics that can be measured 
and have a continuous scale, such as height, weight, volume, or width. 
When an item is inspected, the variable being monitored is measured and 
recorded.   In this class of charts  lies charts such as  
 
 -�ഥˬ R ˬ Sˬ S2  control charts, 
-CuSum control charts 
   -Control  charts based on the quality loss function (Derman&Ross,1997page 98) 
To construct these kind of control charts, variables data  is used. 
  
ͷǤͺǤ͹Ǥ͸ Control charts for attributes 
  Control charts for attributes are used for quality characteristics that are 
counted rather than measured.   C, u, np and p� � control charts lie in this 
class.  These  charts  present  the quality characteristic  of  a sample versus 
the sample number or time.  
   Control charts are easily plotted and  widely used.   With one glance they 
give you an indication as to how close you are to your target.  The following 
steps should be followed for plotting and using a control chart. 
 (extracted from Persian translation of IshikaǁĂ͕�ϭϵϴϯ with minor changes) 

0 10 20 30 40

Upper Control Limit(UCL)

Lower Control Limit (LCL)
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Specify the product and its difficulties. 
   Determine which product should be controlled and specify its difficulties.  
Based on this decision the type of  information which  is need will be 
clarified. 
Choosing  the appropriate control chart 

   Depending on the difficulty, specify  which of the 
2, , ,X R s s  or 

, , &c u np p charts is more appropriate for your  purpose.  

Use the past history 
   To  prepare the control chat for using in future, the history of the past  
periods could be used. If  some unusual points were observed in the control 
chart among the future samples, look for possible assignable causes.  If the 
causes of the bad unusual  quality were found, do appropriate actions to 
eliminate the  causes, if possible.  
   Suppose appropriate actions were done in the production phases regarding 
the bad quality and the production phases are controlled.  Now  it should be 
tested whether the production complies with standards or not.  The work 
methods are then modified, if needed.  Recording the daily data is 
continued.   
Control of  production phases 
   If unusual condition  was observed, the cause  is readily searched for and 
the proper action is done. 
Recalculate the control limits 
If the work methods or machines are  changed, the control limits are to be 
recalculated.   If the quality is getting improved the control limits are  
revised  unless we have used standards for the calculation of the limits. The 
following points should be considered during recalculation: 
 
a) The outlier points (lying outside the  control limits) whose causes are  not 
random  and have been fixed, must not be considered for the  recalculation 
of  control limits. 
 
b )The outlier points whose causes cannot be found or no action could be 
taken to eliminate them have to be considered in the recalculation of control 
limits.  End of citation ĨƌŽŵ�/ƐŚŝŬĂǁĂ;ϭϵϴϯͿ͘ 
 
  The following section deals  with the calculation of the  portion of  a set of 
numbers that fall within a given limits using the average and standard 
deviation of the data. 
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ͳǤͷ�What the Average and Standard Deviation of a Set of 
numbers Really Tell 
(Based on Grant and Leavenworth, 1988 page 65) 
 

  The combination of sample average  and standard deviation  could tell us 
what proportion of a set of data fall within a specified limits.  To illustrate, 
we distinguish two cases based on whether the distribution of the variable is 
known or not.  
 
1.5.1 The statistical  distribution is known  
  First  of  all suppose  we know that a  given distribution with  mean    , 

standard deviation  and density function ( )f x  fits the set of data . The 

portion that lies between [a   b] is calculated from  
b

a
(a X bPr )= f(x)dx   .  

If a and  b  are given as the closed range k    and the distribution is 
normal, it is very easy to calculate  the proportion of the products falling 
within this range. 
 
Example 1.5 
  The life of a certain product is exponentially distributed with mean ߤ.  A 

sample of  this product have a mean life of  1 0 0X  . If the standard 
deviation  of  the life of the product is denoted by ߪ;  what proportion data 

fall within the range   . 
 
Solution 
The life  denoted by X has an exponential distribution with mean and 
standard deviation equal to 100, then  
��ሺρ െ ɐ ൑ � ൑ ρ ൅ ɐሻ ൌ ��ሺͲ ൑ � ൑ ʹρሻ 
ൌ ��ሺͲ ൑ � ൑ ʹρሻ ൌන ͳ

ρ
ଶρ

଴
�ି

ଵ
ρ୲�� ൌ ͳ െ �ିଶ ൌ ͲǤͺ͸ͷ���ͺ͸ǤͷΨ 

With Matlab:the proporstion =expcdf(200,100)- expcdf(0,100)=0.8647. 
 
Example 1.6 
  If   the weight of a product is normally distributed with  mean 
 what proportion of the  weight fall ,��ߪ������������������������݀݊ܽ�ߤ
inside  
ߤ േ ݐ�����ߪݐ ൌ ͳǡʹǡ͵ǡͶ�ǡ͸���Ƭݐ��� ൌ ͲǤ͸͹Ͷͷ�. 
 
Solution 
��ሺߤ െ ߪ ൑ ܺ ൑ ߤ ൅ ሻߪ ൌ ��ሺെͳ ൑ ܼ ൑ ͳሻ 
Using  statistical toolbox of  MATLAB: 
��ሺെͳ ൑ ܼ ൑ ͳሻ ൌnormcdf(1)-normcdf(-1)=0.6827 
The answer for the ranges are as follows: 
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ߤ േ Ͷߪ����� ՜ ͻͻǤͻͻͶΨ 
ߤ േ �����ߪ͵ ՜ ͻͻǤ͹͵Ψ  
ߤ േ �����ߪʹ ՜ ͻͷǤͶͷΨ 
ߤ േ �����ߪ�� ՜ ͸ͺǤʹ͹Ψ 
ߤ േ ͲǤ͸͹Ͷͷߪ����� ՜ ͷͲΨ 
 
Example 1.7 
  Determine what proportion of  a product having  a normally distributed 

inner diameter (X) ( X~N(ì,ó) )fall  within 2 , 4     . 
 
Solution 
  Since ~ ( , )X N   then using MATLAB  normcdf command we have: 
Pr( 2 4 ) Pr( 2 4)

Pr( 4) Pr( 2)  0.999968-0.022750 0.9772

X Z

Z Z

           

     
 

 
1.5.2The statistical  distribution is unknown 
 If nothing whatever is known about the pattern of variation, what do sample 
mean and standard deviation(  തܺ and  s  )tell ?  
 
   One answer  is given by Tcebycheff's inequality1( Grant and Leavenworth 

,1988page 65).  According to this theorem more thanͳ െ ଵ
௧మ    of any set of 

finite numbers must fall within the closed range ߤ േ ݐ�����ߪݐ ൒ ͳ,  where ߤ is 

estimated by ��ഥ   and ߪ is estimated by 1n
ns  . 

Therefore if nothing is known about the pattern of variation of  the characteristic 
expect the mean and variance , and we would like to know the percentage 
falling in the range ߤ േ ݐ�����ߪݐ ൒ ͳǢ� 
According to the inequality  more than ͳ െ ଵ

௧మ of any distribution fall within 

the range ( 1)t t    and at most 
ଵ
௧మfall outside these limits.    

if   is unknown , X  is a good estimate for it .  

If is not known, estimate it withݏට௡ିଵ
௡  ( Grant -leavenworth,ϭϵϴϴ ƉĂŐĞ�ϲϲͿ͘ 

 
 
 
 

                                                           
1Tcebycheff's inequality could be stated as follows: If X is a random variable with 
mean  and finite standard deviation  ; for t>1 

2

2
Pr(| | ) 0X t

t

       .  Then Tcebycheff' ;ϭϴϲϳͿ states 

2 2

1 1
Pr( ) , Pr( ) 1 1 0 .X t t X t t

t t
                   
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Exampleϭ͘ϴ 
  The mean and standard deviation of the statistical distribution of one 
characteristic of a product are �ì=X=40 and 2  .  What percentage of  
the distribution ĨĂůů�ŝŶ�ƚŚĞ�ŝŶƚĞƌǀĂů��;ϯϰ͕�ϰϬͿŝŶ�ĞĂĐŚ�ŽĨ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ĐĂƐĞs : 

a) The  characteristic  is normally distributed with � 4 0  and 2  . 
b)The  characteristic  is exponentially  distributed with � 4 0  . 
c)Nothing is known about the distribution except �ì=X=40 and 2  .  

Solution 

a)    34 40 46 40
Pr 34 46 Pr( ) Pr 3 3

2 2
X Z Z

 
          

   Pr 3 0.00135, Pr 3 0.99865Z Z    ��
  9973.000135.099865.033Pr  Z  

b) ��ሺ͵Ͷ ൏ ܺ ൏ Ͷ͸ሻ ൌ ሺͶ͸ǡͶͲሻ݂݀ܿ݌ݔ݁ െ ����݂ܿ݀ሺ͵ͶǡͶͲሻ ൌ ͲǤͳͳ 

c)��� 40 2 34 40X X t X t        ���������
  1

Pr 1 2X t X X t
t

        

  2 2

1 1 8
Pr 34 46 Pr(40 3 2 40 3 2) 1 1 %88.9

3 9
X X

t
              

 Note that for part b   , therefore͵Ͷ ് ߤ െ ��ƬͶͲߪ�ݐ ് ߤ ൅  .ߪݐ

  2 2

1 1 8
Pr 34 46 Pr(40 3 2 40 3 2) 1 1 %88.9

3 9
X X

t
              

 
ͷǤͻǤ͸Ǥͷ  The statistical  distribution is unknown but Camp-Meidell 
conditions hold  
Camp-Meidell ;ϭϵϮϮͿƐƚĂƚĞƐ if 
- the distribution of X  has one mode and 
- this mode coincides the mean of the distribution  and  
-the frequencies in the frequency table decline continuously on both sides of 

the mode , then more than 2
2 2

1 4 2
1 1 1 ( )

2.25 9 3t t t
      of any 

distribution satisfying the above conditions fall within the closed range

 , 1, 0t t       and at most 2
2 2

1 4 2
( )

2.25 9 3t t t
  fall outside 

the limits ( 1)t t   .  
Camp-Meidell's inequality provides a tighter bound than Tcheby-chev's . 
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Exampleϭ͘ϵ 
  Assume the Camp-Meidell conditions hold  in a distribution having  ߤ ൌ ͶͲ  
andó =2 , what proportion of the distribution  fall  within the range (34,46) 
? 
Solution 

4 0  and 2   

( , ) (3 4 , 4 6 ) 40 , 2 , 3t t t               
by Camp-Meidell's inequality: 

  1
Pr 1 22.25

t X t
t

          

  1 1
Pr 34 46 1 1 %95.06

2 2.25 92.25
X

t
      


 

The proportion indicated by the normal curve and by the 2 inequalities are 
compared as follows( Grant and Leavenworth ,1988page 66) 
 

The percent  falling outside the range 
 
Range 

Normal  
Distribution 

Unknown  Distribution 

  Under all circumstances 
Less than the following 
percentage  
(Tcheby- chev inequality) 

Under 
 Camp-Meidell conditions 
Less than the following  

2   
ϰ͘ϱϱй Ϯϱй ϭϭ͘ϭй 

3   
Ϭ͘Ϯϳй ϭϭ͘ϭй ϰ͘ϵϰй 

( )E   
Ϭ͘ϬϬϲй ϲ͘Ϯϱй Ϯ͘ϳϴй 

ρ േ ͸ɐ ϭ͘ϵϳƉƉŵ Ϯ͘ϳϴй ϭ͘Ϯϯй 

If ρǡ ɐ�����are unknown,  having  a sample of size n with mean�ഥ and standard deviation s; replace   

ρǡ ɐ�����with �ഥand ɐ୰୫ୱ ൌ �ට୬ିଵ
୬   ( 'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴƉĂŐĞ�ϲϲ). 

 
ͳǤ͸�The central limit theorem  
    In this section  a version of central limit theorem, which is frequently  
used in statistical quality control, is stated.  According to the central limit 
theorem  the mean of  random samples of  sufficiently large size n from a 
population with mean�ρ and  finite variance�ɐϮ, tends towards a normal 

distribution with mean�ρ and finite variance 
஢Ϯ
ξ୬;  even if the original distribution 

is not normally distributed. The theorem also states that sum of the sample 
elements(σ ௜ܺሻ tends towards a normal distribution with mean�ρ and  finite 
variance ݊ɐϮ; 
   The following  figures illustrate some aspects of  the theorem. Figure 1.10 
shows three possible original distribution of which samples are drawn. 
Figure 1-11 shows a case where as the size of a sample taken from an 
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exponential distribution increase
sample tends to symmetry which is inherent in normal distribution
Figure 1-12 shows the effect of the size(n) of  samples from a
original distribution on the distribution of 

Fig 1-10   3 different original distribution

Fig 1-11 The effect of the size
original distribution, on the distribution of sample mean
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increases,  the pattern of variation of the  mean of a 
sample tends to symmetry which is inherent in normal distribution. 

shows the effect of the size(n) of  samples from a discrete 
on the distribution of the sample mean. 

 
 

 different original distribution 
 

 
The effect of the size of  samples from a continuous 

on the distribution of sample mean 
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Fig 1-12 The effect of the size
               distribution, on the distribution of sample mean

(Montgomeri 
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the size of  samples from a discrete  

distribution, on the distribution of sample mean     
Montgomeri & Rungers,1994) 
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Exercises 
ϭ͘ϭ A small electronic device is designed to emit a special signal.  The time 
of  emitting the signal is a characteristic of the device.  In the production of 
ƚŚŝƐ�ĚĞǀŝĐĞ͕�Ϯϱ�ƐƵďŐƌŽƵƉs ŽĨ�ϱ�ƵŶŝƚƐ were taken at periodic review intervals 
and tested.  The results are given in the following table. 

Duration of  signal��

Su
bg

ro
up

 
N

o.
��

Duration of  signal��Subgr
oup 
No.

Sample Letter��Sample Letter��
e��d��c��b��a ed��c��b��

���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
���������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
�����������������������������������������

Use enough number  of subintervals with mid-ƉŽŝŶƚ� ϯϳϬ͕� ϯϳϱ͕ϯϴϬ͕͙�
prepare a frequency distribution  for  all of thesĞ�ϭϮϱ�ĚĂƚĂ͘���dŚen calculate 
a)The mean and standard ĚĞǀŝĂƟŽŶ��ŽĨ�ƚŚĞ�Ăůů�ϭϮϱ�ŵĞĂƐƵƌĞŵĞŶƚƐ. 
 b)WůŽƚ�Ă�ŚŝƐƚŽŐƌĂŵ�ĨŽƌ�ƚŚĞ�ϭϮϱ�ŵĞĂƐƵƌĞŵĞŶƚƐ͕�Ă�ŚŝƐƚŽŐƌĂŵ�ĨŽƌ�Ϯϱ�ƐĂŵƉůĞ�
ŵĞĂŶƐ�ĂŶĚ�Ă�ŚŝƐƚŽŐƌĂŵ�ĨŽƌ��Ϯϱ�ƐĂŵƉůĞ�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶƐ͘� 
  
ϭ͘Ϯ;�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�ϳϬͿ 
  In the production of  an electrical device operated by a thermostatic 
control, five control switches were tested each hour to determine  the "on" 
temperature at which  a the thermostat  actually  operated under  a given 
ƐĞƫŶŐ͘��ZĞƐƵůƚƐ�ŽĨ�ƚŚĞ�ƚĞƐƚ�ŽǀĞƌ��Ă�ϯ-day production period were as follows 

a
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"on" temperature at which  a thermostatic 
switch operates (temperature units not 

specified) Subgroup No. Date 
e d��c b a 

����
����
����
����
����
����
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�� 
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����
����
����
����
����
����
����
����
����
����
����

April 24 
 
 
 
 

April 25 
 
 
 
 

April  26 
 
 
 
 

Apil  27 
 
 
 
 
 

April 28 
 

 
Make a tally of these ϭϮϱ measurements  and arrange  them in a frequency 
distribution.    
�ĂůĐƵůĂƚĞ�ƚŚĞ�ŵĞĂŶ�ŽĨ�ĞĂĐŚ�ƐĂŵƉůĞ�ĂŶĚ�ƉůŽƚ�Ă�ŚŝƐƚŽŐƌĂŵ�ĨŽƌ��ƚŚĞ�Ϯϱ��ƐĂŵƉůĞ�
means. 
    
ϭ͘ϯ;�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�ϳϮͿ 
A manufacture of electrical products purchases many parts from outside 
suppliers. �� ůŽƚ� ŽĨ� ϮϬ͕ϬϬϬ� ŽĨ� ĐĞƌƚĂŝŶ� ƐŵĂůů� ĐŽŵƉŽŶĞŶƚ� ŝƐ� ƌĞĐĞŝǀĞĚ� ĨƌŽŵ� Ă�
new supplier.    The receiving  in inspection  department  for the 
ŵĂŶƵĨĂĐƚƵƌĞƌ� �ŚĂƐ� ƚĂŬĞŶ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ� �ŽĨ�ϮϬϬ components from this 
lot and measured the resistance of each component.  These resistance in 
ohms have been  arranged the following frequency distribution. 
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Midpoint 

iM��

Frequency 

if
 

Cell 
boundaries�

(Ohms) 

Midpoint 

iM 

Frequency 

if
 

Cell 
boundaries�

(Ohms) 

ϳϵ͘ϱ��ϰϬ ϳϴ͘ϱ-ϴϬ͘ϱ ϲϳ͘ϱ��Ϯ ϲϲ͘ϱ-ϲϴ͘ϱ 
ϴϭ͘ϱ Ϯϰ ϴϬ͘ϱ-ϴϮ͘ϱ ϲϵ͘ϱ ϳ ϳϬ͘ϱ���ϲϴ͘ϱ 
ϴϯ͘ϱ ϭϲ ́˻̄̋-ϴϰ͘ϱ ϳϭ͘ϱ ϭϯ ϳϬ͘ϱ-ϳϮ͘ϱ 
ϴϱ͘ϱ ϱ ϴϰ͘ϱ-ϴϲ͘ϱ ϳϯ͘ϱ ϮϮ ϳϮ͘ϱ-ϳϰ͘ϱ 
ϴϳ͘ϱ Ϯ ́̌̄̋��́́̄̋ ϳϱ͘ϱ Ϯϱ ϳϰ͘ϱ-ϳϲ͘ϱ 
 ϮϬϬ sum ϳϳ͘ϱ ϰϰ ϳϲ͘ϱ-ϳϴ͘ϱ 

 
a)Compute the average and sample standard deviation of this frequency 
distribution 
b)What percentage of a normal distribution having your computed 
estimates of ρ� and ɐ would fall outside the specification limits 75 10  
ohms. 
c)If you make  the arbitrary assumption that resistances are distributed 
uniformly  throughout each  cell, what percentage of the actual distribution 
fell outside  these limits?   

               Ans.   a) ����ഥ ൌ σ୤౟୑౟
σ୤౟ ൌ ͹͹Ǥ͹����   � ൌ Ͷǡ����ሻ�͵ǤͷΨ�����ሻ��ʹǤͻΨ 

ϭ͘ϰ;�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�ϳϮͿ 
  What proportion of a frequency distribution  would you expect to fall 
outside ��ഥ േ ʹǤʹɐ  limit if: 
a) it is known to be approximately normal. 
b) it is known only that it satisfies the conditions of the Camp-Meidell 
inequality. 
c)  nothing is known about the form of distribution. 
                   �ŶƐ͘���ĂͿϮ͘ϳϴй������ሻ�ͻǤʹΨ�����ሻ��ʹͳΨ 
 

It is our duty to act in such a manner that the action can��
 be universalized i.e. we would want everyone else to act 

in a similar manner��
(based on Immanuel Kant's philosophy)��
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Chapter ʹ: 
Control Charts  for Variables(܆�ഥ �ǡ ǡ܀  (ܛܜܚ܉ܐ૛�۱܁�܌ܖ܉�܁
Aims 
 This chapter, after defining " being in control" and " being out of 
control"  concepts, teaches  how to plot തܺcontrol chart  in order to check 
whether the mean of  a parameter related to the product population is 
under control or not.  The chapter also deals with  R,s  and  sϮ control 
charts to investigate the" in" and "out" of control  status of the process 
standard deviation.  It  is worth mentioning that the statistical distribution 
of the observations in the samples o this chapter is assumed to be 
approximately normal. 
 

ʹǤͳ܆��ഥ  control chart  
   An ܆�ഥ control chart is a type of statistical process control chart for use 
ǁŝƚŚ�ĐŽŶƟŶƵŽƵƐ�ĚĂƚĂ�ĐŽůůĞĐƚĞĚ�ŝŶ�ƐĂŵƉůĞƐ��ŽĨ�ƐŝǌĞ��ƵƐƵĂůůǇ�ďĞƚǁĞĞŶ�ϯ�ƚŽ�ϱ�
pieces. This chart is used to monitor the process mean. Dr  Schewart has 
proposed ( ) 3 XE X   for the ϯ-sigma  limits of  X-Bar  control  chart  

where 

( )E X        is the expected value of the sample mean( X ), 
   ,is the process mean                       ��ߤ

X n
   ,  

                       is the process standard deviation,  
n                          is the sample size. 
      dŚĞ�ƌĞĂƐŽŶ�ĨŽƌ�ƵƐŝŶŐ�ƚŚĞ�ϯ- sigma limits could be described as follows: 
Based on central limit theorem, the distribution of sample mean ( തܺ)is 
approximately normal;  therefore ϵϵ͘ϳϯй�ĂŶĚ�Ϭ͘Ϯϳй�ŽĨ��ƚŚĞ�ƐĂŵƉůĞ�ŵĞĂŶƐ 
( തܺݏሻ ĂƌĞ�ĞǆƉĞĐƚĞĚ�ƚŽ�ĨĂůů�ŝŶƐŝĚĞ��ĂŶĚ�ŽƵƚƐŝĚĞ�ŽĨ�ƚŚĞ�ϯ-sigma limits 

3 X   ƌĞƐƉĞĐƟǀĞůǇ͖�ŝ͘Ğ͘��ĨƌŽŵ�ĞĂĐŚ�ϭϬ͕ϬϬϬ�� തܺݏ  ŽŶůǇ�Ϯϳ͕ ĨƌŽŵ�ĞĂĐŚ�ϭϬϬ��

തܺݏ   no തܺ is expected to fall outside limits. That is why ( ) 3 XE X    

is chosen for the upper and lower control limits. To calculate the 
limits, two cases are distinguished: ρ�����ɐ  known or unknown. 
 
�ഥ܆  2.1.1  chart limits - ૄ܌ܖ܉��ો  known 
  If specific or standard values, say ߪ�݀݊ܽ�ߤ, are  given (or could be 
obtained from the specification limits) for the mean and standard 
deviation of the process, the lower control limit for X-bar chart  
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 and its central (௑തܮܥܮ)  the upper control limit for the chart, (௑തܮܥܮ)
line(C.L.) are calculated as follows: 

3
XUCL

n
   ��or�� XUCL A    

� C.L.����
3

XLCL
n

      or  XLCL A    

where 

ܣ  ൌ ଷ
ξ௡  is given  in Table U  and  

  n  = sample size. 

It is worth noting that using �ഥ chart with limits 0 A  is in fact testing 

the hypothesis ܪ଴ǣ ߤ ൌ ଵǣܪ�ݏݑݏݎ݁ݒ�଴ߤ ߤ ്  ଴  using several samples, withߤ
level of significance 0.27%á  . 

�ഥ܆ 2.1.2  chart limits - ࣌�ࢊ࢔ࢇ�ࣆ  unknown 
   If specific or standard values, say ߪ�݀݊ܽ�ߤ, are  not available for the mean 
and standard deviation of  the process , supposing the distribution of  the 
measurements  (X population )is normal, we know from statistics that the 
estimate for the standard deviation of the population (process) is given by: 

4

� s

c
 ��� or�

2

� R

d
 

 
where 

S iS
K





 
  

iS   is the standard deviation of ith sample  ŝсϭ͕Ϯ͕͕͘͘Ŭ 

R iR
K


 ,  

iR    is the range(the difference between maximum & minimum) of ith 

sample ŝсϭ͕Ϯ͕͕͘͘Ŭ 
�ସ������ଶ�����ʹ�������� whose values ,  which depend on sample size (n), 
are given in Table U. The values could be calculated using the following 
phrases in MATLAB: 
Đϰ�с�ƐƋƌƚ;Ϯͬ;Ŷ-ϭͿͿ͘ΎŐĂŵŵĂ;ŶͬϮͿͬ͘ŐĂŵŵĂ;;Ŷ-ϭͿͬϮͿ͘ 
ƉĚ�с�ŵĂŬĞĚŝƐƚ;ΖŶŽƌŵĂůΖ͕Ϭ͕ϭͿ͖ĨƵŶ�с�Λ;ǆͿ�;ϭ-;ϭ- cdf(pd,x)).^n-;ĐĚĨ;ƉĚ͕ǆͿͿ͘ΔŶͿ͖�ĚϮ�с�ŝŶƚĞŐƌĂů;ĨƵŶ͕-inf,inf) 
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Then estimating the mean of the process with �ഥഥ  and the standard 

deviation with 
4

� s

c
  we have 

3

4

3 3
3 X

s
A s

n c n
      

3

3

3

3

X X

X X

UCL UCL X A s
n

central line X

UCL UCL X A s
n

 

 

    



    

 

Factor Aϯ is given in Table U. 

Similarly  if  we let 
2

� R

d
  ,then 

2
2

3
3 X

R
A R

dn n

      and  

௑തܮܥܮ ௑തܮܥܮ ,   and the central line are calculated  as follows: 

XUCL X A R  2��
Central  line  X  

2XLCL X A R   

Factor Aϯ is given in Table U. 
 

2.1.3 Plotting ܆�ഥ  chart in MATLAB 
                 Given  k (݇ ൒ ͷ) observed samples of size n,  give these data in MATLAB 

as a matrix of ݇ ൈ ݊  and then run  xbarplot  command or controlchart  
command;  these commands  have several options . 
Example Ϯ͘ϭ 
   Given the following table data ͕�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ϯ-sigma limits for X chart: 

R��
2 2

1
s

x nXi

n




 
X��Observations��

Sample 
No.��

9 3.77 19.25 24 18 15 20 1 
18 7.63 21.25 14 20 19 32 2 
28 11.62 32.75 34 45 17 35 3 
18 7.94 23.5 16 25 19 34 4 
20 9.42 18 21 11 10 30 5 
32 15.37 26.25 36 18 9 42 6 
27 12.63 34.75 18 44 32 45 7 
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Solution 
,  are not given . we use the following formulae:  

3

3

X

X

UCL X A s

LCL X A s

 

 
 

Central  line  X  

9.77, 25.11
7 7

s X
s X

               

&ƌŽŵ�dĂďůĞ�h�ĨŽƌ�Ŷсϳ�͗��ϯсϭ͘ϲϮϴ,then  

3

3

25.11 1.628 9.77 41.02

25.11 1.628 9.77 9.20

X

X

UCL X A s

LCL X A s

     

     
 

Central  line  =ʹͷǤͳͳ 
Using the following  commands we could plot the chart as shown below: 
>>A=[� 

����������������
����������������
����������������
����������������
����������������
���������������
��]; �� ��������

>> controlchart(A,'chart','xbar' ) 

 
Fig. 2-1   X-bar chart for Example 2.1 

 
 
 
 
 
 
 
 
 



                                                                    

�ǆĂŵƉůĞ�Ϯ͘Ϯ 
   Plot X-ďĂƌ�ĐŚĂƌƚ�ĨŽƌ��ƚŚĞ�ϯ�ƐĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϰ�ŐŝǀĞŶ�ŝŶ�ƚŚĞ��ĨŽůůŽǁŝŶŐ�dĂďůĞ�͘

measurements 
Sample��
No. 

���������������������������
���������������������������
������������������������������

100.3

X����������

 
 and   are not given . We use the following formulae:

2XLCL X A R   
Central  line  X  

XUCL X A R  2  

X

X

=100.3+0.729×6.33=104.92

=100.3-0.729×6.33=95.67

UCL

LCL

&ŝŐƵƌĞ��Ϯ-ϭ�ƐŚŽǁƐ��y-bar chart.  

Fig.2-2 X-bar c
 
Another  way  of  calculating the limits 
(Aϯ  is read ͳǤͳʹͺ  ĨŽƌ�Ŷсϰ from Table U

௑തܮܥܷ ൌ തܺത+ܣଷܵҧ ൌ ͳͲͲǤ͵ ൅ ͳ
100.3X  . 

௑തܮܥܷ ൌ തܺത-ܣଷܵҧ ൌ ͳͲͲǤ͵ െ ͳǤ
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ďĂƌ�ĐŚĂƌƚ�ĨŽƌ��ƚŚĞ�ϯ�ƐĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϰ�ŐŝǀĞŶ�ŝŶ�ƚŚĞ��ĨŽůůŽǁŝŶŐ�dĂďůĞ�͘ 
2 2

rms

x nXi
n

 


��
S2��S R��X

����������������������������
������������������������������
�����������������������������
 2

10.00

S 

��2.706

s 

��6.33

R 

 100.3

X 

 

are not given . We use the following formulae: 

104.92,

95.67,X=100.3
 

 

 
bar chart for Example 2. 

he limits is : 
from Table U) 

ͳǤͳʹͺ ൈ ʹǤ͹ͳ ൌ ͳͲͶǤ͹ͳ 

Ǥͳʹͺ ൈ ʹǤ͹ͳ ൌ ͻͷǤͺͻ 
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  A small electronic device is designed to emit a special signal.  The time of 
 

emitting the signal is a characteristic of the device.   In the production of 
this device, ϯ subgroups of ϰ units were taken and tested.  The results are 
given in the following table. The standard ŐŝǀĞŶ�ĨŽƌ�ƚŚĞ�ŵĞĂŶ�ŝƐ�ϯϵϴ͘ϬϬ�ĂŶĚ�

 

for the variance  is ϴ; plot  the ��ഥ  control chart.  
Duration of automatic 

signal(Xi)��
Sample 
No. 

�����������������������
�����������������������
�����������������������

 
Solution 

��
R S�� X��

Sample 
No. 

��������������������������395.25�����
��������������������������������������
���������������������������������������

ó =6.63r ms��1 7R ��ܵҧ� 7.65 2
62.52S ��=397.08X��

 
��

 

XUCL A    

Central  line =   

XLCL A    
3

A = 1.5
n
  

X

X

UCL = 398.00 +1.5 8 = 410.00

C.L = = 398.00

UCL = 398.00 -1.5 8 = 386.00.






 

 
Figure Ϯ-Ϯ� shows  the  X-bar chart. 

�ǆĂŵƉůĞ�Ϯ͘ϯ 
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Fig. 2-3   ܆�ഥ  chart for  Example 2.3 

 
   It is worth noting that LSL and USL(or  L and U ) are determined from 
specification limits and should not be mistaken  from LCL &UCL for X-bar 
control chart(UCLX and LCLX).  LSL and USL are specification limit and 
pertain to individual measurements , however UCLX and LCLX are the 
allowed limits for the means of  the samples  of the measurements.  
 
ʹǤʹ�Determining of standard ࣌�܌ܖ܉�ࣆ  from product 
specification limits  i.e. L and U 
  Suppose design limits  U and L have been specified for  a dimension of a 
product say  for the external diameter of  a bushing  to be produced by  a 
machining process such as lathe working.  In this section it is desired to 
determine the mean and standard deviation on which the lathe should be 
adjusted.    This  mean and standard deviation , driven  from U and L, could 
be used for determining the control limits of��ഥ ,R&S charts. 
  Given a nominal value ߤ and tolerance േݐ for a dimension of the product 
(or specification limits � ൌ ߤ െ � & ݐ ൌ ߤ ൅  it is reasonable to adjust ,(ݐ

the process on  ߤ ൌ ୙ା୐�
ଶ Ǥ��To calculate the standard deviation for the 

product process,  the producer has to specify an acceptable percentage of 
waste i.e. the portion of the produced products accepted to fall outside L 
and U.  Let this portion be denoted by ߙ  and the distribution of the 
dimension (X)produced by  the process(call it process distribution ) is 
normal.; then to determine the allowed standard deviation  we have 

��ሺܺ ൏ ሻܮ ൌ ��ሺܺ ൐ ܷሻ ൌ ఈ
ଶ   or �� ቀܼ ൐ ௎ିఓ

ఙ ቁ ൌ �� ቀܼ ൐ ௧
ఙቁ ൌ

ఈ
ଶ ֜ 

௧
ఙ ൌ ܼഀ

మ
֜ ߪ� ൌ ௧

௓ഀ
మ
  . 

1 2 3
380

390

400

410

420
Xbar Chart

Samples

M
ea

su
re

m
en

ts

UCL

LCL
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  It is obvious that standard deviation of the process  could be less than this 
value,  therefore given the tolerance  ߤ േ  �����and an acceptable wasteݐ
percent  á, the mean of the process should be adjusted on  ߤ  and  the 
allowable  standard deviation(ɐୟ୪୪)  for the process is 

ɐୟ୪୪ ൌ �
�஑
ଶ

 

where 

�ಉ
మ
   is a value  related to standard normal such that �� ቀ� ൐ �ಉ

మ
�ቁ ൌ ఈ

ଶ��

is obtainable in MATLAB by ŶŽƌŵŝŶǀ;ϭ-ĂůƉŚĂͬϮ). 
   
Example Ϯ͘ϰ��
  The tolerance for one of the dimensions of a product is 1.023  .  If  
Ϭ͘Ϯϳй�ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ�ŝƐ�ĂůůŽǁĞĚ�ƚŽ�ĨĂůů�ŽƵƚƐŝde the specification limits 
UсϮϯ͘ϭ��ĂŶĚ�řLсϮϮ͘ϵ͕�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ŵĞĂŶ�ĂŶĚ�ƚŚĞ�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶ�ŽŶ��

which the process should  be adjusted. 
23.1 22.9

23
2

 
  

0.00135

0.0027 23.1 23 23.1 23 0.1
Pr( 23.1) Pr( ) 0.00135 3 .

2 3
X Z Z 

 
 

         

ܼഀ
మ
ൌ ݒ݊݅݉ݎ݋݊� ቀͳെǤ ଴଴ଶ଻ଶ ቁ ൌ ͵ǤͲͲͲͲ 

Therefore ��

௔௟௟ߪ ൌ ௧
௓ഀ
మ
ൌ ଴Ǥଵ

௓బǤబబమళ
మ

ൌ ଴Ǥଵ
௓బǤబబభయఱ ൌ

଴Ǥଵ
ଷ Ǥ����������������       

 
ʹǤ͵  Concept of  "in control" status and "out of control" 
status 
  When the  plotting of a control chart is done; if all sample points are 
distributed  within the   UCL and LCL randomly  and no special pattern of 
variation is evident it is said that the parameter being monitored is under 
controlϭ. &ŝŐƵƌĞ�Ϯ-ϰ is an example of this case. 

                                                           
ϭ�It is reminded that when we say that ߤ is under control based on an chart with 

as limits; actually we are accepting the null hypothesisܪ଴ǣ�ρ ൌ ρ଴  

versusܪଵǣ�ρ ് ρ଴ with  using sevral samples   

X
 A0

0.27%á 
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Fig. 2-4  A sample X-bar chart indicating process mean is in 

control 
 
  Lack of control of a process parameter  is indicated by at least one point  
falling outside control limits of the corresponding control chart or the 
sample points forming  a special pattern.  &ŝŐƵƌĞƐ�Ϯ-ϱ� ĂŶĚ� Ϯ-ϲ� ƐŚŽǁ� ƚǁŽ�
control charts indicating the parameter of the process ( in this case the 
ƉƌŽĐĞƐƐ�ŵĞĂŶͿ� ŝƐ� ŽƵƚ�ŽĨ� ĐŽŶƚƌŽů͘� � /Ŷ� &ŝŐ͘� Ϯ-ϱ� ƐŽŵĞ�ƉŽŝŶƚƐ� ĂƌĞ�ŽƵƚƐŝĚĞ� ƚŚĞ�
ĐŽŶƚƌŽů�ůŝŵŝƚƐ�ĂŶĚ�ŝŶ�&ŝŐ͘��Ϯ-ϲ�ƚŚĞ�ƉŽŝŶƚƐ�ŚĂǀĞ�ĨŽƌŵĞĚ�Ă�ƐƉĞĐŝĂů�ƉĂƩĞƌŶ͘�� 
  The author believes that those points falling on the UCL and LCL could be 
acceptable ; because in statistical tests the equal signs generally belongs  to 
the acceptance  region and control charts are continuous  form of testing 
hypothesis. 

  
   Supplementary to the ordinary rule "One point exceeds the control  
limits" are the rules suggested by the Western Electric Co. (WECO). These  
WECO rules would conclude the process is out of control if (as referenced 
by Montgomeri&Rungers,1994, page846),: 

 
One point plots outside 3-sigma control limits, 
 
Two out of three consecutive points beyond  one   2-sigma limit, 
 
4 out of 5 consecutive points plot at a distance of 1-sigma or beyond, from the 
center line, 
 
Eight consecutive points on one side of the center line. 
 
There are also some tests based on the theory of runs indicating  the process 
might be  running out of control.  These tests will follow shortly.   
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Fig,  2-5 A chart indicating out of  
               control  status 

Fig,  2-6 A chart indicating out of 
               control  status         

 
  Reaching to the  conclusion that the process is out of control, indicate  the 
presence of assignable causes.  The quality �man, then, has to initiate 
problem solving to  improve the manufacturing process and to prevent 
defects and defective . 

 
Control charts for monitoring process variance 
(R-chart, s-chart, sϮ-chart  ) 
  R-chart, s-chart, s2-chart ,�are used to monitor the variation of a quantitative 
characteristic of products such a height, width, hardness� measurable on a 
continuous scale.  Along with�� തܺ െ �����, usually R �chart or s-chart  is  
used than   s2-chart.    
ʹǤͶ�R-chart( Range control chart) 
  R  control chart is used to monitor process variations, when the variable 
of interest is a quantitative measure;(http://www.freequality.org/documents/knowledge/x-

bar%20R%20Charts.pdf). It is used to track instantaneous variations, and to 
evaluate the stability of the variability, within a process.(http://www. businessdictionary 

.com/ definition/range-chart-R-Chart.html).  This control chart is widely used to 
examine the stability of production processes in many industries. 
 

Theorem  ;<ƵŵĞ͕�ϭϵϵϮ͕�ƉĂŐĞ�ϭϲϰͿ 
  If R is the range of a sample of size n extracted from a normal 
distribution )ó,( 2N , Then 

                                 2 2( ) , RE R d d     

where  
 ,is  the standard deviation of the distribution or process  ߪ
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�ଶ�����ଷ�����ʹ�������� whose values depend on sample size (n).  �ଶ  
values are given in Table U.           End of Theorem. 
 
�ଶ could also be calculated from: 

݀ʹ ൌ ׬ ሾͳ െ ሾͳ െ ߮ሺݖሻሿ௡ାஶ
ିஶ െ ߮ሺݖሻሿ௡݀ݖ, 

Where ߮ሺݖሻ is the cumulative distribution function of standard normal. 
Or from MATLAB for a given n: 

݊ ൌ ڮ Ǣpd = makedist('nŽƌŵĂůΖ͕Ϭ͕ϭͿ͖ĨƵŶ�с�Λ;ǆͿ�;ϭ-;ϭ- cdf(pd,x)).^n-(cdf(pd,x)).^n); 

ĚϮ�с�ŝŶƚĞŐƌĂů;ĨƵŶ͕-inf,inf) 

�ଷ values are given in references such as Grant & Leavenworth(1988). 
Note that  n is the sample size(volume) not the  number of samples.   
For the calculation of the ϯ-sigma  upper and lower  ĐŽŶƚƌŽů�ůŝŵŝƚƐ͕�Ϯ�
cases are distinguished below :࣌�  known or unknown. 
 
 known  ࣌� - control chart limits ܀  2.4.1
   when a standard or specific value  is given for the process standard 
deviation or is obtainable from the product specification limits L and U then 

   23232 333)( DddddREUCL RR   

Central line= E(R�) 
   13232 333)( DddddRELCL RR   

�ଵ�����ଶ, given in Table U, are 2 factors whose values depend on 
sample size n. 
When a negative value is obtained for RLCL , set  0RLCL  , because 

0minmax  XXR . 

 
 unknown  ࣌� - control chart limits ܀  2.4.2
  When a standard or specific value  is not  given for  the process standard 
deviation ı or is not obtainable from the product  specification limit and the 
process follow a normal distribution, then    

RD
d

R
DDUCLR 4

2
22    

Central line= തܴ 

RD
d

R
DDLCLR 3

2
11   , 

where  
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�ഥ is the mean of samples' ranges i.e.��ഥ ൌ σ ୖ౟ౡ౟సభ�
୩   given  k successive 

subgroups, 
�ଷ�����ସ�are factors given in Table U. 
 
Example Ϯ͘ϱ 
  Plot  the R �chart for the  information given the following table 

R����������Sample No. 

����������������������
�����������������������

�����������������������

�����������������������

�����������������������
����������������������

�����������������������

തܴ ൌ ��Ǥ�� ��

Solution  
Since  ı  is not given ,the limits are calculated as follows: 

4 2.28  21.71=49.5RUCL D R    
Central line=  21.71R    

3 0  21.71=0RLCL D R    
 
 
The following  commands could plot the chart as shown below in 
MATLAB( having statistical toolbox): 
>>A=[� 

��������� ���������
����������������
����������������
����������������
����������������
���������������

��]; ������������

Figure 2-7 shows the R control chart using the following MATLAB 
command 
>> controlchart(A,'chart','R' ) 
. 
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Fig. 2-7    R- chart for  Example 2.5 

 
Interpretation 
  Since  the ranges of all the samples  have fallen between the  limits 
and no  specific pattern is evident from the points, it is concluded the 
standard deviation of the process is under control.  Once the R chart 
shows a state of statistical control , the process standard deviation can 
be estimated using  

ොߪ ൌ ோത
ௗమ. 

  It should be added that this example is for teaching purposes;  for 
practical use at least 20 (www.freequality.org/documents/knowledge/x-bar R Charts.pdf ) 

samples are  needed to start constructing a control chart.  
 
ʹǤͷ�S-control chart  

S chart is another control chart used to monitor the process 
variations when the characteristic of  interest is quantitative.   Note that 

sample standard deviation(
( )

n

i
i

x X
s

n







 2

1

1
)  is itself a random variable,  and 

therefore has its mean and standard deviation denoted by �ሺ�ሻƬ��ɐୱ  
respectively.  The theory of statistics shows that if the  process is normally 
distributed, the following relationship is available between ɐୱ and the 
process standard  deviation (ɐ): 

௦ߪ ൌ ඥͳߪ െ ܿସଶ. 
And also the  expected value of sample standard deviation satisfy the 
following relationship 

�ሺ�ሻ ൌ �ସɐ, 
where 
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ܿସ ൌ ඨ ʹ
݊ െ ͳ����

ቀ݊ െ ʹʹ ቁ Ǩ
ቀ݊ െ ͵ʹ ቁ Ǩ

����������������������������� 

൬݇ʹ൰ Ǩ ൌ Ȟ ൬݇ʹ ൅ ͳ൰ ൌ 
�������������൬݇ʹ ൅ ͳ൰ǡ 
  x-1 -t

0
t e dt 0x x


   , 

)()11()!1( 222
nnn  , 

��ሺ௡ିଷଶ �ሻ � ൌ �Ȟሺ௡ିଷଶ ൅ ͳሻ ; 
The following MATLAB command calculates  �ସ for a given sample size n: 

 
For the calculation of the  upper- and lower 3-sigma  control limits, 2 cases 
are distinguished:�ɐ  known or unknown. 
 
 known  ࣌� - chart limits ܁  2.5.1
  When a standard or specific  value  is given for  the process standard 
deviation or it is obtainable from the product specification limits  i.e. L and 
U then: 
since  

  SS sEUCL 3��
Central  line  sE  

  SS sELCL 3  
Substituting for �ሺ�ሻ����ɐୱǣ 

2
4 4 63 1SUCL c c B       

Central line=ܿସߪ  
2

4 4 53 1SL CL c c B       
/Ĩ�>�>Ɛ��ƚƵƌŶĞĚ�ƚŽ�ďĞ��ŶĞŐĂƟǀĞ͕�ůĞƚ�>�>Ɛ��сϬ͘ 
 
Factors �ହ�����଺��whose values depend on sample size (n) are  given in 
Table U or by the following commands in MATLAB: 
 
Đϰ�с�ƐƋƌƚ;Ϯͬ;Ŷ-ϭͿͿ͘ΎŐĂŵŵĂ;ŶͬϮͿͬ͘ŐĂŵŵĂ;;Ŷ-ϭͿͬϮͿ 
�ϲс�ĐϰнϯΎƐƋƌƚ;ϭ-ĐϰΔϮͿ������ 
�ϱс�Đϰ-ϯΎƐƋƌƚ;ϭ-ĐϰΔϮͿ. 
 
 unknown  ࣌� - chart limits ܛ  2.5.2
  When the standard deviation of the process is not given or could not be 
determined: 

c  = sqrt(2/(n-1)).*gamma(n/2)./gamma((n-1)/2)4
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SB
c

S
BBUCLS 4

4
66   �������������������������������������� 

Central   line =ܵҧ   
SBLCLS 3  

 
Factors �ହ�����଺�� are ratios whose values depend on sample size (n) and  
given in Table U. 
 
Example Ϯ͘ϲ 
  Plot  the S �chart for the  information given in the following table. 

2 2

1
s

x nXi

n




 
��������Sample 

No. 

�������������������������
�������������������������
��������������������������
�������������������������
�������������������������
�������������������������
��������������������������

�ത ൌ ͻǤ͹͹ ����������

Solution 
  is not give; the following formulae are used:   
���ୗ ൌ �ସ�ത ൌ ʹǤʹ͹ ൈ ͻǤ͹͹ ൌ ʹʹǤͳ͹�=� 
Central   line =�ത   

SBLCLS 3 ൌ Ͳ ൈ ͻǤ͹͹ ൌ Ͳ. 
The following  commands could plot the chart as shown below in MATLAB  
( having statistical toolbox): 
>>A=[� 

����������������

����������������

����������������

����������������

����������������

���������������

��]; ����������������

>> controlchart(A,'chart','S' ) 
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Fig. 2-8   S- chart for  Example 2.6 

 
&ŝŐƵƌĞƐ�Ϯ-ϳ�ΘϮ-ϴ�ƐŚŽǁ�Z-chat and s-chart  for the same data.  A quotation 
from Grant and Leavenworth;ϭϵϴϴͿ is worth noting: 
��

   The similarity between the variations ĨƌŽŵ�ƐƵďŐƌŽƵƉ�ƚŽ�ƐƵďŐƌŽƵƉ�ƐŚŽǁŶ�ŝŶ�ƚŚĞƐĞ�Ϯ�ĐŚĂƌƚƐ;&ŝŐϮ-ϵͿ is 
emphasized by the use of connecting  linesϭ. It seems clear that these two charts tell practically the same 
story; there is no need to use both, either one may be used in any instance( GƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϴϭͿ͘   
 

   &ŝŐƵƌĞ�Ϯ-ϵ�ŝůůƵƐƚƌĂƚĞƐ�ƚŚŝƐ�ĨĂĐƚ͘� �  It is worth remembering that the sample 
standard deviation (s) uses all observations of the sample.  However the 
calculation of R is easier when it is done manually.  One must, however, be 
careful when using s-control chart .  For even though one is using the limits 
ሻݏሺܧ േ  ௦, it does not follow that the probability of having a value outsideߪ͵
ƚŚĞ�ĐŽŶƚƌŽů��ůŝŵŝƚƐ�ǁŚĞŶ�ƚŚĞ�ƉƌŽĐĞƐƐ��ŝƐ�ŝŶ�ĐŽŶƚƌŽů�ŝƐ�Ϭ͘ϬϬϮϳ͘  Even if the data 
come from  a normal distribution, the sample standard  deviation (s) will 
not be normally diƐƚƌŝďƵƚĞĚ;��ĞƌŵĂŶ�Θ�ZŽƐƐ͕�ϭϵϵϳ�ƉĂŐĞ�ϵϰͿ͘� �dŚĞ�ƐĂŵĞ�ŝƐ�
ƚƌƵĞ�ĨŽƌ�Ăůů�ŽƚŚĞƌ�ĐŚĂƌƚƐ�ǁŚĞŶ�ĐŽŵƉƵƟŶŐ�ϯ-sigma limits. 

                                                           
ϭ�In practical control �chart work in industry the points on the charts are sometimes coonected and 
sometimes not. 
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Fig 2-9 Control charts for sample standard deviation and range   
of 100 samples   (Grant & Leaven worth ,1988 page 80) 

 
ʹǤ͸�   Sʹ  Control Chart  
  "There is no reason to first compute the subgroup SϮ and then take its 
square root to obtain the sample standard deviation.  One should just plot 
the successive values of SϮ until one falls outside the lower and upper 
control limits of SϮ -chart "(DerŵĂΘZŽƐƐ͕ϭϵϵϳ� ƉĂŐĞ� ϵϱͿ.  The upper and 
lower limits of this chart are given by the following relationships assuming 
the process is normally distributed. 

 

2.6.1  S2 Chart limits - ࣌�૛  known 
  When a standard for the process variance is given or could be derived, the 
following relationships are applicable:  

���ୗమ��� �ൌ � ɐଶ ɖ୬ିଵǡ଴Ǥ଴଴ଵଷହ
ଶ
� െ ͳ  

Central line=�ሺ��ଶሻ ൌ ɐଶ 

���ୗమ��� �ൌ � ɐଶ ɖ୬ିଵǡ଴Ǥଽଽ଼଺ହ
ଶ
� െ ͳ  

 
When a point does fall outside the chart, the process should temporarily 
cease and the system declared out of control. 
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2.6.2  S2 Chart limits - ࣌�૛  unknown 
  When a system is just starting out,  ɐଶ is unknown but can be estimated 

from the average of the sample variances (ɐଶ෢ ൌ �ଶതതത ൌ σ ��ୗ౟మ౟
୩  )�.  The limits 

are as follows ;�ĞƌŵĂŶΘZŽƐƐ͕ϭϵϵϳ�ƉĂŐĞ�ϵϲ): 

���ୗమ��� �ൌ � �ଶതതത ɖ୬ିଵǡ଴Ǥ଴଴ଵଷହ
ଶ
� െ ͳ  

Central line=�ଶതതത                  
���ୗమ��� �ൌ � �ଶതതത ஧౤షభǡబǤవవఴలఱ

మ
୬ିଵ . 

 
  As in the case of stating up an X-bar chart  it then should be checked that 
the  k subgroup variances used in estimating the process variance( ɐଶሻ, all 
fall within these estimated control limits.  If any of them fall outside , then 
a decision should be made  as to whether the system was temporarily out 
of control or that no control has yet been reached.  If the former  decision 
is made then those subgroups  whose variances fall outside the control 
limits should be discarded  and the estimate of  ɐଶ�recomputed (Derman& 
Ross, ϭϵϵϳ�Ɖ ϵϲ). 
  If we follow the convention of computing the three-sigma  upper and 
lower limits  for SϮ-control chart we might get a more reasonable limits: 

2 2

2( ) 3
S S

UCL E s     

Central  line= 22( )E s   

2 2

2( ) 3
S S

LCL E s    

assuming the process is normally distributed, 
୬ିଵ
஢మ �ଶ��has  a chi-squared 

distribution with   n-ϭ� degree  of  freedom;  then 

 
2

2

( 1)
[ ] 2( 1)

n s
Var n




  �ฺ�
2

2 2

1S n
 


 therefore: 

2 2

222( ) 3 (1 3 )
1S S

UCL E s
n

    


 

Central  line 2  

2

22
(1 3 )

1S
LCL

n
 


 

If  the lower limit  turned to be negative let it be zero i.e. LCLsсϬ͘ 
 
When the process variance is not known, estimating it  from 

ଶ෢ߪ  ൌ ܵଶതതത ൌ σ ��ௌ೔మ೔
௞  , 

 we have: 
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2

22
(1 3 )

1S
UCL S

n
 


 

Central  line= 2S  

2

22
(1 3 )

1S
LCL S

n
 


 

Example Ϯ͘ϳ 
Plot  the SϮ�chart for the  information given in the following table. 

 
��������Sample 

No. 
��������������������������
��������������������������
���������������������������
��������������������������
��������������������������
��������������������������
������ �������������������
2S  =107.86 

����������

 
Solution 

2  is not known, therefore  the following formulae are used 

   2

22
(1 3 ) 1 3*sqrt 2 / 4 1 *107.86 372.06

1S
UCL S

n
     


с;ϭнϯΎƐƋƌƚ;Ϯͬ;ϰ-ϭͿͿͿΎϭϬϳ͘ϴϲсϯϳϮ͘Ϭϲ 

Central  line=
2S сϭϬϳ͘ϴϲ 

2

22
(1 3 )  156.342 0

1S
LCL S

n
    


 

Figure  Ϯ-ϭϬ�ƐŚŽǁƐ��ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ. 
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&ŝŐ͘�Ϯ-ϭϬ�   ࡿ૛  control chart for ��

As the following calculations shows,  i
�ĞƌŵĂŶ�ΘZŽƐƐ;ϭϵϵϳͿ��ǁĞƌĞ�ƵƐĞĚ
would be gained:  

���ௌమܮܷܵ �ൌ � ܵଶതതത߯ସିଵǡ଴Ǥ଴଴ଵଷହ
ଶ
Ͷ െ ͳ  

Central line=ܵଶതതത                  
���ௌమܮܵܮ �ൌ � ܵଶതതത߯ସିଵǡ଴Ǥଽଽ଼଺ହ

ଶ
Ͷ െ ͳ  

߯ଷǡ଴Ǥ଴଴ଵଷହଶ с��ϭϱ͘ϲϯ������������߯ଷǡ଴Ǥଽଽ଼଺ହଶ
 Then:                         

���ୗమ��� �ൌ ሺͳͲ͹Ǥͺ͸�ሻ� �ͳͷǤ͸͵Ͷ െ ͳ ؆ ͷ͸ʹ
Central line=�ଶതതത сϭϬϳ͘ϴϲ 

���ௌమܮܵܮ �ൌ � ܵଶതതത߯ସିଵǡ଴Ǥଽଽ଼଺ହ
ଶ
Ͷ െ ͳ ൌ ሺͳͲ͹

    
 
ʹǤͺ�Types of variations in 
  Experienced quality men classify the variations in a characteristic of  a 
product into two categories based on their causes
special variations. 
 
Common or chance  variations 
  Common variations are those whose sources could not  be identified and 
are due to randomness;  in other wor
no special cause can be found for them
part of the process.  When a control chart shows the process  is in control, 
the  variations are due to chance causes.

Control 

ϱϱ 

 

control chart for Example Ϯ͘ϳ
As the following calculations shows,  if the  formulae recommended by 
�ĞƌŵĂŶ�ΘZŽƐƐ;ϭϵϵϳͿ��ǁĞƌĞ�ƵƐĞĚ,   a  wider interval between the limits 

ଽଽ଼଺ହсϬ͘Ϭϯ�����������������ଶതതത =107.86     

ͷ͸ʹ 

ͳͲ͹Ǥͺ͸�ሻ� �ͲǤͲ͵Ͷ െ ͳ ؆ ͳͲǤͺ 

s in product characteristics 
classify the variations in a characteristic of  a 

based on their causes: chance variations and 

variations  
Common variations are those whose sources could not  be identified and 

are due to randomness;  in other words the causes  are un-assignable, and 
no special cause can be found for them.  The chance causes are an inherent 

When a control chart shows the process  is in control, 
nce causes. 
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Special or uncommon variations  
  Special  variations are those variations that occur due to  assignable 
causes which are identifiable  outside natural variations.  Assignable (or 
special) causes are those whose effect can be detected and  controlled.   
Once detected, their  removal is a relatively simple exercise. They occur 
due to outside elements such as people, material, machinery, measuring 
methods,� 
  When a control chart shows the status of  in control, the process 
variations are due to chance causes and furthermore, if the limits have 
been calculated using a standard value given for a parameter, the in- 
control  status indicates the parameter related to the chart  is according to 
the standard. 
  When a control chart indicates the process parameter is out of  control, 
the  variations are due to special  or assignable causes ; and  the parameter  
of the process  in practice is not  according to the standard, if the limits 
have been calculated using a standard value. 
  It is worth mentioning that if the control limits have not been calculated 
using a standard value, the in-control  status  indicates only  the production 
process continue to work under  chance or  common  causes  and the out-
of �control  status  indicates that causes other than  common causes called 
special or assignable causes govern the process. 

 
2.8.1 Some theory- of � run based tests for lack of control 
  For the study of research data, considerable work has been done on 
developing many tests based on the so-called  theory of runsϭ, providing 
useful tools.  To detect shifts  in a manufacturing process parameter , the 
following  rules ĂƌĞ��ƐƵŐŐĞƐƚĞĚ;ƐĞĞ�'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƚŚ͕ϭϵϴϴ͕�WĂŐĞ�ϴϵͿ: 
There is suspicion that the process parameter has changed if 

 
  ϳ successive points on the control chart, all are on the same side of the central  
line(a run of ϳ�ƉŽŝŶƚƐ�Ăůů above or all below the central line). 
 IŶ�ϭϭ�ƐƵĐĐĞƐƐŝǀĞ�ƉŽŝŶƚƐ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ͕�Ăƚ�ůĞĂƐƚ�ϭϬ��ĂƌĞ�ŽŶ�ƚŚĞ�ƐĂŵĞ�ƐŝĚĞ�ŽĨ�
the central  line. 
IŶ�ϭϰ�ƐƵĐĐĞƐƐŝǀĞ�ƉŽŝŶƚƐ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ͕�Ăƚ�ůĞĂƐƚ�ϭϮ��ĂƌĞ�ŽŶ�ƚŚĞ�ƐĂŵĞ�ƐŝĚĞ�ŽĨ�
the central line. 
IŶ�ϭϳ�ƐƵĐĐĞƐƐŝǀĞ�ƉŽŝŶƚƐ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ͕�Ăƚ�ůĞĂƐƚ�ϭϰ��ĂƌĞ�ŽŶ�ƚŚĞ�ƐĂŵĞ�ƐŝĚĞ�ŽĨ�
the central  line. 
In ϮϬ�ƐƵĐĐĞƐƐŝǀĞ�ƉŽŝŶƚƐ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ͕�Ăƚ�ůĞĂƐƚ�ϭϲ��ĂƌĞ�ŽŶ�ƚŚĞ�ƐĂŵĞ�ƐŝĚĞ�ŽĨ�
the central  line. 

 

                                                           
ϭ�For studying the theoretical  basis f the rules  see references such as  Grant & 
>ĞĂǀĞŶǁŽƌƚŚ�;ϭϵϴϴͿ�Ɖ�ϮϮϴ 
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  Therefore  if any of the  above happens in any Dr Shewhart 's chart,  there 
is an indication that the parameter  related to the control chart might have 
increased or decreased.   For example If the control chart  is തܺ Chart, the 
process mean; if it is � Chart, the process dispersion i.e. process standard 
deviation; if it is p chart, the defective fraction of the process has changed . 
 

 
��

˺Fig. 2-12 An example for the run tests- case 1��
 
There are other tests; e.g. Western Electric  co.( WECO) rules, AIAG rules; 
Boeing AQS Rules; Nelson rules.  EŽƐĞŬŝĞǀŝĐŽǀĂ;ϮϬϭϮͿ�lists more tests.  

 

2.8.2 Application of  ࢄ�തതതത and (R or�s or࢙�૛) chart to make 
decision for the process  
  Two cases are distinguished when using   ܺ�ഥ  chart together with R�  or �s 
orݏ�ଶ control charts for make  decision on a production process : 
The process is  In-control   
The  process is out of control( whose causes have to be  explored). 
 
  The in-control and out-control  status of  a process  parameter were  
previously defined .   
  Out �of-control  status  in   ܺ�ഥ  and R� or �s orݏ�ଶ charts could indicate  
The  process mean (ߤ)have changed   
The process standard deviation(ߪ) has changed 
Both ߪ�݀݊ܽ�ߤ  have changed 

                                                           
ϭ�http://www.brighthubpm.com/methods-ƐƚƌĂƚĞŐŝĞƐͬϳϰϴϱϱ-interpreting-control-charts-in-project-
quality-ŵĂŶĂŐĞŵĞŶƚͬηŝŵŐŶͺϯ 
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  However, the control chart tells when to look for trouble but it cannot, by 
itself, tell where to look or what cause will be found( Grant& Leavenwoth ,  
ϭϵϴϴ�ƉĂŐĞ�ϵϵͿ 
  Regarding the out of control status and  the  changes  in ߪ��݀݊ܽ��ߤ  it is 
pointed out that: 
  If  the  lack of control  is due to the change  in the process mean  while the 
universe (process) standard deviation  is unchanged,  the lack of control  
and special  variations will be indicated  in  the ܺ�ഥ  chart ; however, the 
change  in the mean  may cause lack of control to be indicated by a control     
Since the control  limits are located pretty far from the central line, a few 
points  are expected to fall outside the chart; the above tests are helpful  to 
see if the mean is in control or not.   
  A shift in process dispersion  while the process mean is unchanged,  

may cause lack of control to be  indicated on the X chart as well as 
by a control chart for dispersion(Grant and Leavenworth,ϭϵϴϴ, pages 
ϵϲ-ϵϳ) i.e.  R� or �s or��ଶ chart. 
In searching  for the causes of an out of control condition, WECO Handbook  
advices  the  R-chart[or �s or��ଶ chart ] pattern to be viewed first, making it 

possible to identify many causes directly;  then  to read the X pattern   
first  in the light of R-chart and then jointly with the  R pattern [ or �s or��ଶ 
pattern] to make it possible to obtain some other information( Grant& 
ůĞĂǀĞŶǁŽƚŚ͕ϭϵϴϴ�ƉĂŐĞϵϳͿ 
  When the  process(universe) dispersion  as well as the process 
average is shifting,  obviously lack of control will be indicated in both 
charts(Grant and Leavenworth,ϭϵϴϴ,pages ϵϲ-ϵϳ), i.e. the R chart[ or   

s chart or SϮ chart]as well as the X chart. 
  It is reminded that  assignable cause of variation may be due to 
measurement errors. 

 
ʹǤͻ�Interpreting pattern of variation on ࢄഥ   and "R or s or 
Sʹ chart" 
  It should be kept in mind that  a control chart could tells us that  there  is 
a problem , but could not tell us by itself  what or where  the problem is.   
Studies  including the  ŽŶĞ��ƉĞƌĨŽƌŵĞĚ�Ăƚ��Ğůů�dĞůĞƉŚŽŶĞ�>ĂďƐ�ŝŶ�ϭϵϲϰ�ŚĂǀĞ�
categorized the most frequent  assignable causes (Grant &  Leavenwoth,  
ϭϵϴϴ�ƉĂŐĞϵϵͿ.  These researches could be used in teaching young experts, 
engineers and inspectors.   As a sample ͕� &ŝŐ͘� Ϯ-ϭϯ� � illustrates  a  special 
pattern of variation and the  corresponding  frequent causes( Grant 
Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴƉĂŐĞϭϬϬͿ.  Some other  patterns are  discussed in the 
same reference. 
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Recurring cycles  

 
Some causes affecting  X chart 
(stable variability): 

Some causes affecting  R chart: 

Temperature or other recurring 
changes in physical environment 
Worker fatigue 
Differences in measuring or 
testing devices  which are used 
in order 
Regular rotation of machines or 
operators 
Merging of subassemblies or 
other processes 

Scheduled preventive 
maintenance 
Worker Fatigue 
Worn tools 

Fig. 2-13  A pattern of variations in the X &  R chart  , and most 
frequent causes(after Grant & Leavenworth,1988 page 100) 

 
It is worth mentioning here that 
 if a  point falls outside the X  chart,  the cause could be disordering of the 
machine; 
  when rarely a  control chart for dispersion(R,�S�or�SϮ)  indicates the status 
of  out of control, using the chart  could be stopped , even if  the X  chart 
indicates lack of control frequently. 
 
ʹǤͳͲ�Type I and Type II errors in control chart 
  In statistical  quality control, there are two types of  errors: 
Type I error  : the incorrect rejection of  a conforming  production process 
Type II error : the incorrect  accepting   (not rejecting)  a nonconforming  
production process. 
The probability of Type I error  is denoted by ࢻ and  
The probability of Type I error  is denoted by ࢼ. 
In using control  charts 
 Pr(conclude statistically out of control although the process is truly in = ࢻ
control);e.g.: 

 for x-bar control chart with 0 as the central line:   
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01 Pr( | )X XLCL X UCL        

 Pr(conclude statistically in control| although the process is truly out of =ࢼ�

control);e.g. for x-bar control chart with 0 as the central line: 

0Pr( | )X XLCL X UCL      . 

Using the theory �of-run �based tests might result in type I error. 
The following table provides a representation of  ࢼ�����ࢻǤ 
 

 
 
2.10.1 Effect of   n  on type  II  error  in ࢄഥ control chart 

  Since 
nX

  , if sample size n increases  the distance between  the 

central line and the limits in � തܺ��� control chart  decreases ,  the sensitivity 
of the chart increases and    ߚ decreases.   This fact could be described as 
follows:  

Suppose 0 0

3 3
X XLCL ϭUCL

n n

      ;   and the process  mean 

has shifted  to 0 k    , then  

0

0 0 0 0

Pr( | )

3 ( ) 3 ( )
Pr( )

X XLCL X UCL

k k
n nZ

n n

  
      

 

    

     
 

 

Representation of the probability of  Type I & II errors 

 State of Nature 

Process is conforming 
(in control ) 

Process is nonconforming 
(out of control) 

Inspector accepts process 
(concludes it is in control ) 

OK 
 ሺͳ െ Ƚሻ��

Error 
 ሺȽሻ 

Inspector rejects process 
(concludes it is out of control )��

Error 
 ሺȾሻ 

OK 
 ሺͳ െ Ⱦሻ 
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֜
3

3

2

1 2Pr( 3 3 )
2

k n

k n

z

k n Z k n e d z




 


        . 

 This integral is the area under the probability density function of standard 
normal distribution in an interval from  െ͵െ ݇ξ݊   to ͵ െ ݇ξ݊ .   Although 
the length of the integral  ŝƐ�ϲ�ǁŚŝĐŚ does not depend on the k &n, but  for  
a fixed constant  ݇ ൐ Ͳ  as n increase the interval moves to the left and its 
area decreases. For  a fixed constant  ݇ ൏ Ͳ  as n increase the  interval 
moves to the right  and its area decreases ;  therefore  in  �ഥ control chart 
when the process  mean shifts  to 0 k    ,and remains  at this new 

mean(k is constant), as n increases  ߚ�decreases.  The  following table 
shows some  ߚ 's computed from 
ൌ ߚ ͵ሺ݂݀ܿ݉ݎ݋݊ െ ݇ כ ሺ݊ሻሻݐݎݍݏ െ ͵ሺെ݂݀ܿ݉ݎ݋݊ െ ݇ כ  ሺ݊ሻሻ        orݐݎݍݏ
 сϬ͘ϱΎĞƌĨ;;ϯ-ŬΎƐƋƌƚ;ŶͿͿͬƐƋƌƚ;ϮͿ)-Ϭ͘ϱΎĞƌĨ;;-ϯ-ŬΎƐƋƌƚ;ŶͿͿͬƐƋƌƚ;ϮͿͿ ߚ
ĨŽƌ�Ŭсϯ�ĂŶĚ�ƐĞǀĞƌĂů�n, ߚ  has the following values. 

n��  ߚ
1 0.5000 
2 0.1070 
3 0.0140 
4 0.0013 
5 0.0001 
6 0.000007 

 
2.10.2  The effect of sample size (n )on Type I error  in     
3-sigma X control chart 
  If  , 0 3

X X
UCL LCL    , the increase or decrease  in sample size does 

not affect ߙ.  The following calculations shows  in this situation if the 

process mean does not change and  remains at 0   is constant and ߙ ,

does not depend on sample size:  

0 0

, 3
0

Pr( | ) Pr( | )

Pr( 3) Pr( 3)
X X

UCL LCL
X X

X UCL X LCL

Z Z

 

    


 

      

   
 

 

ʹǤͳͳ�Estimation of process mean and variance from s &
R in an in-control process 
   When the  control charts for  process mean and dispersion i.e. X�  control  
chart and R  or� S or�S2 control charts  indicate the process  is in control, we 
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have accepted that  if the means of the samples taken from the production 

process  are kept  between  3
X

X  , the population of  the products  will 

be between  3 .   If the process (and consequently  the product 
population) is in control, the mean of the population or process  is estimated 

as � X  .   
  When  R control chart indicates  in-control  status for a normally distributed 
process, the population  or process dispersion  could be estimated from  

2
� R

d   (Grant &Leavenworth ,1988,page 130). 

      It should be pointed out that some books  mention that estimator 
2

� R
d   

has a larger mean square error(MSE) than does
4

�
c

só   and strongly 

suggest  using  
4

�
c

só  to estimate the standard deviation of  in control 

process (e.g. see Derman &Ross,1997 page 92).  Therefore when s-chart is 
used,  to monitor the standard  deviation of a normally distributed process 

when the process is in control, estimate  from
4

�
c

só  . 

  If the  S2 chart indicates the process is in control  the process variance  is 
estimated  with  the mean of the  samples' variances i.e.࣌�૛෢ ൌ  .૛തതതࡿ
   
ʹǤͳʹ�Estimation of process mean and variance  
from Rˬs in an out -of-control process 
  If we would like to estimate the process mean and standard deviation 
or to calculate the control limits of the charts for future use, when the 
process parameter(s)  is(are) out of control based on the control charts 
whose control limits have been calculated as trial limits, act as 
follows: 
 
R-Chart: 
   If, for example , the range calculated for second sample falls outside 
the R-chart and its cause  is assignable and could be eliminated or 
fixed, exclude the sample and  calculate new values for� തܴ  and the 
control limits ;  if the  new R-chart  indicates in- control status,   is 
estimated from

2
� R

d  , otherwise  these steps are repeated  until all 

out-of -limit values of R that have assignable and fixable cause  has 
been excluded and  R-chart indicates the process is in-control then 
estimate 

2
� R

d  .  In an algorithmic way: 
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-Try to judge from charts and all other pertinent information what 
may be the assignable causes and whether or it is likely they can be 
eliminated [or fixed] 
 
-Discard the samples whose corresponding points fall outside the R or 
s or s2 chart  and have assignable , fixable causes; then  
 
-Calculate a revised R  or s and  new control limits for R-chart or s- 
chart or s2 chart, if again some points fall outside, those having 
assignable and fixable causes  are eliminated;  
 
-Repeat this procedure(calculate a revised R  or s and control limits) 
until no point with assignable cause of variation fall outside the 
control.; then  
 
-Estimate  ı after all out-of-control values of R having assignable and 
fixable causes have been eliminated as follows using the final revised 
R (Grant and Leavenwoth,1988 page 130) 

2
� R

d  . 

  This value is considered  the process standard deviation as if the 
process were brought into control(Grant& Leavenworth,1988 page 
130).   Needless to say similar steps hold true, when using   S or  S2 
chart for monitoring  process dispersion.  
  If using S-chart similar steps, as described above  in the case of 
using R-chart,  have  to  be followed and repeated until the S-chart 
plotted with the  remaining samples indicate the process is in control; 

then  the process or population dispersion is   estimated using
4

�
c

só  .   

�ഥࢄ  -Chart: 
  Discard the points that fall outside the ��ഥ  chart and have assignable , 

fixable causes of variation from the calculation of X ;  

Calculate a revised X and new control limits for ��ഥ  chart 
Repeat the above steps if some points fall outside the new chart until 
no point having assignable and fixable causes  fall outside.  

Now your  final X is as an estimate for the process mean.   
The following quotation from Besterfield(1990) page 80 is worth 
noting: 
There are 2 techniques used to discard data.  If  either the ��ഥ   or the  R 
value of a subgroup  is out of control limits and has an assignable 
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cause, both are discarded , or only  the out- of �control �limit value of 
a subgroup is discarded(Besterfield,1990 page 80).  In this book the 
latter is followed i.e. when an � or s value is discarded its 
corresponding ��ഥ �value is not necessarily discarded and vice versa. 
          
Note that Ishikawa(1983) advises: 
  The data of the samples falling outside control charts whose 
assignable  cause  has been identified and eliminated are not included 
in the recalculations. 
  The data of the samples falling outside charts whose cause cannot be 
identified or eliminated are included in the recalculations(Persian 
translation of  Ishikawa, 1983).  
 
 Example 2.8 
  Given the following data, calculate the trial upper and lower control 

limits for the R-chart and ��ഥ  chart and estimate &  �   The process is 

supposed to be normally distributed.  
(Note the number of samples should be at least 20 to 25 at the 
beginning to  calculate the trial limits , however, this is a class 
example;) 
        

Sample No. 
(n=5) 

X  R 

1 ���� ���
2 ���� �.���
3 ���� ��.���
4 ���� �.���

Solution              
Since no values have been given as standard  &   , the following 
formulae  are used: 
Trial Control limits for R-chart 

 Center line= 125.2
4

5.15.05.42



R  

From Table U for   n=5          D4=2.11    D3=0 

4

3

2.11 2.125 4.48

0 2.125 0
R

R

UCL D R

LCL D R

   

   
 

   Plotting the R-chart will show that  the range calculated for sample 
# 2 fall outside limits.  
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Revised Control limits and estimation of
  Suppose investigations reveals the cause
assignable and could be eliminated;  the
revised center line and new limits are:

33.1
3

5.15.02



R  

ோܮܥܷ ൌ ସܴ�ഥܦ  ൌ ʹǤͳͳ ൈ ͳǤ͵͵ ൌ
ܴ�ഥ ൌ ͳǤ͵͵ 
ோܮܥܮ ൌ ଷܴ�ഥܦ  ൌ Ͳ ൈ ͳǤ͵͵ ൌ Ͳ
 The following figure shows the R
 

��
 
The new chart indicates the stand

1.33
� 0.57

2.3262

R

d
    . 

Control 

ϲϱ 

 

 

and estimation of  ો 
Suppose investigations reveals the cause of falling the range outside is 

could be eliminated;  therefore we discard R=4.5;  the 
ts are:  

ൌ ʹǤͺͳ 

Ͳ    
the R-chart with the revised control limits. 

indicates the standard deviation is under control, there- fore 
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Trial control limits for തܺ--chart 
  Trial control limits for തܺ-chart are calculated and the chart is plotted:  

Central  line   തܺത ൌ
ଶ଴ାଶଵାଶଷାଶଶ

ସ
=21.50 

For  n=5    from  Table U     A2=0.58     

2XUCL X A R  =21.5+0.58*1.33=22.27 

ܮܥ ൌ തܺത ൌ 21.5 

2XLCL X A R  ==21.5‐0.58*1.33=20.73 

The following figure shows the  തܺ  control chart. 

 
 
To estimate തܺ , suppose the cause of falling sample # 1 outside of  control 
chart is un-assignable, but that of sample #3 was assignable therefore was 
eliminated. 
The revised Xഥ  and  the  necessary calculations for limits  is as  follows: 

 20+21+22  2+4.5+1.5
Central  line   21.00, R= 2.66

3 3
X     

 n=5    Table U     A2=0.58     

2XUCL X A R  =21.00+0.58*2.66=22.55 

 തܺഥ ൌ 21.00 

2XLCL X A R  =21.00‐0.58*2.66=19.45 
If  we exclude sample #3 and plot the X‐bar chart with the revised limits, 
we would  see the chart shows the  in‐control status.  

  Since the new chart shows the mean under control, then  തܺഥ ൌ 21.00 
is an estimate for the process mean. 
 



    Statistical   methods in Quality Control

2.13  Estimation of  ૄ܌ܖ܉��ો
 
    We know that, given several samples, 
process  is estimated as ߤƸ ൌ �ഥ�ഥ
sample sizes 1,..., ,kn n the following 

1 1 1

1 1

,

in k k

ij i i i i
j i i

i k k
i

i i
i i

x n X n s
X X S

n
n n

  

 

  
  

 

k
i 


�

�  

  � �3 3
X X

i i

UCL X L CL X
n n

 
   

where 
  1 2, , ..., , ..., 1

ii i ij inx x x x i k
( i=1,�,k). 
  The control chart with variable  limits
will be discussed in chapter 7. 
 
 
 

 
 
If  the standard deviation of sample size  is not large i.e. the sa
 
not that different, an average sample size could be obtained from

1

k

i
i

n
n n

k
 


 and used in the calculation of control limits.  

calculated as usual way:   X s  

 
 

Control 

ϲϳ 

 

ો of a process- different sample sizes 

several samples, the mean and variance of the  
ഥ�ഥ �ǡ ଶ෢ߪ ൌ ܵଶതതത.  If  the samples have different 

the following  formulae are applicable: 

2

21 1

1 1

( 1)
,

( 1)

k k

i i i i
i i

k k

i i
i i

n X n s
X X S

n n

 

 


  



 

 
�����������

4

�
c

s i
i   ���

� �3 3
X X

i i

UCL X L CL X
n n

 
     

1, ...,x x x x i k  are the observed values in ith sample 

The control chart with variable  limits which  look like the following figure  

 

deviation of sample size  is not large i.e. the sample sizes are  

average sample size could be obtained from

and used in the calculation of control limits.  ,X s  are 

, .i iX s
X s

k k
    

id19931562 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 
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2.14  Continuing to use the chart- Revision of  the central line and 
limits 
Question: 
  To continue the use of charts for the coming period(week, month,�) can 
we use the trial control limits as calculated for the previous period? 
Answer: 
1) 
   If the process mean and standard deviation  are in control and 
 if the current ( trial )control limits have been calculated using the standard 
values for mean and standard deviation, and no point has fallen outside the 
control limits and the points are scatted between the limits randomly, 
continue using the current chart; if the standard has not changed.   
2) 
   If the process mean and standard deviation  are in control and if the 
current control  limits have been calculated using��ഥഥ and��ത� �or ��ഥ and  the 
points are scatted between the limits randomly and no point has fallen 
outside the chart, the current control limits could be used in the future.  
They might be revised utilizing new information and accumulation of data. 
3)  
  If the process mean and/or standard deviation  are  not in control and if  the 
current control limits have been calculated using the standard values, even if  
points have fallen outside the control limits and  the points are not scatted 
between the limits randomly, if the standard has not changed,   continue 
using the current chart for future as well as trying to find the reason and 
fixing the cause(s). 
4) 
  If the process mean and/or standard deviation  are  not in control and if  the 
current control limits have been calculated using��ഥഥ and��ത� �or ��ഥ, and some 
points have fallen outside the control limits, discard those points that fall 
outside and have assignable, fixable causes.  Calculate new control limits 
using the remaining points and repeat the  procedure until no point with 
assignable, fixable cause fall outside.  Use the latest  revised control chart 
for future.  In the  future every now and then revision might be necessary.  
More details are as follows:  
  If the  process dispersion is in control but the mean is not i.e. ��or �� or S2 
chart  indicates in-control status but x-bar chart does not indicate the 
process mean is in control, to determine  the revised mean and center 
line: 

-if  it is possible to determine a standard value , use the standard 
value as the center line, otherwise a so-called aimed-at average 
തܺ଴ᇱ��is calculated.  A common procedure for obtaining an തܺ଴ᇱ��is to 
modify the  current process average with the information given by 
the process dispersion and specification limits; the modified value 
is taken as തܺ଴ᇱ  ( refer to the extensive Example Ϯ͘ϭϯ) .   

id20092593 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 
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- When with the  calculated limits using this തܺ଴ᇱ��, a considerable 
number of samples fall outside the limits, conclude the calculated  
തܺ଴ᇱ��is poor and not a suitable one.  Come to this conclusion if by a 
fairly simple and low-cost adjustment of manufacturing  process, 
such as a machine adjustment  influencing  a dimension, the 
process average could not be altered. In such cases it is more 
sensible to use the past തܺത�as the new central line  or possibly  a 
revised തܺത� corrected by discarding  the past out of control points 
('ƌĂŶƚ� ĂŶĚ� >ĞĂǀĞŶǁŽƌƚŚ� ͕ϭϵϴϴ� ƉĂŐĞ� ϭϯϮͿ͘� � �� ƐŝŵƉůĞ� ǁĂǇ� ƚŽ�
calculate  a revised�ഥܺഥ , is to eliminate the past out-of-limit  points 
whose causes are assignable and can be eliminated.   
 

5) 
"When R[or s] control chart shows that the process dispersion is out of 
control, [and the X-bar chat shows the mean is in control] it is desirable to 
estimate the value of ߪ�that might be attained if the dispersion were brought 
into control. This estimate is necessary even though it cannot be made with 
great assurance that it is correct. One possible method is to eliminate the 
values of R[or s] above the control limits and make a new calculation of��ഥ 
[or s]. If new limits calculated from this �ഥ throw more points above the 
control limits, the calculation of a revised �ഥ [or �ത] may be repeated again. 
[This method is illustrated in the extensive example2.13]. This revised �ഥ [or 
ܵҧ]  may be used as the new central line on the chart as the basis for 
calculating the new limits on the R[or S]  chart and for calculating  ܣଶ�ഥ  [or 
  ଷ�ҧሿ   to get the distance of the control limits from the central line on the �ഥܣ
chart"(Gran& Leavenworth,1988 page132). 
 
6) 
  Where both X-bar chart and the chart for dispersion indicate out of control, 
the calculation of the revised�ഥ or �ത should be made before a decision on 
the� തܺ଴ᇱ  ".  When R [or s]  control chart indicates  lack of control, do not 
interpret X  chart .  Frequently discarding the points that fall outside the R[ 
or s]  chart and have assignable causes which could be eliminated leads in 
the elimination of the special points of the X  chart"(Naghandarian,1993 
p163)  

 
Regarding� തܺ   chart, calculate either aimed-at-mean (this will be shown in the 
extensive Example 2.13) or a revised തܺത�and new control limits for the chart( 
discarding the points with assignable fixable causes falling outside the 
chart, repeat this procedure if necessary  and use them for future ). 
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  Needless to say, after the identification of special causes of the samples 
falling outside, sufficient efforts should be done to eliminate or fix the 
causes. 
Some references study the  relationship between  an in-control process and 
one or two specification limits1; e.g . refer to Grant and Leavenworth(1988) 
page 127. 
 
Example 2.9 (Based on Problem 4-5 Grant & Leavenworth ,1988, page 145) 
  Automatic machinery is used to fill and  seal 10-oz a cans of  a certain 
liquid product.  The process standard deviation is 0.20 oz.  To ensure that 
every can meets or exceeds this 10-oz minimum, the company has set a 
target value for the process of 11.0  oz. 

�ƚ�ƚŚŝƐ�ƉƌŽĐĞƐƐ�ĂǀĞƌĂŐĞ�ŽĨ�ϭϭ͘Žǌ͕ǁŚĂƚ�ƉĞƌĐĞŶƚ�ŽĨ�ĐĂŶƐ�ǁŝůů�ŚĂǀĞ�ůĞƐƐ�
thaŶ�ϭϬ͘ϱ�Žǌ ĂŶĚ�ŐƌĞĂƚĞƌ�ƚŚĂŶ�ϭϬ�Žǌ͘ of product? Assume contained 
weight are normally  distributed . 

    If the quality control section samples these cans in subgroups of four, 
what will ϯ-sigma control limits be for the തܺ  chart,? 

Assuming that േ͵ߪ natural tolerance limits on the process cover 
virtually all the filled cans, what is the minimum value to which  the 
process average may be lowered  to ensure that virtually no cans 
ĂƌĞ�ĮůůĞĚ�ǁŝƚŚ�ůĞƐƐ�ƚŚĂŶ�Ă�ŵŝŶŝŵƵŵ�ŽĨ�ϭϬ�oz? 

Solution 
a)  
 
Pr(10<X<10.5)= normcdf(10.5,11,.2)- normcdf(10,11,.2)=�0.0062-0.0000 
or 
=  

%62.00062.000062.0

5.25Pr
2.0
5.0

2.0
1

Pr
2.0

115.10
2.0
1110

Pr









 










 




ZZZ  

b) 

3.112.0
2

3
11

3
3 






  

n
UCL xX

   

CL= 1 1   
ߤ=௑തܮܥܮ െ ௑തߪ͵ ൌ ͳͳ െ ͲǤ͵ ൌ ͳͲǤ͹ 
c)since Pr(Z<-3)=0.00135؆ ͲǤͲͲ then  

Pr(X<10)=0؆Pr(Z<-3) �� ቀܼ ൏ ଵ଴ିఓ
ఙ ቁ ൌ ��ሺܼ ൏ െ͵ሻ ՜ ߤ ൌ ͳͲǤ͸ 

or 

103    . . .3 0 2 10 10 0 6 10 6         

                                                           
ϭ The specification limits of a dimension of a product are usually  denoted by USL or U for 
upper limit and by  LSL or L for lower limit.  For example if the tolerance is  1 4 0 .0 0 .1 , then 
USL=U=139.9 and  LSL=L=140.1.   � 
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Example 2.10 
a)Find the control limits for the X &�R chart , given the data in the 
following table. 
 
b)The specification is 395േ͵ͲǤ� Does the process satisfy the specification 
limits? 
 
c)What control limits do you propose for future? 
 

Calculations  for part (a) iR��iX��


5

1j
ijx��i��

25 5

1 1

5445, 25 49323 9864.6,, ,ij i
i j

n k Rix X
 

     
  

5

1 9864.6
, 394.58

5 25

ij
j

X Xi

x
  


      

544
21.76

25

R
R

k
  

2

21.76� 9.36
2.326

R

d
   

��
3 3� 394.58 9.36 407.14

5XUCL X
n
     

 
CL=X=394.58 � 

04.38236.9
5

3
58.394�

3
 

nX
LCL X

 

4 2.11 21.76 45.91RUCL D R     
CL R  21.76 

076.2103  RDRLCL
 

�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
� 
� 
� 

400.6 
84.4 
93.2 
386 
402 
91.2 
400. 
395.8 
396.4 
393.4 
404.2 
388.20 
389.8 
396.6 
396 
398.8 
398 
392.2 
398. 
390.2 
392.8 
393.0 
397.6 
396.4 
389.8 

���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 
���� 

� 
� 
� 
� 
� 
� 
� 
� 
� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 
�� 

�������9864.6���������sum 

 
Solution 
a)calculations are done inside the table. 
 
b)All 125 measurements fall within these limits and 
 60365,425  LULU , 16.5636.966  ൏ ܷ െ  ܮ

394.58 , 6 ;
2

U L
X U L 

     

Therefore it may be economical to discontinue the use of control chart.  
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c) X  chart  is shown in the following figure.  Plotting R chart is left an 
exercise for the students. No sample falls outside the limits of X &�R chart;  
it is not that necessary to use these control charts as far as the same 
condition prevail;  if we want to use control charts, continue to use the 
current limits. 

 
Example 2.11 
A production process is to be operated for a product with specification 348 . 
 
a)Assuming a normal distribution, determine a mean and standard deviation 
on which the process should be adjusted so that the specification coincides 

3   .  
 
b)Suppose sample size is 4.  Find the upper and lower 3-sigma control limits 
for XR ,  charts  
Solution 
a) 

64551
45348

51348





LU
L

U
  

1,666  LU  
 3 3 1 51 51 3 48U             

b) 5.49)1(
4

3
48

3
 

n
UCLX  

4 8 � Central line:��
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( ) .
3 348 1 46 5

4
LCL

X n
     ��

2 4.70(1) 4.70RUCL D    

2 2 .0 5 9 (1 ) 2 .0 6d   �Central line:��
1 0(1) 0RLCL D     

 
Example 2.12 
(Problem 4-20 Grant& Leavenworth,1988 page 148) 
 

a)A fair percentage of a certain product requires costly work operations to 
change a certain quality characteristic.  Rework is possible whenever the 
quality characteristic falls above the upper specification limit. If the value 
falls below the lower specification limit, the product must be scrapped. X-
bar and R charts have been maintained for 50 subgroups of size 5 each with 
samples taken every two hours. The specification limits are 119± 10. The 
process appears to be in statistical control with mean of  124 and standard 
deviation of 5.  On the assumption that the quality characteristic is normally 
distributed, approximately what percentage of defective articles is being 
produced ? How much of this can be reworked? 
 
b) Calculate the control limits for s-chart. 

 
Solution  
a)The percent of conforming= 

   Pr Pr Pr
109 124 129 124109 129 3 15 5X Z Z

            
 

0 .841 3 0 .001 35 0 .839 95 84%     
normcdf(˺)- normcdf(-3)=�0.84:�MATLAB������ 
�� 
The percent of nonconforming=1-0.84=0.16 
Rework: 

   129-124
Pr X>129 =Pr Z> =Pr Z>1 =1-0.8413=0.1587=15.87%

5
 
 
 

 

b) 6 1.96 5 9.8SUCL B      
Central line 4 0.94 5 4.7c      

5 0 0SLCL B       

Factors C4,B5 &  B6 are available from Table U  or using the following 
MATLAB commands: 
c4 = sqrt(2/(n-1)).*gamma(n/2)./gamma((n-1)/2)      
 B6= c4+3*sqrt(1-c4^2)      
 B5= c4- 3*sqrt(1-c4^2) 
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Example 2.13  
   An extensive  example -(Example 4-3Grant and Leavenworth,1988, page 136) 
 

Milling a slot in an aircraft terminal block .An Example to Illustrate the 
Steps in the Use of X and R Charts on a Manufacturing Operation  
Decisions Preparatory to the Control Chart   

 
High percentages of rejections for many of the parts made in the machine 
shop of an aircraft company indicated the need for examination of the 
reasons for trouble. As most of the rejections were for failure to meet 
dimensional  tolerances, it was decided to try to find the causes of trouble by 

the use of X  and R charts.  ��
 These charts, which of course required actual measurement of dimensions, 
were to be used only for those dimensions which were causing numerous 
rejections. Among many such dimensions, the ones selected for control 
charts were those having high costs of spoilage and rework, and those on 
which rejections were responsible for delays in assembly operations. 
Although the initial purpose of all the X  and R charts was to diagnose 
causes of trouble, it was anticipated that some of the charts would be 
continued for routine process control and possibly for acceptance 
inspection.  
   This example deals with one of these dimensions, the width of a slot on a 
duralumin forging used as a terminal block at the end of an airplane wing 
spar. The final machining of this slot width was a milling operation. The 

width of the slot was specified as 0.8750 ቄ൅ͲǤͲͲͷͲെͲǤͲͲͲͲ�| inch.  The designing 

engineers had specified this dimension with a unilateral tolerance because of 
the fit requirements of the terminal block; it was essential that the slot width 
be at least 0.8750 in and desirable that it be as close to 0.8750 as possible.  
 Most of the aircraft parts produced in this machine shop were large parts 
fabricated in lots the size of which varied from a few hundred to several 
thousand. It was felt that practical considerations called for a single decision 
as to the method of subgrouping and the size and frequency of sample to 

apply to all the X  and R charts to be used. One  limiting  factor was the 
small number of available personnel for the control chart inspection in 
relation to the number of control charts it was desired to keep. On this basis 
it was decided that for each chart the sample inspected would be 
approximately 5% of the total production of the part in question. Because of 
the many general considerations favoring five as the subgroup size, this size 
was adopted. It was considered essential that, wherever possible, all 
measurements be made at the point of production. As lots of five of these 
large parts did not accumulate at the machine, it was decided that one part 
would be measured out of approximately every 20 produced, and that a 
subgroup would consist of five such measurements 
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dĂďůĞ�Ϯ-ϭࢄ��ഥ�&  R control chart  data sheet  

Product: Terminal Block(TB) Dept No.   ϳϴ 
 

Order# ϱϰϯϮϭ 
Characteristic :width of slot Specified limitsቄͲǤͺͺͲͲݔܽܯ��ͲǤͺ͹ͷͲ݊݅ܯ�� � Unit of Measurement   Ϭ͘ϬϬϬϭ�ŝŶ͘�ŽǀĞƌϬ͘ϴϬϬϬ��

Subgroup No. ˺ Ϯ�� ϯ�� ϰ ϱ ϲ������ ϳ  X�� R��
 a ϳϳϮ ϳϱϲ ϳϱϲ ϳϰϰ ϴϬϮ ϳϴϯ ϳϰϳ ϭ ϳϳϬ ϴϱ 

 b ϴϬϰ ϳϴϳ ϳϳϯ ϳϴϬ ϳϮϲ ϴϬϳ ϳϲϲ Ϯ ϳϱϬ ϱϰ��

 c ϳϳϵ ϳϯϯ ϳϮϮ ϳϱϰ ϳϰϴ ϳϵϭ ϳϱϯ ϯ ϳϱϭ ϱϭ 

 d ϳϭϵ ϳϰϮ ϳϲϬ ϳϳϰ ϳϱϴ ϳϲϮ ϳϱϴ ϰ ϳϲϱ ϯϲ��

 e ϳϳϳ ϳϯϰ ϳϰϱ ϳϳϰ ϳϰϰ ϳϱϳ ϳϲϳ ϱ ϳϴϬ ϳϲ 
Total ϯϴϱϭ ϯϳϱϮ ϯϳϱϲ ϯϴϮϲ ϯϳϳϴ ϯϵϬϬ ϯϳϵϭ ϲ ϳϴϬ ϱϬ 

Average, X ϳϳϬ ϳϱϬ ϳϱϭ ϳϲϱ ϳϱϲ ϳϴϬ ϳϱϴ ϳ�� ϳϱϴ ϮϬ 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

ϴ ϳϳϭ ϯϴ 

Range, R ϴϱ ϱϰ ϱϭ ϯϲ ϳϲ ϱϬ ϮϬ ϵ ϳϰϴ ϭϲ 
Date �� ϯͬϳ ϯͬϳ ϯͬϳ ϯͬϴ ϯͬϴ ϯͬϴ ϯͬϵ ϭϬ ϳϭϳ ϯϲ 

Subgroup No. ϴ ϵ ϭϬ ϭϭ ϭϮ ϭϯ�� ϭϰ ϭϭ ϳϯϳ ϯϴ 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

ϭϮ ϳϰϬ ϮϬ��

 a�� ϳϴϴ ϳϱϳ ϳϭϯ ϳϭϲ ϳϰϳ ϳϰϵ ϳϳϭ ϭϯ ϳϲϵ ϯϴ 

 b�� ϳϱϬ ϳϰϳ ϳϯϬ ϳϯϬ ϳϮϳ ϳϲϮ ϳϲϳ ϭϰ ϳϳϮ ϮϬ��

 c�� ϳϴϰ ϳϰϭ�� ϳϭϬ ϳϱϮ ϳϲϯ ϳϳϴ ϳϴϱ ϭϱ ϳϲϴ�� ϭϯ��

 d ϳϲϵ ϳϰϲ ϳϬϱ ϳϯϱ ϳϯϰ ϳϴϳ ϳϳϮ ϭϲ ϳϳϳ�� Ϯϳ��

 e ϳϲϮ ϳϰϳ ϳϮϳ ϳϱϭ�� ϳϯϬ ϳϳϭ ϳϲϱ    
Totals ϯϴϱϯ ϯϳϯϴ ϯϱϴϱ ϯϲϴϰ ϯϳϬϬ ϯϴϰϳ ϯϴϲϬ    

Average X�� ϳϳϭ ϳϰϴ ϳϭϳ ϳϯϳ ϳϰϬ ϳϲϵ ϳϳϮ  
 

ϭϮϭϮϵ 
 

ϲϮϭ 
 

Range, R�� ϯϴ ϭϲ Ϯϱ ϯϲ ϯϲ ϯϴ ϮϬ�� Calculations of 
limits Date �� ϯͬϵ ϯͬϵ�� ϯͬϭϬ ϯͬϭϬ ϯͬϭϬ ϰͬϮ ϰͬϮ 

Subgroup No.�� ϭϱ ϭϲ�� 12129 621

16 16
X= =758  R= =39

0.58(39) 232

758 23 7812

758 23 7352

2.11(39) 824

03

A R

UCL X A RX

LCL X A RX

UCL D RR

LCL D RR

 

    

    

  

 

 

 a ϳϳϭ ϳϲϳ 
 b ϳϱϴ ϳϲϵ 
 c ϳϲϵ ϳϳϬ 
 d ϳϳϬ ϳϵϰ 
 e ϳϳϭ ϳϴϲ 

Total ϯϴϯ
ϵ ϯϴϴ

 Average, X ϳϲϴ ϳϳϳ 
Range, R ϭϯ Ϯϳ 

Date or time ϰͬϯ�� ϰͬϯ��
 �� ��

To find the actual values of XX , ŝŶƐĞƌƚ�Ϭ͘ϴ�ďĞĨŽƌĞ�ƚŚĞ�ŶƵŵďĞƌƐ�ŝŶ�ƚŚŝƐ�

table; e.g. for 781
X

UCL the actual value is 8781.0
X

UCL . 

To find the actual values of RR ,  ŝŶƐĞƌƚ�Ϭ͘ϬϬ before the numbers in 

this table; e.g. for 39R  the actual value is 0039.0R  

�� 
  The type of form used for recording the data is illustrated in Table 2-1. It 
was chosen as a result of the decision to measure many of the dimensions to 
the nearest ten thousandth of an inch; it was believed that with so many 
significant figures, delays and errors would be introduced by any type of 
form calling for much mental arithmetic. If measurements had been made 
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only to thousandths of an inch, the other type of form would have been 
appropriate. This is illustrated in Table 2-2, in which the same 
measurements as in Table 2-2 have been recorded to the nearest thousandth 
of an inch.  
 

dĂďůĞϮ-Ϯ�ĂŶŽƚŚĞƌ�ĨŽƌŵ�ŽĨ�ƌĞĐŽĚŝŶŐ�ĚĂƚĂ�ĨŽƌࢄഥ & R charts   

Material or part name 
RECORD    SHEET    FOR X & R CHART                                                               
Terminal block                                           Part EŽ����ϭ-Ϯϯ-ϰϱ 

Characteristic measured 
 

WiĚƚŚ�ŽĨ�ƐůŽƚ����������������������WůĂŶƚ�͗ϲ�����ĞƉƚ͗�ϳϴ 
Unit of measurement 

 
 Ϭ͘ϬϬϭ   ŝŶ͘�KǀĞƌ�Ϭ͘ϴϬϬ������������������Ped by H. B.��

 Samp. 
No. 

date musurements    A B C D E X R  
ϭ ϯͬϳ ϳϳ ϴϬ ϳϴ ϳϮ ϳϴ ϳϳ͘Ϭ ϴ  Ϯ  ϳϲ ϳϵ ϳϯ ϳϰ ϳϯ ϳϱ͘Ϭ ϲ  ϯ��  ϳϲ ϳϳ ϳϮ ϳϲ ϳϰ ϳϱ͘Ϭ ϱ  ϰ ϯͬϴ ϳϰ ϳϴ ϳϱ ϳϳ ϳϳ ϳϲ͘�Ϯ ϰ  ϱ  ϴϬ ϳϯ ϳϱ ϳϲ ϳϰ ϳϱ͘ϲ ϳ  ϲ  ϳϴ ϴϭ ϳϵ ϳϲ ϳϲ ϳϴ͘Ϭ ϱ  ϳ ϯͬϵ ϳϱ ϳϳ ϳϱ ϳϲ ϳϳ ϳϲ͘Ϭ Ϯ  ϴ��  ϳϵ ϳϱ ϳϴ ϳϳ ϳϲ ϳϳ͘Ϭ ϰ  ϵ��  ϳϲ ϳϱ ϳ�ϰ ϳϱ ϳϱ ϳϱ͘Ϭ Ϯ  ϭϬ�� ϯͬϭϬ ϳϭ ϳϯ ϳϭ ϳϬ ϳϯ ϳϭ͘ϲ ϯ  ϭϭ  ϳϮ ϳϯ ϳϱ ϳϰ ϳϱ ϳϯ͘ϴ ϯ  ϭϮ  ϳϱ ϳϯ ϳϲ ϳϯŝ ϳϯ ϳϰ͘Ϭ ϯ  ϭϯ�� ϰͬϮ ϳϳ ϳϳ ϳϴ ϳϵ ϳϳ ϳϳ͘Ϭ ϰ Operator's  check measurements 

ϭϰ  ϳϳ ϳϳ ϳϴ ϳϳ ϳϲ ϳϳ͘Ϭ Ϯ have been  

ϭϱ ϰͬϯ�� ϳϳ ϳϲ ϳϳ ϳϳ ϳϳ ϳϲ͘ϴ ϭ made on hot part. 

ϭϲ  ϳϳ ϳϳ ϳϳ ϳϵ ϳϵ ϳϳ͘ϴ Ϯ Instructed to wait until part 

ϭϳ         has cooled before making  

ϭϴ         check measurement and to  

ϭϵ��         ĐĞŶƚĞƌ�ƉƌŽĐĞƐƐ�Ăƚ�Ϭ͘ϴϳϳϱ�ŝŶĐŚĞƐ�� 

ϮϬ          
 Totals��      ϭϮϭϮ͘ϴ ϲϭ  

1212.8 61
X= =75.8 R= =3.8

1616

A R=0.58(3.8)=2.22

D R=2.11×3.8=8.04

 

75.8 2.2 78.0

75.8 2.2 73.6

8.0 , 0

UCL
X

LCL
X

UCL LCLR R

  

  

 

 

 

  The method of inspection to secure data for each X  and R chart was stated 
in written instructions. In the case of the slot width of the terminal block, 
this was to measure the width with a micrometer at two specified positions 
in the slot. The recorded slot width was the average of these two 
measurements.  
 
Starting the Control Charts.  
  The actual measurements for the first 16 subgroups are shown in Table 2-
1. This number of subgroups corresponds to a production order for 1,600 of 
these terminal blocks. Averages and ranges were calculated as shown in 
Table 2-1 and were plotted as shown in Figures 2-14&2-15 
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Fig.2-14 X chart for Example 2.13��
 

Fig. 2-15   R  chart for  Example 2.13 
��������������� 

  At the time of the twelfth subgroup, before the completion of this 
production order and before the calculation of central line or control limits, 
the quality control inspector noticed that the machine operator was 
occasionally checking his performance by a micrometer measurement on 
width of slot on a terminal block which had just come off the machine. As 
the block was still hot from the milling operation, this dimension as 
measured by the operator was too high because of the expansion of the 
metal due to temperature. Moreover, the operator was influenced by the 
unilateral tolerance to aim at a dimension at or very slightly above the 
nominal dimension of 0.8750 in. 
  Even without a central line or control limits, it was evident from the chart 
and the data sheet that this was producing many slots that were too narrow. 
After the twelfth subgroup the operator was instructed to make his check 
measurements on parts that had cooled to room temperature and to aim at a 
dimension of 0.8775, halfway between the upper and lower tolerance limits. 
This was reflected in the results in subgroups 13 to 16.  
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Determining the Trial Control Limits 
 
 Calculation of trial limits as made after the first 16 subgroups which 
completed the production order. As  shown in Table 2-1, this was 
done using the A2 and D4 factors and formulas from Table U.  These 
trial control limits are shown for the first 16 subgroups in the control 
charts in Table 2-2.  
 
Drawing Preliminary Conclusions from the Charts.  
   Subgroup 1 is above the upper control limit on the R chart. 
Subgroup 10 is below the lower control limit on the X chart. 
Moreover, the last 10 of the 16 points on the R chart all fall below the 
central line. It is evident that the measurements obtained are not the 
result of a constant system of chance causes. 
If subgroup 1 is eliminated from consideration, R for the remaining 
15 subgroups is 536/15 = 36. This gives as the revised upper control 
limit ܦସ തܴ  ൌ ʹǤͳͳ ൈ ͵͸ ൌ ͹͸ 
Subgroup 5 falls exactly on the control limit.  
   A common experience on hand-operated machines, where the 
dispersion of a controlled process is dependent in part on the care 
taken by the operator, is that the introduction of the control chart 
increases the care taken by the operator and thus reduces process 
dispersion. For this reason the ranges of the first few subgroups may 
not be representative of what may be expected as time goes on. The 
general appearance of this R chart with its run of the last 10 points 
below R suggests this as probably true of the slot width. Hence a 
second revision of R, with subgroup 5 eliminated, seems reasonable. 
This gives തܴ �ൌ �Ͷ͸ͲȀͳͶ� ൌ �͵͵;   that is  തܴ = 0.0033 in.  
  From this second revision of R an estimate may be made of  ߪ, the 
process standard deviation that might be anticipated if the process 
were controlled in the future. This estimate of ߪ�ො ൌ � തܴȀ݀ଶ �ൌ�ͲǤͲͲ͵͵ȀʹǤ͵ʹ͸� ൌ �ͲǤͲͲͳͶ�݅݊Ǥ   If this should be the value of ߪǡ  
the natural tolerance or spread of the controlled process, 6 ߪ, will be  
6(0.0014) = 0.0084.  This spread may be compared with the tolerance 
spread:  U - L = 0.8800 - 0.8750 = 0.0050.  
  It is evident that the natural tolerance of this process is considerably 
greater than the specified tolerance. Unless the process dispersion can 
be reduced, it is evident that even though the process can be brought 
into control a high percentage of nonconforming product will be 
produced.  
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  It is evident that the dispersion is too wide and the process average ( തܺത= 
0.8758) is too low. It is also evident that the process average is capable of 
adjustment; the instructions given to the operator after subgroup 12 seemed 
definitely to raise the average. At first glance, it would seem that the most 
desirable thing to do is to aim at minimum rejections by trying to hold the 
process in control at an average midway between the upper and lower 
specification limits, namely, at 0.8775.  
 
  However, this conclusion fails to give weight to the fact that a slot 
that is too narrow can be widened but a slot that is too wide cannot be 
narrowed. In other words, rework is less costly than spoilage. It is 
therefore desirable to center the process at a level that results in few 
slots over the upper specification limit of 0.8800 in., even though a 
number may be under the lower specification limit of 0.8750 in. The 
upper 3-sigma limit on individual values might be placed at 0.8800 to 
make a trial calculation of the aimed-at ܺ଴ƍ . If this is done  
ܺ଴ƍ ൅ ොߪ͵� ൌ �ͲǤͺͺͲͲ ՜ ܺ଴ƍ ൅ �͵ሺͲǤͲͲͳͶሻ �ൌ �ͲǤͺͺͲͲ ՜ ܺ଴ƍ ൌ �ͲǤͺ͹ͷͺǤ 
 By chance, this is exactly the തܺത of the first 16 subgroups. It is evident 
that such a centering will continue to result in considerable rework.  
 
  Experience on similar jobs indicates that it is reasonable to expect 
that process dispersion may be further reduced. Hence it seems wise 
to center the process somewhat above 0.8758. Just how much above 
depends on how much improvement is expected and on the relative 
costs of spoilage and rework. A figure of 0.8770 was selected. 
  
Continuing to Use the Charts.  
  For the continuation of the control chart for the next production 
order, which started several weeks later, the central line was set as  
ܺ଴ƍ ൌ 0.8770. The three-sigma control limits were based on assuming 
 ො= 0.0014. Using Table Uߪ
 

���ଡ଼ഥ= �଴ƍ  + Aɐෝ = 0.8770 - 1.34(0.0014) = 0.8789, 
Central line =�଴ƍ ൌ 0.8770, ��
���ଡ଼ഥ = �଴ƍ  - Aɐෝ= 0.8770 - 1.34(0.0014) = 0.8751,  
���ୖ = �ଶɐෝ = 4.92(0.0014) = 0.0069,  
ሺ������������ሻୖ=  �ଶɐෝ = 2.326(0.0014) =0.0033,  
���ୖ = �ଵɐෝ = 0.  
 
(As ߪ��was estimated from an ܴ�ഥ of 0.0033, the same limits would have been 

obtained using the formulas RAX 2  and ܦସߪොƬܦଷߪො,an with this ܴ�ഥ .)  
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     These limits are shown for subgroups 17 to 32 on the control charts of 
Fig. 2-14&2-15. The averages and ranges of these subgroups were as 
follows: (As in Table 2-1, തܺ is in units of 0.0001 in. above 0.8000 and R is 
in units of 0.0001 in): 
 

Subgroup 
No. X  R 
17 761 47 
18 766 31 
19 760 32 
20 775 22 
21 788 7 
22 775 32 
23 760 21 
24 763 18 
25 768 27 
26 766 17 
27 769 38 
28 766 35 
29 766 17 
30 769 26 
31 774 14 
32 774 14 

totals 12284 408 
 

None of the pieces inspected for control-chart inspection in subgroups 17 to 
32 fell outside the specification limits. The average values for these 16 
subgroups are  

X ൌ�ͳʹʹͺͶͳ͸ ൌ ͹͸ͺ����ሺ�݅Ǥ ݁Ǥ��ͲǤͺ͹͸ͺ���݅݊ሻ 
�ܴ�ഥ ൌ ͶͲͺ

ͳ͸ ������ൌ �ʹ͸������ሺ�݅Ǥ ݁Ǥ��ͲǤͲͲʹ͸��݅݊ሻ����������������������� 
 
  It is evident that there has been a further narrowing of the process 
dispersion. This should be recognized by a revision of control limits starting 
with subgroup 33.  
As there seems to be no reason for a change in the aimed-at average, these 
revised control limits should be computed from an �଴ƍ   of 0.8770 and an R 
of 0.0026, using the factors from Table U.  
 
௑തܮܥܷ  = ܺ଴ƍ   ଶܴ�ഥ « 0.8770 + 0.58(0.0026) = 0.8785ܣ +  
 
௑തܮܥܮ   = ܺ଴ƍ   ଶܴ�ഥ = 0.8770 - 0.58(0.0026) = 0.8755ܣ -  
 
  ସܴ�ഥ = 2.11(0.0026) = 0.0055ܦ =ோܮܥܷ
 
ଷܴ�ഥܦ= ோܮܥܮ ൌ Ͳ  
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These limits are shown on the control chart of Figs.2-14&2-15   as applying 
to subgroups 33, 34, and 35. With ܴ�ഥ  reduced to 0.0026, the estimate of ı is 

now   ıො ൌ ோ�ഥ �
ୢଶ ൌ

଴Ǥ଴଴ଶ଺�
ଶǤଷଶ଺ = 0.0011 in.  

  
 If control can be maintained at this level, ܺ଴ƍ  + 3 ıො = 0.8803 and ܺ଴ƍ െ͵�ıො �ൌ ͲǤͺ͹͵͹Ǥ This indicates that a small amount of spoilage and a 
moderate amount of rework will still be produced; however, the situation is 
greatly improved as compared to that which existed before the start of the 
control chart. As time went on it proved possible to maintain control and to 
decrease ܴ�ഥ  (and ߪ) further to the point where nearly all the product fell 
within specification limits.  
 
   In situations where the specification limits are as tight as this in relation to 
the process dispersion, it is not appropriate to use the control chart for 
acceptance as a substitute for 100% inspection. Neither was this a situation 
in which the tolerance limits could be widened; the required fit of the part 
properly controlled the specifications despite the fact that the natural 
tolerance of the process seemed to be wider than the specified tolerance.    
Grant &Leavenworth(1988) has added the following a comment on the 
example; interested reads could refer the this reference. 
 
E n d    Of    E x a m p l e    2.13. 
 
 
   After reading the following example solve problem 2.9 of this chapter. 
 
Example 2.14(Based on Naghandarian, 1993 p192) 
  Certain dimension of a part is specified  as ʹǤͲͷͲ േ ͲǤͲʹͲǤ  If the part falls 
below LSL it must be scrapped, if above USL, rework  required.  To 

monitor the  production process, S  chart and X chart with limits 3X A S  

are used.   For 20 subgroup  of  sample size 5,  σ തܺ ൌ ͶͳǤ͵ͶͲǡσ ܵҧ ൌ ͲǤͳͶͶ.  
The charts indicate  the process is in control..  Assume the process is 
normally distributed.  What could be concluded about the capability of this 
process if  the specification is  ʹǤͲͷͲ േ ͲǤͲʹͲǤ  What could be done to 
improve the process? 
 
Solution  

040.0 LSLUSL ,
41.340� 2.067

20
X    ,

.144
0.0072

20
S    

For n=4 from Table U    4 0.9213c  , then :
4

.0072� 0.0078
0.9213

S

c
    , 

0468.00078.066  , 
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The mean of the process(X ) is different from the nominal mean(
௎ା௅
ଶ );the 

natural tolerance or the spread of the process, 6  , is greater than the 
specification tolerance  i.e. USL-LSL (Fig. 2-16). 
 

 
Fig. 2-16 Spread of the process, the specification tolerance and  
                rework percent (hatched surface) 
 

 070.2020.0050.2 USL ��, 
030.2020.0050.2 LSL ��, 

� � �3 3 2.067 3(0.0078) 2.0904X        , 
� � �3 3 2.067 3(0.0078) 2.043X        . 

  
Let X denote  the quality characteristic being monitored , then at the time 
being the percent of  the  product  needing  rework  is: 

2.070 2.067
Pr( 2.070) Pr( )

0.0078
1  normcdf(2.070,2.067,0.0078) 0.3503

X Z


   

 
  

i.e. nearly 35% of the products need to be reworked.   

2.030 3 2.043LSL     and the spoilage percent  is negligible: 
-6Pr( 2.030) normcdf(2.030,2.067,0.0078)  1.0498 10X     

To improve the process 2 alternatives are considered: 
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Changing  the process mean to a value calculated from the following 
alternatives:

a)Coinciding the lower process limit with lower specification limit i.e.

0 3 LSL  
or  
b)Coinciding the upper process limit with upper specification limit i.e.

0 3 USL   . 

Alternative a)  �
0 3 LSL  ���

 /3 78 =2/030  =2/0534  0 00 00
If the process  mean  is  ߤ଴ ൌ ʹǤͲͷ͵Ͷ, the percent of rework would be: 

2.070 2.0534
Pr( 2.070) Pr( )

0.0078
1  normcdf(2.070,2.0534,0.0078) 0.0167

X Z


   

 
Pr(X<2.030)= normcdf(2.030, 2.0534,0.0078)= 0.0013
With this value as the process mean the percent of rework and the percent of 
spoilage  would be 1.67% and 0.13% respectively.

Alternative b) 
0 3 USL        /3 78 =2/070  =2/0466  0 00 00 ,

With this process mean, the rework percent  would be:
Pr( 2.070)

1  normcdf(2.070,2.0466,0.0078)  0.0013

X  
 

and the spoilage percent:
Pr(X<2�030)= normcdf(2.030, 2.0466,0.0078)= 0.0167 
The following table compares the current situation with the 2 
alternatives: 

Alternative 
current a b 

Mean 2.067 2.0534 2.0466 
Rework percent 35.03 1.67 0.13 
Spoilage percent 0.0000 0.13 1.67 

All in all, alternative  a is better(why?). 
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  X and S control charts  are being used to monitor the process of 
filling  a can whose contents is normally distributed.  For 18 
subgroups of size 8 : 8.24 , 59.58s X   .  Find the 3-sigma

limits  of the charts. 

Solution 
for X  chart: 

��

8.24
8.24 0.458

18

s
s s

k
   ��

4

0.458� 0.475
0.9650

s

c
     ��

�3 3 0.475
3 3.31 3.81

8X X
UCL X X

n

 
      ��

Central line 31.3X��
�3 3 0.475

3 3.31 2.81
8X X

LCL X X
n

 
        

Example 2.16 
  A production  process is normally distributed with  ߤ ൌ ͸Ͳ���ǡ ߪ ൌ ͺ. 

Calculate the limits of  , ,s R X for using random samples of size n=5. 

5860  n

73.7073.1060
5

83
60

3





n
UCL

X

  

C.L.= 60

27.4973.1060
5

83
60

3





n
LCL

X

 . 

Example 2.17 
 ,R X  charts are used to monitor a dimension of a product.   The result of 

30  subgroups of size 4 are 0.320 , 41.34R X   .  Find the limits

for each chart and estimate the standard deviation of the product, assuming 
the process is normally distributed in control. 

59.58
59.58 8, 18 3.31

18

X
X n k X

k
     

 Example 2.15 
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  34.41X  4n   30k  
41.34

1.378
30

X
X

k
    

0.320R  0.320
0.011

30

R
R

k
   �����

2 1.378 (0.73)(0.011) 1.386
X

UCL X A R    

CL= 378.1X  

2 1.378 (0.73)(0.011) 1.367
X

L CL X A R    

4 2.28 0.011 0.0251RUCL D R     
CL= 011.0R

3 0 0RLCL D R R   

2

0.011� 0.0053
2.059

R

d
   

Example 2.18 
   In a quality inspection, ϯϬ�ƐƵďŐƌŽƵƉ�ŽĨ�ƐŝǌĞ�Ϯϱ�ŚĂƐ�ďĞĞn taken such that 

2419.2 , 107.6X s   �
The process is roughly normally distributed 
a)Estimate   if the process is in control and. 

b)Calculate the limits of X and�S charts. 

c)If the specification limits set by the design department is 1085  , what 
percent of the products satisfy the design limits 

 

 

 

Solution 

a) 

107.6
30 3.586

30

s
k s

k
   

4

3.586�25 3.623
0.9896

s
n

c
     

Solution 
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b) 
         

4

3 3 3 3.586�3 80.64 82.80
0.989625X

s
UCL X X X

X cn n
           

 
C.L.= 80.64X   
 

4

3 3 3 3.586
3 80.64 78.46

0.989625X

s
LCL X X X

X cn n
           

 4 1.44 3.586 5.164sUCL B s      
��C.L.= 3.586s   

3 0.56 3.586 2.008sLCL B s        
c) 

30

1

� �2419.2 75 95�2419.2 80.64 Pr
� �30i

i

X Z
 

 

        
 


 

 5.64 14.36
Pr Pr 1.55 3.96 0.0605 6.05%

3.623 3.623
Z Z

         
 

. 

 
2.12 Performance Measures of a control chart 
  There are some measures  considered in evaluating the  performance  of 
control charts;  three popular of which  are the type I and type II error 
probabilities(ߙƬߚ ) , the expected value of the run-length distribution, 
called the average run length (ARL).  Among  these ,  the ARL is an easily 
interpreted, well-defined measure, whose definition follows. 
 
2.12.1 Average Run Length(ARL) Performance of  Control Charts 
  Average Run Length (ARL) is the average number of samples required  to 
detect an out-of-control status by a control chart . Here it is  assumed  when 
a  point fall outside the control chart,  the process is out of control. This 
measure of performance is sometimes called  the  waiting time to signal "out 
of control" status. 
Let 
 is the probability of that any subgroup  falls outside a Shewhart control ݌
chart i.e.  the probability of "detecting the change as success"  and 
X= the no. of consecutive independent samples as the number of 
independent trials required to reach the first success. 
 

2419.2
80.64

30

X
X

k
  
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Then X,  the number of samples required to detect the change, is a  

geometric random variable  with parameter ݌ and mean  ܧሺܺሻ ൌ ܮܴܣ ൌ ଵ
୮  .    

͸Ǥͷ͸ǤͷǤͷ�Calculation of the ARL for X  control chart 

When using  an X chart with 3-sigma limits 
n

 30  , if  the process 

mean  shifts  from  0 to 1 0ì =ì +kó   

where ó is known &constant and k R , the mean of the samples 
taken from the process would have a  normal distribution: 

0~ ( , )X N k
n

   and the type II probability for the chart  is calculated 

as follows: 
ߚ ൌ 10 0Pr( | )or kLCL X UCL           =

3 ( ) 3 ( )0 0 0 0
Pr( ) Pr( 3 3 )

k k

Z
n n

n n

k n Z k n
      

 

     
        

ฺ (3 ) ( 3 )Z Zk n k n       . 

Then the probability of detecting the change (i.e. detecting 0  ) is 

ͳ െ  .ߚ
and  

��� ൌ ଵ
ଵିȕ    in X  control chart. 

 
  A general formula about this case is in Derman&Ross(1997) page 85. 
It should be  added that ), when monitoring a process with X -control chart 
even if  the process is in control ( Montgomeri& Rungers,1994), on the 

average for every 1
0.0027 370  produced samples ,one falls outside the chart. 

This could be a false alarm of out-of-control.   Montgomery(2005) states 
that in each  control chart on the  average the number of subgroups 

produced until one falls outside the control chart is 
ଵ
ఈ.  

 
 
 
Example 2.19 
 ( Based on Derman & Ross,1997 page 86) 
  The mean of a process is monitored by 3-sigma-limit X control chart.  If 
the standard deviation of the process remains constant, but the mean shifts 

from  to , find the average no of samples of volume n=9 to detect 

this change. 
 

0 
2

1
0 
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Solution 

  As you have already observed, for an Xcontrol chart when the mean shifts 
from ߤ଴ to ߤ଴ ൅  ,ߪ݇

(3 ) ( 3 )Z Zk n k n       . 

For this case : 
1 1

Pr( 3 3 ) 9
1 2

0.9332 14.97 15

ARL k n Z k n k n

ARL






          


   
Therefore to pick up  the shift, 15 subgroups  are needed on average. 
 
2.13  Change Point 
  In this section the aim is to get familiar with  out-of- control signal point 
called change point, when a change  or deviation occurs in the process 
parameter related to a control .   After the signal has been given by 
the control chart, investigations has to done to find the cause,  to  prevent 
recurring if possible and to bring the process under control again.  In many 
cases the change in the process parameter  has begun  before the time of the 
signal. Knowing the right time when the change has started to occur  in the 
process,  which is called change point , is of importance for performing the 
corrective action to eliminate the cause of out-of-control  signals.  Figure 2-
17 shows a control chart which has produced an out-of-control signal of 
shift in the parameter  by the 36th subgroup, while the shift has begun at the 
time of 23rd subgroup; in other words the change point  occurs at sample # 
23.control processes.   
  The changes �occurring in the process� affecting the process parameters 
may be classified into single-step change, multiple-step change, drift  and 
monotonic change; defined below(from Amiri &Allahyari, 2012�): 

Single -step change 
  A step change for a process parameter occurs when the value of the 
parameter suddenly changes and then remains unchanged again until 
corrective actions are taken. 

Multiple- step change 
  A multiple step change  occurs when several changes occur at different 
times before the signal is given by the control chart. This type of change can 
occur because of one or more influential process input variable(s) at 
different times. 

Drift 
  Drift is a change type in which the process drifts off target, either 
linearly or nonlinearly at an unknown point in time. The trend 
continues until some corrective action is taken to bring the process 
back in control. 

Monotonic change 
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  In monotonic changes, the type of change is unknown a priori, but the 
direction of shifts is the same, increasing or decreasing. This type of change 
is more general than the others because it encompasses the single step, 
multiple step, and drift pattern changes.

Fig. 2-17 The out-of control 
point occurs at 23rd sample 
 
  Each of the types of the change in the process could be modeled 
mathematically; for example the general model for
occurring in a  process mean�is as follows:

1

1 2

2 3

k-2

k-1

          1  t   

           1  t  

       1  t  

        1  t  

        1  t  T  

t

k

k

 
  
  



  
 



 
   
    

   


  



1

2

3

1

where 

t = the mean of the process in the  t

T =  Total number periods, 

j = the  jth  change point in the process mean

 
Example 2.20 
   To monitor the mean of a process,
produced from the process;  the last sample 
control.  At the beginning,  the process was normally distributed with mean

Control 

ϴϵ 

 

In monotonic changes, the type of change is unknown a priori, but the 
ame, increasing or decreasing. This type of change 

is more general than the others because it encompasses the single step, 
multiple step, and drift pattern changes. 

 
of control  signal is at 36th sample ; the change 

 (after Kazemi et al, 2013) 

types of the change in the process could be modeled 
he general model for a kind of  step change 

is as follows: 

1

1 2

2 3

2 k

 

 t   

  t  

  t  

  t  

  t  T  

 
  
  

  

  
  

  
  

 

= the mean of the process in the  tth  sample(period), 

change point in the process mean. 

To monitor the mean of a process, T=445 subgroups of size n=5 were 
produced from the process;  the last sample indicates the process is out of 

the process was normally distributed with mean
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1000   and ɐ ൌ ͷǤ  The central line, the upper and lower control limits 

and also the upper and lower warning limits for തܺ control chart are as 
follows: 

3

2

2

3

UCL
n

UWL
n

CL

LWL
n

LCL
n










 

 



 

 

 

Replacing ߤ ൌ ଴ୀଵ଴଴ǡߤ ɐ ൌ ͷ������� ൌ ͷǣ 

93.2918

95.5278

100

104.4721

106.7082








LCL

LWL

CL

UWL

UCL

. 
Suppose that due to changing the operator s, the mean has encountered 
the following change: 

0

0

0

0

0

                     if 1  t  100

0.5           if 100  t  250

                     if 250  t  350  

-0.5            if 350  t  400

0.5           if 400  t  445

t


 

 
 
 

 
     
  
     

 
Figure 2-18   shows  the തܺ control chart with 445 subgroups taken from the 
process of the example.  The process has more than one change point in its 
mean. 
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��
&ŝŐ͘�Ϯ-ϭϴ܆�ഥ control chart� for the example (showing more than one change 
point). 
 
 

Exercises 
Ϯ͘ϭ͘Using Table U read the a values of 

 
Ϯ͘Ϯ. Plot ܺ�ഥ � and S chart for ƚŚĞ� Ϯϱ� ƐƵďŐƌŽƵƉ�ŽĨ� ƚŚĞ� ĮƌƐƚ� ƉƌŽďůĞ
ĞǆĞƌĐŝƐĞƐ�ŽĨ�ĐŚĂƉƚĞƌ�ϭ�ĂŶĚ�ĂŶƐǁĞƌ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ƋƵĞƐƟŽŶƐ͗
   a) Is the process in control? 
  b) The dimension specified by the design department is 
ƚŚĞ� ϭϮϱ� parts satisfy  these limits? What could be concluded about the 
capability of the normally distributed process used for  the production of  
part between ͵ͻͷ േ ͵�Ǥ   
c)What control limits do you suggest for continuing the charts in the 
future? 
 
Ϯ͘ϯ͘���ഥ ������   control charts are being used for monitoring  a dimension of 
a product.  All the samples are randomly distributed between the limits of 
the charts.  A sudden change in the process 
causes the process mean to change from 
following question, assuming the distri
before and after the change:  
 ĂͿ/Ĩ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�Ŷсϯ͕�ǁŚĂƚ�
outside the തܺ  chart limits ρ േ ͵
ďͿ�/Ĩ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�Ŷсϱ͕�ƌĞƉĞĂƚ�ƉĂ

Control 

ϵϭ 

 

for the example (showing more than one change 

sing Table U read the a values of A��Aϭ�AϮ �and�Aϯ� ĨŽƌ�ϮϬ�ƐƵďŐƌŽƵƉs  ŽĨ�ƐŝǌĞ�ϴ͘ 

ƚŚĞ� Ϯϱ� ƐƵďŐƌŽƵƉ�ŽĨ� ƚŚĞ� ĮƌƐƚ� ƉƌŽďůĞm of the 
ĞǆĞƌĐŝƐĞƐ�ŽĨ�ĐŚĂƉƚĞƌ�ϭ�ĂŶĚ�ĂŶƐǁĞƌ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ƋƵĞƐƟŽŶƐ͗ 

The dimension specified by the design department is ͵ͻͷ േ ͵. Do all 
parts satisfy  these limits? What could be concluded about the 

normally distributed process used for  the production of  

c)What control limits do you suggest for continuing the charts in the 

control charts are being used for monitoring  a dimension of 
he samples are randomly distributed between the limits of 

the charts.  A sudden change in the process has no effect on the  ߪ but 
mean to change from � to �+1.5 .  Answer the 

following question, assuming the distribution of the process is normal both 

ĂͿ/Ĩ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�Ŷсϯ͕�ǁŚĂƚ�percent of the points  do you expect to fall 
͵ ఙ
ξ௡?           �ŶƐǁĞƌ��ϯϰ͘ϯй 

ďͿ�/Ĩ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�Ŷсϱ͕�ƌĞƉĞĂƚ�ƉĂrt a.  �ŶƐǁĞƌ��ϲϯ͘ϴй 
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c)/Ĩ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�Ŷсϱ͕�ƌĞƉĞĂƚ�ƉĂƌƚ�Ă͘    �ŶƐǁĞƌ��ϴϵ͘ϯй 
 
Ϯ͘ϰ.  A Textile Manufacturing  Group   needs Ă�ŬŝŶĚ�ŽĨ�ĮďĞƌƐ�ƐƵĐŚ�ƚŚĂƚ��ϵϱй�
of the products ŚĂǀĞ� Ăƚ� ůĞĂƐƚ� ƚŚĞ� ƚĞŶƐŝŽŶ� ƐƚƌĞŶŐƚŚ� ŽĨ� ϭ͘ϴϬ� ƵŶŝƚƐ͘� 
manufacturer takes the  responsibility of producing the fiber.   A contract is 
held between the group and the manufacturer. The standard deviation of  
the process used by the manufacturer  ŝƐ� Ž͘Žϭϱ͘� �tŚĂƚ� ŝƐ� ƚŚĞ�ŵŝŶŝŵƵŵ�
aimed-at mean for the process to satisfy the contract.  Assume the process  
continues to be in control and the distribution of tension strength is 
normally distributed. 
 
Ϯ͘ϱ͘ ܺ�ഥ � and  S  control charts have been run on a process for sufficient time 
using subgroups ŽĨ� �ϱ parts.  During the past nearly one month, no point 
has fallen outside the charts, and the one-month results   indicate �ഥഥ 
сϬ͘ϳϱϬϯ��ĂŶĚ���ത ൌϬ͘ϬϬϭϴ͘ 
a) Estimate  the value of   for the process.  
ďͿ/Ĩ� � ƚĞŶ� ƉŽŝŶƚƐ� ŽƵƚ� ŽĨ� ƚŚĞ� ůĂƐƚ� ϭϭ� ƉŽŝŶƚƐ� ĨĂůů� ĂďŽǀĞ� ƚŚĞ� ĐĞŶƚƌĂů� ůŝŶĞ� ŽĨ� � ^�
chart , is still the process under the statistical control? 
 
Ϯ͘ϲ͘ ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϵϴ�ƉĂŐĞ�ϭϰϲ�ƉƌŽďůĞŵ�ϰ-ϭϰͿ 
A certain product is manufactured  with  a specification of ͳʹͲǤͲ േ ͷǤͲ for 
a ƋƵĂůŝƚǇ�ĐŚĂƌĂĐƚĞƌŝƐƟĐ͘���ƚ�ƉƌĞƐĞŶƚ͕�ƚŚĞ�ĞƐƟŵĂƚĞĚ�ƉƌŽĐĞƐƐ�ĂǀĞƌĂŐĞ�ŝƐ�ϭϮϬ͘Ϭ�
ĂŶĚ�ƚŚĞ�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶ�ŝƐ�ϭ͘ϱϬ͘�� 
   a)�ŽŵƉƵƚĞ� ƚŚĞ� ϯ-sigma control limits for an X and R chart based on 
subgroups of ƐŝǌĞ�ϰ͘���������ŶƐǁĞƌ͗�ϭϮϮ͘Ϯϱ͕��ϭϭϳ͘ϱΘϳ͘Ϭϱ͕��Ϭ 
  b)What percent of the product will not meet specifications if the process 
ĂǀĞƌĂŐĞ�ƐƵĚĚĞŶůǇ�ƐŚŝŌƐ�ƚŽ�ϭϮϭ͘Ϭ͕�ĂƐƐƵŵŝŶŐ�Ă�ŶŽƌŵĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ�ƉƌŽĚƵĐƚ͘�� 

�ŶƐǁĞƌ͗�Ϭ͘ϯϵй   
 

Ϯ͘ϳ͘ ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϵϴ�ƉĂŐĞ�ϭϰϲ�ƉƌŽďůĞŵ�ϰ-ϭϲͿ 
A  control chart has been used to monitor a certain process during a 
considerable period of time͘� � dŚĞ� ƉƌŽĐĞƐƐ� ŝƐ� ƐĂŵƉůĞĚ� ŝŶ� ŐƌŽƵƉƐ� ŽĨ� ϰ� Ăƚ�
ŝŶƚĞƌǀĂůƐ�ŽĨ�ĂďŽƵƚ�Ϯ�ŚŽƵƌƐ��ĂŶĚ�ƚŚĞ� X control chart  has  ůŝŵŝƚƐ�ŽĨ�ϭϮϭ͘Ϭ�Θ�
ϭϮϵ͘Ϭ�ǁŝƚŚ�ƚŚĞ�ƚĂƌŐĞƚ� '

0 0X    aƚ�ϭϮϱ͘Ϭ. 

   a) If the product is sold  to a user  who has specification of 0.80.127  , 
what percent of the product  will not meet this specification assuming a 
ŶŽƌŵĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ��ŽƵƚƉƵƚ͍�����ŶƐ͗ϭ͘ϮϮй 
    b)If the target value of this process can be shifted without effect on the 
process standard deviation, what target value would minimize  the amount 
ŽĨ�ƉƌŽĚƵĐƚ��ďĞŝŶŐ�ƉƌŽĚƵĐĞĚ�ŽƵƚƐŝĚĞ�ƚŚĞ�ƐƉĞĐŝĮĐĂƟŽŶ�ǀĂůƵĞƐ͍��ŶƐ͗�ϭϮϳ 
   c)At this new target value, what percent of the product will not meet the 
required specifications?  Ans: Ϭ͘Ϯϳй 
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Ϯ͘ϴ͘�(Grant &LeavenwoƌƚŚ͕ϭϵϵϴ�ƉĂŐĞ�ϭϰϲ�ƉƌŽďůĞŵ�ϰ-ϭϴͿ 

In the extensive example if the slot width were below the lower 
ƐƉĞĐŝĮĐĂƟŽŶ� ůŝŵŝƚ;Ϭ͘ϴϳϯϱͿ͕� ƚŚĞ� ƉĂƌƚ� ĐŽƵůĚ� ďĞ� ƌĞǁŽƌŬĞĚ� ƚŽ� ďƌŝŶŐ� ŝƚ�
ǁŝƚŚŝŶ� ƐƉĞĐŝĮĐĂƟŽŶ͘� � ,ŽǁĞǀĞƌ͕� ŝĨ� ĂďŽǀĞ� Ϭ͕ϴϴϬϬ͕� ŝƚ� ǁŽƵůĚ� ŚĂǀĞ� ƚŽ� ďĞ�
scrapped.  After the fiƌƐƚ�ϭϲ�ƐƵďŐƌŽƵƉƐ͕�ĂŶ�ĞƐƟŵĂƚĞ�ǁĂƐ�ŵĂĚĞ�ƚŚĞ�ƚŚĂƚ�
the standard deviation (ߪͿŽĨ� Ă� ĐŽŶƚƌŽůůĞĚ� ƉƌŽĐĞƐƐ� ǁŽƵůĚ� ďĞ� Ϭ͘ϬϬϭϰ͘��
This called for a ߤ ŽĨ�Ϭ͘ϴϳϴϱ�ĂƐ�ƚŚĞ�ƉƌŽĐĞƐƐ�ĂǀĞƌĂŐĞ͘ 
a) If the distribution of slot width were normal with ߪ ŽĨ�Ϭ͘ϬϬϭϰ͕�� 
approximately what percentage of rework could be expected if ρ were 

Ϭ͘ϴϳϱϴ͍����ŶƐ͗�Ϯϴ͘ϰй 
b) With ρ Ăƚ�Ϭ͘ϴϳϳϬ͕�ǁŚĂƚ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƐƉŽŝůĂŐĞ�ǁŽƵůĚ�ďĞ�ĞǆƉĞĐƚĞĚ͍�

tŚĂƚ�ƉĞƌĐĞŶƚĂŐĞ�ŽĨ�ƌĞǁŽƌŬ͍��ŶƐ͗�ϭ͘ϲϮй͘�ϳ͘ϳϴй. 

c) In what way do the answers in (a) and (b) suggest an economic basis 
for establishing the process average in cases of this type?  

d)How would your decision as to process average to be aimed at in the 
extensive  example  be influenced if you knew that terminal 
ďůŽĐŬƐ;d�ƐͿ�ǁŝƚŚ� ƐůŽƚ�ǁŝĚƚŚƐ� � ƵƉ� ƚŽ�Ϭ͘ϴϴϯϬ�ŚĂĚ�ďĞĞŶ�ĂĐĐĞƉƚĞĚ�by 
the plant salvage committee for use in the airplane and had been 
used satisfactorily?  

Ϯ͘ϵ͘ ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϵϴ�ƉĂŐĞ�ϭϰϲ�ƉƌŽďůĞŵ�ϰ-ϭϵͿ 
The following data were obtained over a ten-day period to initiate X

and R control charts  for a quality characteristic of a certain 
manufactured product that had required a substantial amount of 
rework.  All the figures apply to product made on a single machine by a 
ƐŝŶŐůĞ�ŽƉĞƌĂƚŽƌ͘��dŚĞ�ƐƵďŐƌŽƵƉ�ƐŝǌĞ�ǁĂƐ�ϱ͕��dǁŽ�ƐƵďŐƌŽƵƉƐ�ǁĞƌĞ�ƚĂŬĞŶ�
per day. 

R X��Sample No.��R X Sample No. 
� ����� �� �� ����� � 
� ����� �� � ����� � 
� ����� ������ ����� � 
� ����� �� �� ����� � 
�������� �� � ����� � 
� ����� �� � ����� � 
��������� �� �� ����� � 
� ����� �� � ����� � 
� ����� �� � �������� 
��������� �� �� ����� �� 
��� ������ sum    
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a)Determine central lines and trial limits for the X and R control 
charts.                Ans͗�ϭϳϮ͘ϴ͕ϭϳϴ͘ϱ͕�ϭϴϰ͘Ϯ͖�Ϭ͕��ϵ͘ϴ͕�ϮϬ͘ϴ� 

b)What preliminary conclusions about statistical control can you draw 
from your observation and analysis of the data and of the control 
charts? Justify these conclusions. Does it seem reasonable that the 
introduction  of the control charts may have had some influence on 
the process.  Why or why not? 

c)The specified requirements for the quality characteristic  are given as 
ͳ͹ͳ േ ͳͳǤ  If a product falls below the LSL ŽĨ� ϭϲϬ͕� ŝƚ� ŵƵƐƚ� ďĞ�
scrapped,  whereas it falls above USL ŽĨ�ϭϴϮ� ŝƚ�ŵĂǇ�ďĞ�ƌĞǁŽƌŬĞĚ͘�
Because scrapping an article is much more costly than rework, it is 
desired to hold scrap to a low figure without causing excessive 
rework.  The process average be shifted by a relatively simple 
machine adjustment. What would you suggest as the aimed-at 
value for  process centering in the immediate future? Why? Ans: 
ϭϳϭ͘Ϯ 

Ϯ͘ϭϬ͘ (Based on 'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϭϱϭ�ƉƌŽďůĞŵ�ϰ-ϰϬ) 
�ŌĞƌ�Ϯϱ�ƐƵďŐƌŽƵƉƐ�ŽĨ�ϰ�ŝƚĞŵƐ�ĞĂch have checked on a certain machining 

operation 301.2500 & 0.5757X mm S mm   . 

a)Compute central  lines  and control limits for &X S charts based  

on  these data. 

b)Assuming that this process is in control, estimate the process 
standard deviation 

c)Specifications on this dimension are ͳʹǤͲͲͲ േ ͲǤͳͲͲ�mm.  What 
proportion, if any, of the  product falls outside the specifications , 
assuming  a normal distribution applies. 

d)�ƐƐƵŵĞ�ƚŚĂƚ�ƚŚĞ�ƉƌŽĐĞƐƐ�ƐŚŝŌƐ�ƚŽ�Ă�ŶĞǁ�ŵĞĂŶ�ŽĨ��ϭϭ͘ϵϵϬ�ŵŵ�ǁŝƚŚŽƵƚ�
affecting ߪ.  What is the probability that this shift will not be 
affected on the first  subgroup drawn after the shift occurs? 

Ϯ͘ϭϭ͘ ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϭϰϴ ƉƌŽďůĞŵ�ϰ-Ϯϭ) 
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Control charts for &X S ͕�ďĂƐĞĚ�ŽŶ�Ă�ƐƵďŐƌŽƵƉ�ƐŝǌĞ�ŽĨ�ϰ�͕�ĂƌĞ�ƚŽ�ďĞ�ƵƐĞĚ�
to control a ƉƌŽĐĞƐƐ͘���dŚĞ�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶ�ŽĨ�ƚŚŝƐ�ƉƌŽĐĞƐƐ�ŝƐ�ϭϬ͘���Ŷ�

aimed-at value of the mean )( 0 Ϳ�ŝƐ�ƚŽ�ďĞ�ϮϱϬ͘ 

a)Determine control  limits for the &X S charts 

b)Determine the probability of a point falling within the തܺ chart control 
limits if the actual ߤ���is ͲǤͷߪ below the aimed-Ăƚ�ǀĂůƵĞ�ŽĨ�ϮϱϬ͘ 

If it�is ͳǤͲߪ ďĞůŽǁ�ϮϱϬ͘ 
If it�is ʹǤͲߪ ďĞůŽǁ�ϮϱϬ͘ 
If it�is ʹǤͷߪ ďĞůŽǁ�ϮϱϬ͘ 

c)Sketch these probabilities as a function of the location of the true 
mean(horizontal scale) and comment on the usefulness  of this 
diagram in relation to the detection  of shifts  in the mean. 

 
Ϯ͘ϭϮ͘  A certain manufacturing  process  with ߪ ൌ ͲǤͲͲͳͲ has been 
operating in control  at a mean of 0.0360  mm  with 0.0010  mm.  
dŚĞ�ƉƌŽĚƵĐƚƐ�ĂƌĞ�ƐŽůĚ�ƚŽ��Ϯ�ĚŝīĞƌĞŶƚ��ĐƵƐƚŽŵĞƌƐ�����Θ�͘���dŚĞ�ƐƉĞĐŝĮĐĂƟŽŶ�
required by A  and B are AB ,0040.00380.0,,0040.00360.0   . 
     a) Assuming  a normal distribution, what proportion of the product  
does not meet the specification of A. 
     b)If the process is centered on 0 0.0370  , find the percent of  the  

spoilage for  both A&B.   Is this change  suitable? Why? 
 
Ϯ͘ϭϯ͘  , ,X R S control charts are plotted for the samples ŽĨ�ƐŝǌĞ�ϰ�  taken 
from  a bag of balls which are normally distributed with ߤ ൌ ͶͲ�Ƭߪ� ൌ Ͷ.  
Find the ϯ-sigma control limits for the chats and the central  lines.  After  
sampling, a frequency distribution is prepared for  the��ഥ   values.  Estimate 
the mean and standard deviation of this distribution.  A frequency 
distribution is also prepared for  the standard deviation( S)  values, 
estimate the mean and the  standard deviation of this distribution. 

Hint:
 

   2
4 41 , , ,S xc E S c E X

n

        
 

Ϯ͘ϭϰ͘  The  �ഥ   control chart for a certain quality characteristic is given to 
ǇŽƵ͘� � dŚŝƐ� ĐŚĂƌƚ� ĐŽŶƚĂŝŶƐ� ϱϬ� ƐƵďŐƌŽƵƉƐ� Ăůů� ŶĞĂƌ� ƚŚĞ� ĐĞŶƚƌĂů� ůŝŶĞ͕� ŶŽŶĞ� ŽĨ�
ƚŚĞŵ� � ŶĞĂƌ� ƚŚĞ� ϯ-ƐŝŐŵĂ� ůŝŵŝƚƐ͘� � /Ŷ� ĨĂĐƚ� ǁŚĞŶ� ǇŽƵ� � ĚƌĂǁ� � ƚŚĞ� ϭ-sigma  
ůŝŵŝƚƐ;ŝ͘Ğ͘� ŽŶĞ� ƚŚŝƌĚ� ŽĨ� ƚŚĞ� ĚŝƐƚĂŶĐĞ� ďĞƚǁĞĞŶ� ƚŚĞ� ĐĞŶƚƌĂů� ůŝŶĞ� ĂŶĚ� ƚŚĞ� ϯ-
sigma limits) all samples fall within these narrow limits.  Does the chart 
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make you suspicious of happening a difficulty in the process?  Why? What 
kind if explanations could be presented  for  these kinds of charts? 
 
Ϯ͘ϭϱ͘ Why an increase in the variability of the process without increase in 
its mean, �make the R, S charts indicate lack of control? 
 
Ϯ͘ϭϲ͘ �ŌĞƌ��ϮϬ�ƐƵďŐƌŽƵƉƐ�ŽĨ�ƐŝǌĞ�ϭϬ�ĨƌŽŵ�Ă�ƉƌŽĚƵĐƟŽŶ�ƉƌŽĐĞƐƐ

20 20

1 1

731.4, 59.16i i
i i

X s
 

    . Assuming  a normal distribution applies, what 

percent of � the products satisfy the specifications��͵ͷǤͲͲ േ ͳͲǤͲͲ? 
 
Ϯ͘ϭϳ͘ �ĐĐŽƌĚŝŶŐ� ƚŽ� ŐŽǀĞƌŶŵĞŶƚ� ƌĞŐƵůĂƟŽŶƐ� ͕Ăƚ� ůĞĂƐƚ� ϵϴй�ŽĨ� ƚŚĞ� ƉƌŽĚƵĐƚƐ�

must have a weight equal to  the  weight printed on the label  ,s X charts 

ĂƌĞ�ƵƐĞĚ͘� ��ŌĞƌ� � ϮϬ� ƐƵďŐƌŽƵƉƐ�ŽĨ� ƐŝǌĞ�ϭϬ͕� � � � 731.4, 9.16X s   . 

ĮŶĚ�ƚŚĞ�ϯ-sigma limits for the chats and estimate  ߪ, assuming the process 

ŝƐ�ŝŶ�ĐŽŶƚƌŽů͘��/Ĩ�ƚŚĞ�ǁĞŝŐŚƚ�ƉƌŝŶƚĞĚ�ŽŶ�ƚŚĞ�ůĂďĞů��ŝƐ�ϯϲ�Žǌ�ĂŶĚ�ƚŚĞ�ƉƌŽĐĞƐƐ�ŝƐ�
normally distributed;  determine whether the product weight satisfy the 
government requirement. 
Ϯ͘ϭϴ͘ X an R control charts are used to control  the concentration of the 
dissolved iron , measured in� part per million (ppm), in  a certain solution. 
ϭϮϱ�ŚŽƵƌůǇ�ƐƉĞĐŝŵĞŶƐ͕�ǁĞƌĞ�ƚĂŬĞŶ�ĂŶĚ�ĐůĂƐƐŝĮĞĚ�ŝŶƚŽ�Ϯϱ�ƐƵďŐƌŽƵƉƐ�ŽĨ�ƐŝǌĞ�ϱ�

.  From these data
 

84 , 390.8R X   .  
&ŝŶĚ�ƚŚĞ�ϯ-sigma limits of 

the charts and estimateߪ�, assuming that ߪ�is  in control and the 
concentration  is normally distributed.  
Ϯ͘ϭϵ͘  According to the given specification, the concentration of  the  iron in 
problem Ϯ͘ϭϴ�ŵƵƐƚ�ŶŽƚ�ĞǆĐĞĞĚ�ϭϬ�ƉƉŵ͘�/Ĩ�ƚŚĞ�ĚĂƚĂ�ĂƌĞ�ŶŽƌŵĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ�
and no change has occurred in the mean and  the standard deviation of the 
products, what portion of the  product is expected to exceed this limit. 
Ϯ͘ϮϬ͘ X and S control  chars are used to control the impedance of   a kind of 

ĞůĞĐƚƌŝĐĂů� � ĐŽŝů͘� � �ŌĞƌ� ϯϬ� ƐƵďŐƌŽƵƉƐ� ŽĨ� ƐŝǌĞ� ϱ͕� 58395X  ohms,

548S   ohms. 

a)   �ĂůĐƵůĂƚĞ� ƚŚĞ� ĐĞŶƚƌĂů� ůŝŶĞ� ĂŶĚ� ƚŚĞ� ĐŽŶƚƌŽů� ůŝŵŝƚƐ� ĨŽƌ� ƚŚĞ�Ϯ� ĐŚĂƌƚƐ͕� ĂŶĚ�
estimate  ɐ�if the X's are normally distributed. 
b) What percent of the produced coils have the impedance of 1502000  , 
if the normal distribution applies? 
 

Reconciliation between people is the best alms.��
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Chapter ͵ Some Points on Subgrouping &Process 
                      Capability   
Aims 
  In this chapter some advices for subgrouping are given and the indices 
such as pC �and pkC , commonly used  to evaluate a process ability to 

produce output within given upper and lower tolerances, are defined. 
 

͵Ǥͳ  Subgrouping  
 

;�ǆƚƌĂĐƚĞĚ�ĨƌŽŵ�͗'ƌĂŶƚΘ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϭϱϱͿ͗ 
   The basis of subgrouping calls for careful study, with a view to obtaining 
the maximum amount of useful information from any control chart .  The 
following points should be considered while subrgouping: 
  The most obvious rational basis for subgrouping is the order of 
production.   
   Subgroups should be selected in a way that makes each subgroup as 
homogeneous as possible and that gives the maximum opportunity for 
variation from one subgroup to another.  Particularly if the primary 
purpose of keeping the charts is to detect shifts in the process average, one 
subgroup should consist of items produced as nearly as possible at one 
time; the next subgroup should consist of items all produced at a single 
later time; and so forth.  For  this purpose either n  items constituting one 
subgroup are produced in succession at say ĂďŽƵƚ� ϴ� Ž�clock; n items 
ĐŽŶƐƟƚƵƟŶŐ� ƚŚĞ� ŶĞǆƚ� ƐƵďŐƌŽƵƉ� ĂƌĞ� ƉƌŽĚƵĐĞĚ� ŝŶ� ƐƵĐĐĞƐƐŝŽŶ� Ăƚ� ĂďŽƵƚ� ϵ�
Ž͛ĐůŽĐŬ͖� ŶŽŶĞ� ŽĨ� ƚŚĞ� ŝƚĞŵƐ� ƉƌŽĚƵĐĞĚ� ďĞƚǁĞĞŶ� ƚŚĞ� ϴ� ĂŶĚ� ϵ� Ž͛ĐůŽĐŬ�
subgroups are measured for purposes of the control charts.  Or subgroups 
ĂƌĞ�ƚĂŬĞŶ�ĂŌĞƌ�ĞǀĞƌǇ��ƐĂǇ�ϭϬϬϬ�ƉĂrts.  It is good to act in a such way not to 
let the operator to know the exact time of sampling.  For example if we 
take hourly samples Ăƚ�ϵ��D͕͘�ϭϬ��M, ĞƚĐ͕�ǁĞ�ƐŚŽƵůĚ�ƚĂŬĞ�ƐĂŵƉůĞƐ�Ăƚ�ϵ͗ϭϬ�
Žƌ�ϵ͗Ϭϱ�Žƌ�ϵ͗ϱϬ�Žƌ�ϭϬ͘Ϭϱ͙  
  
3.1.1 Decision on the Size of Subgroups. 
   Dr Shewhart suggested four as the ideal subgroup size(n).  In the 
industrial use of the control chart, five seems to be the most common size. 
Because the essential idea of the control chart is to select subgroups in a 
way that  gives minimum opportunity for variation within a subgroup, it is 
desirable that subgroups be as small as possible. On the other hand, a size 
of four  is better than three or two on statistical grounds; the distribution 
of തܺ is nearly normal for subgroups of four or more even though the 
samples are taken from a non-normal universe;   this fact is helpful in the 
interpretation of control-chart limits.  KĨ�ĐŽƵƌƐĞ�ƚŚĞ�ƉƌŝŽƌŝƚǇ�ŽĨ�ϰand ϱ�ŽǀĞƌ�
Ϯ�and ϯ�is rejected when more expenditure is needed. 
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3.1.2The  time interval between subgroups 
   No general rule could be given  for the time interval of the subgroups; it 
depends on such factors as the cost we can afford, in control or out of 
control status of the process.  We might not reduce the interval due to high 
sampling expenditure. 
  
3.1.3  The  number of  subgroups 
   The number of  subgroups depend on some factors� such as the 
population size ;however , if possible,  Ϯϱ�ŝƐ�recommended for the  number 
of  subgroups to be collected before trial  control  limits are calculated. 
 
͵Ǥʹ Process Capability Index 
   To evaluate the capability of an in-control production process, the so-
called process capability indices, denoted by PCIs, are used in quality 
control.   The indices  compare the output of an in-control process to the 
specification limits. 
 
Capability Index for Normally distributed process 
  The indices used to evaluate an  in-control and  normally distributed  
process include  Cp & Cpk, pmpmk CC , NpNpkNpm CCC ,, ;among which Cp & 

Cpk are well known. 
 
3.2.1  Definition of Cp  
  If  the production process is  normally distributed and  is in control about 

the nominal value 
2

U L 
  where U and L are upper and lower 

specification limits(this requires the  process mean  coincides ߠ), Cp is 
defined as follows: 

௣ܥ ൌ ௎ି௅
଺ఙ , 

where 
U-L is the specification range or�tolerance, 
 is the process range or natural ߪis the process standard deviation and ͸ ߪ
tolerance, 
It is evident  that to the extent that the quantity of ɐ is less than the quantity 
of ሺ� െ �ሻȀ͸, the quantity of �୮ will be reduced. 
 It should be added that: 
- usually ߪ is not available; if the process is in control and normally 

distributed it is estimated by  
4 2

S R� �ó=  ó=
c d

or
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-�for using ܥ�௣ as process capability index,   ߤƴ ൌ തܺത  has to coincide with  

ߠ ൌ ௎ା௅
ଶ Ǥ� 

  -if
௣ܥ    ൏ ͳ, the process is not good, 

33.11  pC  the process acts well, 

33.1pC  the process acts very well,  

1.66 2pC   the process is excellent,  

2pC   the process is very excellent,  

-many American companies suggest a minimum target value ŽĨ�ϭ͘ϯϯ�ĨŽƌ��p ; 
a minimum value  ŽĨ� ϭ͘ϲϲ� ĨŽƌ� �Ɖ has also been suggested for critical  
characteristics  such as safety, strength,� dĂďůĞ�ϯ-ϭ�ƐŚŽws the portion of 
products falling  out of U,L for several ܥ�௣Ԣݏ assuming the process is 
normally distributed.  It  could be  easily verified  that for a given pC

,
 if the 

process is normally distributed with mean equal to ߠ ൌ ௎ା௅
ଶ that is                 

( � X   ), the portion of  products that fall outside U,L could be 
calculated from 
 p=  )33Pr(1 pp CZC  ,  
or using MATALB from  p=1-normcdf(3*Cp)+normcdf(-3*Cp). 
 
dĂďůĞ�ϯ-ϭ�The portion of products falling outside U&L, given a normal and in control process about ߠ ൌ ௎ା௅

ଶ  

U-L�� ϯߪ ϰߪ ϲߪ�� ϴߪ�� ͻǡ͹ͺߪ ϭϬߪ ϭϮߪ 

pC�� Ϭ͘ϱ Ϭ͘ϲϳ ϭ ϭ͘ϯϯ ϭ͘ϲϯ ϭ͘ϲϲ Ϯ 
Proportion 
falling 
outside U&L 
(% or�ppm) 

 
ϭϯ͘ϯϲ

% 
ϰ͘ϰϰ

% 
Ϭ͘Ϯϳ 

% 

ϲϲ 
ppm 

ϭ 
ppm 

Ϭ͘ϲϰ 
ppm 

Ϭ͘ϬϬϮ 
ppm 

Observations   ϯ-sigma 
Production 

Min  Cp 
for many 
American 

companies 

 
Minimum Cp 

for critical 
characteristics 

ϲ-sigma 
product

ion 

 
&ŝŐƵƌĞ�ϯ-ϭ�ƐŚŽǁƐ�ƐŽŵĞ�ĐĂƉĂďŝůŝƚǇ�ŝŶĚŝĐĞƐ͘ 
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&ŝŐ͘�ϯ͘ϭ�     ϰ values  of capability index

 
&ŝŐƵƌĞ�ϯ-Ϯ���ƐŚŽǁƐ�ĨŽƵƌ�ĚŝīĞƌĞŶƚ�
.having different Cp's producing a product ߠ
the proportion fall inside the specifications limit.
 

Control 

ϭϬϭ 

 

Recommended 
Actions��

portion 
outside 

U&L��
Heavy process 

control, 
Rework 

�൒ ͷ��

Relatively heavy 
process control, 

��

�Ϭ͘Ϯϳ��

reduced 
Inspection, 

selected use of 
control charts 

��

��
ϲϲƉƉŵ 

spot checking, 
selected use of 
control charts��

ppm�ϭ��

values  of capability index 

Ϯ���ƐŚŽǁƐ�ĨŽƵƌ�ĚŝīĞƌĞŶƚ�normally distributed processes with mean 
producing a product. The more the Cp, the more 

the specifications limit. 
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                      &ŝŐ͘�ϯ͘Ϯ      ϰ ƉƌŽĐĞƐƐĞƐ�ǁŝƚŚ�ϰ�values  of capability indicesϭ 
 

Cp for single specification 
   If only the lower specification or the  upper specification (L or U) is given, 
the following indices  are used:  

3pL

L
C





        ��������or ���������
3pU

U
C





  

Note that 
ƴߤ ǡ  the process mean, is  estimated asߤ - ൌ തܺതǤ 
-The values of CpU or CpL  ůĞƐƐ�ƚŚĂŶ�ϭ�ĂƌĞ�ƵŶĚĞƐŝƌĂďůĞ͘� 

͹Ǥ͸ǤͷǤͷ Interpretation of  
૚
 ࢖࡯

   Since�͸ߪ ൌ ૚
ܘ۱ ሺܷ െ ��ሻ, then the process range is equal toܮ ૚۱ܘ  of the 

specification range.  In other words  
૚
ܘ۱ ൈ ͳͲͲ  indicates the portion of the 

specification range  which covers  the process range.   For example 

 if �୮ŝƐ� ϭ͘ϱϱ, the process range (͸ɐ) takes 
૚
ܘ۱ ൈ ͳͲͲ ൌ  ϲϰ͘ϱй� ŽĨ� ƚŚĞ�

specification range i.e. U-L. 

if  �୮  ŝƐ�ϭ͕�ƚŚĞ�ƉƌŽĐĞƐƐ�ƌĂŶŐĞ�ƚĂŬĞƐ�
૚
ܘ۱ ൈ ͳͲͲ ൌ  ϭϬϬй�ŽĨ�h-L. 

if  �୮  ŝƐ�Ϭ͘ϱ͕ ૚۱ܘ ൈ ͳͲͲ ൌ  ϮϬϬй�ŝ͘Ğ͘�ƚŚĞ�ƉƌŽĐĞƐƐ�ƌĂŶŐĞ�ŝƐ�ĂƐ�ƚǁŝĐĞ�ĂƐ��ŽĨ�h-L. 

 
3.2.2 Definition of Cpk  
   In defining Cp it was assumed the process was in control and normally 
distributed and the process mean  was equal to nominal value i.e. 

2
� LU

X


 .  If
2

LU
X


  and we would like to evaluate the 

                                                           
ϭ� For a detailed discussion refer to references such  as�www.qualityamerica.com 
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process capability, another index denoted by pkC and defined as follows is 

used. 








 








3
,

3
min

L
C

U
CC pLpUpk

. 
It  could be shown that the above relationship is equivalent to  the 
following relationship: 

)1( kCC ppk  , 

where 

2

,
2 LU

k
LU










 . 

)1( kCC ppk   shows that always pk pC C and if pk pC C then 

� ൌ Ͳ� ฺ ρ ൌ ɅǤ� 
The larger Cpk is, the less likely it is that any item will be outside the 
specification limits. 
When Cpk is negative it means that a process will produce output that is 
outside the customer specification limits. 
&ŝŐƵƌĞ� ϯ͘ϯ� compares ϰ� � ŶŽƌŵĂůůǇ� ĚŝƐƚƌŝďƵƚĞĚ� ƉƌŽĐĞƐƐes whose means are 
not equal to the target value ߠ.  They have different Cpk's.  The more the 
Cpk, the less the proportion fall outside the specification limits. 

 
         &ŝŐ͘�ϯ͘ϯ  ϰ�ƉƌŽĐĞƐƐĞƐ�ǁŝƚŚ�ϰ�ǀĂůƵĞƐ�of Cpk producing the same product. 

͵Ǥʹ.ʹǤͳ Explanation  of  Cpk values 
Cpk = Negative number: Your products will be outside U&L. 
Cpk сϬ͘ϱ͗ a bad process. 
Cpk сϭ͗�ƚŚĞƌĞ�ĂƌĞ�ƐŽŵĞ�ŶŽŶconforming products 
Cpk сϮ͗�'ƌĞĂƚ͊�zŽƵ�ŚĂǀĞ a great clearance 
Cpk сϯ͗��ǆĐĞůůĞŶƚ͊  You have excellent clearance.  
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ϯ͘Ϯ͘ϯ��Definition of ࣌  level 

Sometimes 






 





 LU

,min

ĚŝƐƚƌŝďƵƚĞĚ͕�ƚŽ�ƚŚĞ�ĞǆƚĞŶƚ�ƚŚŝƐ�ƋƵĂŶƟƚǇ� � ŝƐ�ŵŽƌĞ�ƚŚĂŶ�ϯ͕�ƚŚĞ�ŵŽƌĞ�ĐĂƉĂďůĞ�
the process will be. 
 
Example ϯ͘ϭ 
       Assume a production process is normally distrib
deviation equal to one twelfth of the specification range

and a mean equal to the nominal value 

this case 2p pkC C  and the

Ϭ͘ϬϬϮ�ƉƉŵ�ĐĂůĐƵůĂƚĞĚ�ĨƌŽŵ normally distributed.
 

&ŝŐ�ϯ-ϰ. The process mean

Now suppose, the process mean

nominal value(
2

è LU 
 ) as much as 

distribution  and its standard deviation
this case the capability index of the process is equal to 

min
3

,
3

min 






 






 LU

C pk

Fig. 3-5 Shift of the process mean to the right
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



is called ɐ�level.  If the process is normally 

ĚŝƐƚƌŝďƵƚĞĚ͕�ƚŽ�ƚŚĞ�ĞǆƚĞŶƚ�ƚŚŝƐ�ƋƵĂŶƟƚǇ� � ŝƐ�ŵŽƌĞ�ƚŚĂŶ�ϯ͕�ƚŚĞ�ŵŽƌĞ�ĐĂƉĂďůĞ�

a production process is normally distributed with a standard 
equal to one twelfth of the specification range(� െ � ൌ ͳʹߪ� ) 

a mean equal to the nominal value � è
2

U L
X 

   ;&ŝŐ͘�ϯ-ϰ).  In 

and the portion of products falling outside  ܃Ƭܮ is 

normally distributed. 

 
. The process mean coincides nominal value. 

 

Now suppose, the process mean ��  has shifted  to  the right side of 

) as much as 1.5 , while the type of 

standard deviation ƌĞŵĂŝŶƐ�ĐŽŶƐƚĂŶƚ;&ŝŐ͘ϯ͘ϱ).  In 
this case the capability index of the process is equal to  

5.1
3

5.7
,

3

5.4
min 













 . 

 
Shift of the process mean to the right of  ࣂ ൌ ࡸାࢁ

૛ . 
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Then based on normal  distribution,  the portion of the  products falling 

outside U,L is 

1 Pr( ) 1 Pr( 1 Pr( 7.5 4.5) 0.0000035
L U

L X U Z Z
 

 
 

             

ƚŚĂƚ� ŝƐ�ϯ͘ϱ�ƉƉŵ͘� � �dŚĞƌĞĨŽƌĞ� ŝŶ�Ă�ŶŽƌŵĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ�ƉƌŽĚƵĐƟŽŶ�ƉƌŽĐĞƐƐ�

with 2pC if the process mean shifts 1.5  from 
2

è LU 
 ,the portion 

of products falling outside the specification limits is still insignificant. 
 
Example ϯ͘Ϯ 
  The specification limits a product is 1030  ͕�ĂŶĚ�ĨƌŽŵ�ϭϬ�ƐƵďŐƌŽƵƉ�ŽĨ�ƐŝǌĞ�
ϱ�ǁĞ�ŚĂǀĞ�σ ௝ܵଵ଴௝ୀଵ ൌ ʹͲǤʹͳǢ 
If the production  process is under control and normally distributed 
with mean equal to ;hн>ͬϮͿ, what can be said  about  the capability 
of the process? 
 
Solution 

௣ܥ ൌ � െ �
͸ɐ �������ɐෝ �ൌ �ത

�ସ ൌ
ʹͲǤʹͳ
ͳͲ
ͲǤͻͶ ൌ ʹǤͳͷ ՜ ௣ܥ ൌ ʹͲ

͸ כ ʹǤͳͷ ൌ ͳǤͷͷ������ 
The  process  is a good one and���� ૚۱ܘ ൈ ͳͲͲ ൌ  ϲϰ͘ϱй i.e. the process uses 

ϲϰ͘ϱй�ŽĨ�ƚŚĞ�ƉƌŽĐĞƐƐ�ƐƉĞĐŝĮĐĂƟŽŶ�ůŝŵŝƚƐ. 
   

 
Find  the process capability If  the process is normally distributed and  

10

i=1

X =331.9i . 

 
Solution  

In part b we have to calculateܥ��௣௞ (why?) 

05.1
15.23

2019.33
,

15.23

19.3340
�3

,
�3

min 

























 




LXXU
C pk

 
Supposing ߪ is unchanged, the portion of the products falling outside 
U,L is 

20 33.19 40 33.19
1 Pr( ) 0.0008

2.15 2.15
Z

 
   

 
The mean of the process has shifted from  nominal mean (

௎ା௅
ଶ ) and 

Ϭ͘Ϭϴй�ŽĨ�ƚhe products has fallen outside U,L. 
 



Chapter ϯ Some Points on Subgrouping��

͵Ǥ͵Some�notes on��۱ܓܘƬ࡯
-�୮ resembles the potential capability of  the process and always 

-if���୮୩ ൌ �୮, the process mean coincides the 

 - ���୮୩ ൏ �୮ indicates the process mean has shifted from the 

mean ሺ௎ା௅ଶ ). 

.      - to the extent that the quantity of

process mean has shifted  further from the 

Some companies recommend ܥ௣
-As well as ���୮୩ǡ �୮some other capability indices such as
their  extensions  ���୒୮୩ǡ �୒୮୫ǡ ��
 
For example���୮୫  is defined for a normally distributed production process

as follows: 

2 26 ( ) 6 ( )

U L U L U L
C pm

E X T E X Ti i

  
  

   

or 

 
where 
 

'

0XT 
 

The target value; T is not necessarily equal to

  
The process mean  estimated with 

X  The process standard deviation

ߤ െ ܶ  The deviation of the process mean from the target,
 

/ƚ�ŝƐ�ǁŽƌƚŚ�ŵĞŶƟŽŶŝŶŐ�ƚŚĂƚ�sĂŶŵĂŶŶ;ϭϵϵϱͿ 

variable relationship for calculating 

( , )u vC p

where  

d  half of the tolerance(=
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 ܘ࡯
resembles the potential capability of  the process and always �୮୩ ൑ �୮Ǥ 

, the process mean coincides the nominal mean (
௎ା௅
ଶ ). 

tes the process mean has shifted from the nominal 

to the extent that the quantity of���୮୩ is less than quantity of ܥ௣, the 

process mean has shifted  further from the nominal mean ሺ௎ା௅ଶ ). 

௣ ŽĨ�Ϯ͘ 
some other capability indices such as���୮୫୩ǡ �୮୫ and 

��୒୮have been introduced.
   

for a normally distributed production process 

   22 22 2 6( )

U L U L U L

TE X T E X T xi i
  

  
  

    

 

is not necessarily equal to
2

LU 
 , though often it is 

estimated with  X   
The process standard deviation 

the process mean from the target, 

/ƚ�ŝƐ�ǁŽƌƚŚ�ŵĞŶƟŽŶŝŶŐ�ƚŚĂƚ�sĂŶŵĂŶŶ;ϭϵϵϱͿ proposes he following two-

variable relationship for calculating , , ,p pk pm pmkC C C C : 

 
( , )u v

x

d u

T

 

 

 


 2 2
3

, 

half of the tolerance(=௎̴௅ଶ ሻ 
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L  The lower specification limit 
'

0XT   The target value 
,u v  �ŝŶĂƌǇ�ǀĂƌŝĂďůĞƐ�;Ϭ�͕ϭͿ 

U The upper specification limit 
തܺത Estimate   

  Norminal  value, 
2

LU 
  

  Process mean 
  Process standard deviation 
Then:  

( , ) , ( , ) , ( , ) , ( , )0 0 1 0 0 1 1 1C C C C C C C Cp p p p pm ppk pmk    . 
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Exercises 

ϯ͘ϭ 
 Consider two production processes used to produce a product with 
ܮ ൌ ͻ͸Ǥͷ������ ൌ ͳͲ͵Ǥͷ.  The first process produces products which are 
ŶŽƌŵĂůůǇ� ĚŝƐƚƌŝďƵƚĞĚ� ǁŝƚŚ� ŵĞĂŶ� ϵϵ� ĂŶĚ� ǀĂƌŝĂŶĐĞ� ϭ͖� ƚŚĞ� ƉƌŽĚƵĐƚƐ� ŽĨ� ƚŚĞ�
ŽƚŚĞƌ�ƉƌŽĐĞƐƐ�ĂƌĞ�ƵŶŝĨŽƌŵůǇ�ĚŝƐƚƌŝďƵƚĞĚ�ŽŶ�ƚŚĞ�ŝŶƚĞƌǀĂů�;ϵϳ͕ϭϬϯͿ͘�dŚĞ�ƚĂƌŐĞƚ�
value is ܶ ൌ ܺ଴ᇱ ൌ ͳͲͲǤ� Can you calcul
processes? 
ϯ͘Ϯ  
A customer requires a Cp ш� ϭ͘ϯϯ� ĨŽƌ� Ă� ƐƉĞĐŝĮĐĂƟŽŶ� ŽĨ� ϭϱ͘ϱ� ц� Ϯ͘Ϭ͘� /Ĩ� ƚŚĞ�
ƐƵƉƉůŝĞƌ͛Ɛ� ƉƌŽĐĞƐƐ� ŚĂƐ� Ă� ŵĞĂŶ� ŽĨ� ϭϱ͘Ϭ� ĂŶĚ� Ă� ƐƚĂŶĚĂƌĚ� ĚĞǀŝĂƟŽŶ� ŽĨ� Ϭ͘ϱ͕�
describe the process capability. 
exam/cqe-sample-exam.pdf)  

Answer: Cpk not acceptable and product requirements does not meet 
specifications. 

ϯ͘ϯ 
Given identical specification limits, which of
distributions has the highest Cp value?
http://asq.org/cert/resource/pdf/sample

 
ϯ͘ϰ 
a)Will  ���୮୫ǡ �୮୩������୮  be the same

b)If the process mean coincides  
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ϭϬϴ 

 

 

roduction processes used to produce a product with 
.  The first process produces products which are 

ŶŽƌŵĂůůǇ� ĚŝƐƚƌŝďƵƚĞĚ� ǁŝƚŚ� ŵĞĂŶ� ϵϵ� ĂŶĚ� ǀĂƌŝĂŶĐĞ� ϭ͖� ƚŚĞ� ƉƌŽĚƵĐƚƐ� ŽĨ� ƚŚĞ�
ŽƚŚĞƌ�ƉƌŽĐĞƐƐ�ĂƌĞ�ƵŶŝĨŽƌŵůǇ�ĚŝƐƚƌŝďƵƚĞĚ�ŽŶ�ƚŚĞ�ŝŶƚĞƌǀĂů�;ϵϳ͕ϭϬϯͿ͘�dŚĞ�ƚĂƌŐĞƚ�

Can you calculĂƚĞ�ƚŚĞ�ƉƌŽĐĞƐƐ�ĐĂƉĂďŝůŝƚǇ�ĨŽƌ�ƚŚĞ�Ϯ�

ш� ϭ͘ϯϯ� ĨŽƌ� Ă� ƐƉĞĐŝĮĐĂƟŽŶ� ŽĨ� ϭϱ͘ϱ� ц� Ϯ͘Ϭ͘� /Ĩ� ƚŚĞ�
ƐƵƉƉůŝĞƌ͛Ɛ� ƉƌŽĐĞƐƐ� ŚĂƐ� Ă� ŵĞĂŶ� ŽĨ� ϭϱ͘Ϭ� ĂŶĚ� Ă� ƐƚĂŶĚĂƌĚ� ĚĞǀŝĂƟŽŶ� ŽĨ� Ϭ͘ϱ͕� 
describe the process capability. � http://asq.org/cert/resource/pdf/sample-

not acceptable and product requirements does not meet 

Given identical specification limits, which of the following process 
value?  Why? (source: 

http://asq.org/cert/resource/pdf/sample-exam/cqe-sample-exam.pdf)   

 

 

be the same, if   ܶ ൌ ܺ଴ᇱ   coincides process mean? 

If the process mean coincides  2
U L  , will  ���୮୫���������୮�be equal? 

http://asq.org/cert/resource/pdf/sample
http://asq.org/cert/resource/pdf/sample-
http://asq.org/cert/resource/pdf/sample
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ϯ͘ϱ 
The following sample has been taken from the production process of  
certain product wih specification of ϭϬϬേϬ͘ϯϬ͘�&ŝŶĚ�ƚŚĞ�ƉƌŽĐĞƐƐ�ĐĂƉĂďŝůŝƚǇ�
index. 
�ଵ� ൌ ͻͻǤͺͺ�������������ଶ� ൌ ͳͲͲǤͳͳ����������ଷ� ൌ �ͻͻǤͻͻ����������������ସ� ൌ ͳͲͲǤͲʹ�. 
 

Many people live either in the future or in the past; the 
present time is God's present to us��
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Chapter 4 
 

A review of 
Probability  

and  
Statistics 

 Key Concepts 
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Chapter Ͷ A review of Probability and Statistics Key 
Concepts 
 
Aims 
 
  This chapter  aims to introduce some of the fundamental concepts 
and results of probability and statistics theory. Some distributions as 
well as the central limit theorem regarding the limiting distribution 
of the mean of a sample and a founding stone of the extreme value 
theory  i.e. the Fisher�Tippett  theorem regarding the limiting 
distribution of the maximum& minimum of a sample  are described.   
A  graphical technique called Q-Q plot  is also introduced for 
determining if a statistical distribution fits a series of data. 

 
 

ͶǤͳ  Review of definitions  
Random experiment, sample space, event 
 

4.1.1  Random experiment: An experiment whose outcome cannot 
be predicted with certainty, although  the possible outcomes  are known. 
 
4.1.2  Sample space(SS):The  collection of all possible outcomes of a 
random experiment. 
 
4.1.3  Event : A subset  of sample space. 
 
An event  is said to have occurred if one of its elements has occurred. 
Example for  an experiment, sample space and event are given below: 
 
Experiment Sample space  Event 
Casting a die ��΂ϭ͕Ϯ͕ϯ͕ϰ͕ϱ͕ϲ΃ ��
Ambient air 
Temperature 

 ��
Asking the GPA 
of students �� �с΂ϭϰфǆфϭϳ΃��
 
 
 

 2,3A 

 | 10 45t t    15 20B t  

 0 20x x 
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4.1.4  Frequency, Relative Frequency and Probability 
   Suppose  a random experiment with k possible outcomes has been 
repeated  n times and the frequency of the  ith outcome is equal to 

௜݂�ǡ � ൌ ͳǡʹǡ Ǥ Ǥ ǡ �; its  relative frequency of  the outcome is defined as fi/ n.  
The following table shows the frequency and the relative frequency of each 
outcome. 

relative frequency Frequency outcome 

fϭ/ n��fϭ xϭ��

fϮ/ n��fϮ xϮ��
������� 

������� 

���������
fk/ n fk xk 
ϭ ݊ Sum 

 
4.1.5 A  priori  or classic probability 
   Consider a random experiment has  kxxxSS ,...,,. 21  as its sample 

space.  If the outcomes , , , ..,i kix  1 2 are equally likely, then the classic 

probability of occurring xk denoted by ݌௞ሺݔ௞ሻis defined as : 

௞ሻݔ௑ሺ݌ ൌ ଵ
௞. 

 
4.1.6  A  posteriori  or statistical probability 
  If a  random experiment has the sample space  kxxxSS ,...,,. 21 , a  

posteriori  or statistical probability is the relative frequency when the  
experiment is run for a largish number of times i.e. 

 Pr lim i
i n

f
X x

n  . 

 
4.1.7 Conditional probability 
   The probability of Event A conditioned on B is defined as 

   
 

 
 

P A B P AB
P A|B = =

P B P B


. 

Therefore: 

           P A.B =P A B =P A|B .P B =P B|A .P A . 
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Example ϰ͘ϭ 
  Suppose we have ϰ�ĚĞĨĞĐƟǀĞ�and ϲ non-defective light bulbs.  What is the 
probability of both non-defective in Ă�ƐĂŵƉůĞ�ŽĨ� ƐŝǌĞ�Ϯ�ǁŚĞŶ� � ƐĂŵƉůŝŶŐ� is 
done without replacement? 

 
Solution  
  Let Events E and F be defined as:  
Event �͗�ƚŚĞ�ϭst  outcome is non defective 
�ǀĞŶƚ�&͗�ƚŚĞ�Ϯnd  outcome is non defective, 
then 

��ሺܧ໋ܨሻ ൌ ��ሺܨȁܧሻ���ሺܧሻ ൌ ͸
ͳͲ ൈ

ͷ
ͻ ൌ

ͳ
͵Ǥ 

4.1.8 Chain rule for factorization in probability theory  

  In probability theory, chain rule for factorization allows us to factor a joint 
probability  or density function  into a product of much smaller conditional 
probabilities or conditional density functions. 

4.1.8.1 Chain rule factorization of joint probability  

   Given  n  events ܧଵǡǥ ǡ  ௡ the joint probability of the events isܧ
factorized as  

)Pr()|Pr()...,...|Pr(),...Pr( 112111 EEEEEEEE nnn  ; 

And also  
given a set of random variables Xϭ,�,Xn, define the parents of Xi to 
be the variables Xj with j<i.  Then any given probability Pr(Xϭ,�,Xn) 
is equal to the product of all Xi's conditioned on "its parents" 
Pr(Xϭ,�,Xn)=  

Pr(Xn|Xn-ϭ,�,Xϭ). �. Pr(Xϯ|XϮ,Xϭ). P(XϮ|Xϭ). Pr (Xϭ) 
or    

 
       ... 2 2 1 1 1 1, ..., | , ...,1 1 1 1 1 1 2 2 1 1

Pr ,....,
1 1

Pr Pr Pr PrX x X x X xX x X x X x X x X x X xn n n n n n n n

L X x X x
n n



             

  

 or 
  1, ...., 1 1Pr Pr( | )n

i iX x X xn nL x its parents     
In practice it is not necessary to condition on Xn-ϭ,�,Xϭ;   m terms  are 
enough i.e.  to condition on Xn-ϭ,�,Xn-m: 
 
L= 
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 
   
   

..., ..., | , ...,
1 1 1 1 2 2 1 1

Pr ,....,
1 1

Pr Pr

Pr ,..., Pr ,...,
1 1 1 1 1 1

X x X x X x X x X x X x
n n n n n m n m n n n n n m n m

X x x x
n n

X x X x X x X x X x
m m m m m m





 

     
           

 

     
 
m depends on the particular and  its value  is something to be tackled. 
 
4.1.8.2 Chain rule factorization of joint probability density  
Let 

 ( , ,..., ), ,..., -1 111

1

x x xnX X X nn n

i

L f n
f x

iX parents
i

 






   

but in practice m terms  are enough to condition on: 

   , ,...,, ,..., 1 11| ,..., 11 11

n

x f x x xmi X X X mx mX X X X mi m i mi i ii

f
L     
  

In case of independence  

     
     1 1,...,

Pr ,..., Pr ...Pr
1 1 1 1

,..., ...
1 1n nX x X X

X x X x X x X x
n n n n

f x x f x f x
n n

    


 

 
For example : 

 , , ,4 3 2 1 1 1
. . .4 3| , , | , |4 3 2 1 3 2 1 2 1 1

, , ,4 3 2 1
x x x x f x f x f x f x

X x x x X x x X x X
f x x x x

     
              


 

4.1.9  Permutation and combination  
  Suppose r objects are chosen from n objects without replacement and 
are put into r cells, the number of objects that could be placed into each 
cell is:  
 

݊  n-ϭ�� ... n-ƌнϭ��
 
Permutation  
  A permutation, also called an "arrangement number" or "order "Is one of 
the many different ways or forms in which these cells exist or can be 
arranged. 
   In general, the number of permutations of n things taken r at a time is 
given by the formula  



    Statistical   methods in Quality Control 

ϭϭϱ 

 

             
     !

!

1.....

1.....11.....1
1...1

rn

n

rn

rnrnrnnn
rnnn









In particular if r=n   

  !
1

!

!0

!

!

!
n

nn

nn

n



 

i.e. the number of different ways n objects can be arranged is n!. 
 
Combination 

  Out of  
୬Ǩ

ሺ୬ି୰ሻǨ  permutations, the sets without regard to the order of 

drawing are called combinations. The number of different combinations of 
r objects that may be drawn from a lot of n objects is given by  

  !!

!

rrn

n

r

n











. 

 
Example ϰ͘Ϯ 
   The combinatŝŽŶ�ŽĨ��ƌ�сϴϬ�ĚƌĂǁŶ�ĨƌŽŵ�ŶсϭϬϬ objects is equal to  

100 100!

20 20! 80!
k

 
    

 .  

 
Handling factorial of large numbers   
  If for a particular n, n! is not possible to be calculated by hand  or a 
software such as MATLAB, there are tables in some books which gives the 
logarithm of n!.   For example k  in the above relationship could be  
calculated from: 
 

lo g lo g 10 0 ! lo g 8 0 ! log 2 0 ! 1 5 7 .9 7 11 8 .85 4 7 1 8 .3 8 6 1 2 0 .72 9 2k       
207292.20 108161435.36043457 10 k� 

dŚĞ�ůŽŐĂƌŝƚŚŵ�ŽĨ�ϭϬϬ͊�͕�ϴϬ͊�ĂŶĚ�ϮϬ͊�have been read from Table H of 
'ƌĂŶƚΘ>ĞĂǀĞŶǁŽƌƚŚ�;ϭϵϴϴͿ.  
&Žƌ�ŶхϭϬϬ�Ɛƚerling's formula i.e. 

! 2
nn

n n
e

   
 

, 

is also useful. 
For example  

  05.9782.551150014.32
71828.2

1500
!1500 1500

1500







 . 

 



Chapter ϰ����ƌĞǀŝĞǁ�ŽĨ�WƌŽďĂďŝůŝƚǇ�ĂŶĚ�ƐƚĂƟƐƟĐƐ��

ϭϭϲ 

 

ͶǤʹ�Introducing some statistical distributions 
  The aim of this section is to remind  certain properties of some 
distributions  used in statistical quality control. 
 
4.2.1 Hyper geometric distribution  
   A sample of size n is randomly selected without replacement from a 
population of N items.   In the population, k items can be classified as 
successes, and N - k items can be classified as failures.  The probability  of 
the number of success in the sample is given by the probability function  of 
hyper geometric  statistical distribution  : 

��ሼܺ ൌ ݀ȁܰǡܦǡ ݊ሽ �ݎ݋��  Pr , ,

D N D

d n d
d N D n

N

n

  
    

 
 
 

 

where integers N,D,n,d denote 
N Population (lot, batch,�)size 
D The number of items in the population that are classified 

as successes 
n  Sample size 
D The number of items in the sample, classified as successes 

ቀܰ݊ቁ ܰǨ
݊Ǩ ൈ ሺܰ െ ݊ሻǨ 

The mean and variance of hyper geometric  distribution are: 
 

�ሺ�ሻ ൌ ୈൈ୬
୒ , 

 
ܸ��ሺ�ሻ ൌ

    
   2

1
1 1

D N D n N n N n D
Var d np p p

N N N N

         

. 

 
  In  MATLAB,  the command  hygecdf(d,N,D,n) calculates the cumulative 
probabilities of  the distribution  and command hygepdf(d,N,D,n) returns 
the value of probability  density function at d. 
 
Example ϰ͘ϯ 
   /Ŷ�Ă�ůŽƚ�ŽĨ�ƐŝǌĞ�ϱϬ�ƚŚĞƌĞ�ĂƌĞ�ϰ�ĚĞĨĞĐƟǀĞ�ƉƌŽĚƵĐƚƐ͖�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�size 
ϱ�ŝƐ�ĚƌĂǁŶ�ĨƌŽŵ�ƚŚĞ�ůŽƚ.  
 
a)what is the probabiůŝƚǇ�ŽĨ�ϭ�ĚĞĨĞĐƟǀĞ�ƉƌŽĚƵĐƚ�ŝŶ�ƚŚŝƐ�ƐĂŵƉůĞ͍ 
 
ďͿǁŚĂƚ�ŝƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ůĞƐƐ�ƚŚĂŶ�ϯ�ĚĞĨĞĐƟǀĞs in the sample? 
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Solution 
 
a) 

14550  dDnN��

�� ൝ܺ ൌ ͳอ
ܰ ൌ ͷͲ
ܦ ൌ Ͷ
݊ ൌ ͷ

ൡ ൌ
ቀͶͳቁቀ

Ͷ͸
Ͷ ቁ

ቀͷͲͷ ቁ
ൌ ቀ ͶǨ

ͳǨ ൈ ͵Ǩቁ ቀ
Ͷ͸Ǩ

ͶǨ ൈ ͶʹǨቁ
ቀ ͷͲǨ
ͷǨ ൈ ͶͷǨቁ

؆ ͲǤ͵ͳ 

MATLAB  ͗�ŚǇŐĞƉĚĨ;ϭ͕��ϱϬ͕�ϰ͕��ϱͿсϬ͘ϯϬϴϭ  
 
b) 

Pr(XфϯͿ��
50 50 50

) Pr 0 4 Pr 1 4 Pr 2 4

5 5 5

N N N

d d D d D d D

n n n

        
                    
            

��

4 46 4 46 4 46

0 5 1 4 2 3 1 1370754 4 163185 6 15180 2114574
0.998

50 50 50 2118760 2118760 2118760 2118760

5 5 5

  
       

        
        
        
     
     
     

 

D�d>��͗�ŚǇŐĞĐĚĨ;Ϯ͕��ϱϬ͕�ϰ͕��ϱͿсϬ͘ϵϵϴϬ. 
 
4.2.2  Binomial  distribution  
  ^ƵƉƉŽƐĞ� ϭϬϬ 'p  is the proportion defective in the process of a special 
product of a factory ;  in other words the probability of observing  a 

defective product in the population is 'p .  The probability of observing r 
defectives in a sample of size n taken randomly  from the 
population(process) is given by the probability density function of a 
binomial distribution: 

��ሺ� ൌ �ሻ ൌ ቀ��ቁ ൫�Ԣ൯
୰ሺͳ െ �Ԣሻ୬ି୰���������Ͳ ൏ �Ԣ ൏ ͳ. 

In MATLAB  
 the command binopdf(r,n,p') computes this probability and binocdf(r,n,p') 

calculates�  Pr(X ≤r). 
 
Example ϰ͘ϰ 
  Suppose ϮϬ percent of  a population is defective. What is the probability 
ŽĨ�ŽďƐĞƌǀŝŶŐ�ϯ�ĚĞĨĞĐƚŝǀĞƐ�ŝŶ�Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϭϬ͘ 

��ሺ� ൌ ͵ሻ ൌ ቀͳͲ͵ ቁ ሺͲǤʹሻଷሺͲǤͺሻ଻ ൌ ͳʹͲ ൈ ͲǤͲͲͺ ൈ ͲǤʹͲͻ͹ ൌ ͲǤʹͲͳ͵ 
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Using MATLAB:    ��ሺ� ൌ ͵ሻ ൌďŝŶŽƉĚĨ;ϯ͕ϭϬ͕Ϭ͘ϮͿсϬ͘ϮϬϭϯ. 
If X is the number of defective items in a sample of size n drawn from a 
population having p� as its defective proportion then  X is binomially 
distributed and the mean and standard deviation  of X is given by : 

ሺ�ሻܧ ൌ ��Ԣ             ߪ��௑ ൌ ඥ݊݌ᇱሺͳ െ  .�ᇱሻ݌
ŝŶ� ƚŚĞ� ƐĂŵƉůĞ� ŽĨ� ƐŝǌĞ� ϭϬ� ŝŶ� ƚŚĞ� ĂďŽǀĞ� ĞǆĂŵƉůĞ, the mean and standard 
deviation  of the  number of defectives in the sample are: 
ሺ�ሻܧ  ൌ ��ᇱ ൌ ͳͲ ൈ ͲǤʹ ൌ ʹ 
௑ߪ ൌ ඥ݊݌ᇱሺͳ െ ᇱሻ�=ξͳͲ݌ ൈ ͲǤʹ ൈ ͲǤͺ� ؆ ͳǤʹ͹. 
 

ͺǤ͸Ǥ͸ǤͷMean and standard deviation  of sample proportion(p)  
  Let the proportion of nonconforming products in a sample be denoted by 
p, then 

݌ ൌ ௑
௡     ܧ����ሺ݌ሻ ൌ � ቀଡ଼୬ቁ ൌ

ଵ
୬ ൈ �ሺ�ሻ ൌ

୬୮ᇱ
୬ ฺ ሻ݌ሺܧ�������������� ൌ �Ԣ 

  qp
n

qpn
n

rVar
n

pVar 
11

)(
1

)(
22

௣ߪ         ฺ  ൌ ξ௣ᇱ௤ᇱ
ξ௡   

If the mean of the proportions of the defectives of the samples is p ,the 

proportion of  defectives in the process(population) is estimated by: �p'=p . 
 
Example ϰ͘ϱ 
  Forty samples were drawn from a population with Ɖ͛сϭϳ͘Ϭϯϰй; the 
following table shows the frequencies.  Calculate the mean and variance of 
the number  of defectives both from  
a)the following empirical information    and  from b) the theory. 
 

Order(i) ϭ Ϯ ϯ ϰ ϱ  
sum Number  of 

defectives (di) 
Ϭ ϭ Ϯ ϯ ϰ 

Number of 
samples having  
di  defectives(fi) 

ϱ ϭϲ ϵ ϳ ϯ ϰϬ 

 
Solution 
a)The mean of the defectives in each ŽĨ�ƚŚĞ�ϱ�samples ŽĨ�ƐŝǌĞ�ϭϬ�ŝƐ 
 
σ ௜݂݀௜ହ௜ୀଵ
σ ௜݂ହ௜ୀଵ

ൌ Ͳ ൈ ͷ ൅ ͳ ൈ ͳ͸ ൅ ʹ ൈ ͻ ൅ ͵ ൈ ͹ ൅ Ͷ ൈ ͵
ͶͲ ൌ ͳǤ͸͹ͷǤ 

The proportion of defectives in the population estimated from the 

empirical information is��ǯ෡ ൌ ҧ݌ ൌ ଵǤ଺଻ହ
ଵ଴ ൌ ͲǤͳ͸͹ͷǤ� The standard deviation 

of the defectives in sample is: 
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57.1
1

)(

1

222















 

i

ii

i

ii

f

ddf

f

fddf
s  . 

 
ďͿ&ƌŽŵ�ƚŚĞŽƌǇ�ƵƐŝŶŐ�Ă��ďŝŶŽŵŝĂů�ĚŝƐƚƌŝďƵƟŽŶ�ǁŝƚŚ�ŶсϭϬ Θ�Ɖ͛сϬ͘ϭϳϬϯϰ͗ 
the mean of  defectives in a sample is: 
 
ሺܺሻܧ ൌ ᇱ݌݊ ൌ ͳͲ ൈ Ǥ݋ ͳ͹Ͳ͵Ͷ ൌ ͳǤ͹Ͳ͵Ͷǡ 
 
The standard deviation is 
 
௑ߪ ൌ ඥ݊݌ᇱݍᇱ ൌ ඥͳͲ ൈ ͲǤͳ͹Ͳ͵Ͷሺͳ െ ͲǤͳ͹Ͳ͵Ͷሻ ൌ ͳǤͳͺͻǤ 
Where X is the defectives in a sample 
 
ͺǤ͸Ǥ͸Ǥ͸ 
Approximating hyper geometric distribution with binomial 
distribution 
  If the size of the population(N) is largish;EхϭϬŶͿ͕ the probabilities of hyper 
geometric distribution could be estimated using  binomial distribution 

formula ��ሺ� ൌ �ሻ ൌ  Pr ' 1 '
n rrn

d r p p
r

 
     

 
by replacing �ᇱ�with  

஽
ே     . 

 
 
4.2.3  Poisson distribution 
      The Poisson distribution is a discrete distribution that expresses the 
probability of a given number of events(X ) happening in a specified time 

period. The events occur with a known average(ߣ) over that time period 
and independently of the time since the last event.  The probability  
function of the distribution is: 

��ሺܺ ൌ ሻݔ ൌ ሺഊሻೣ೐షഊ
ೣǨ ߣ�������� ൐ Ͳǡݔ������ ൌ Ͳǡͳǡʹǡ͵ǡǥ    

ሺ�ሻܧ ൌ ����ሺ�ሻ ൌ Ȝ �����  
 
ͺǤ͸Ǥ͹.ͷ   Approximating  Binomial Distribution with Poisson  
   When probability tables or statistical soft-wares  are not available or they 
do not give the desired probabilities of a random variable with binomial 
distribution , the   probabilities can be approximated with Poisson or 
normal distribution.  Although approximating binomial distribution with 
Poisson distribution is common, however this approximation   when the 
sample size is large and the  proportion is low gives  good results and when 

10 0, 1 0n n p   gives very good results.   If a sample of size n is drawn 
from population having p� as a desired class proportion, the probability of 
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number of  elements of the desired class(X) found in the sample is given 
approximately by :  

���ሺܺ ൌ ሻݎ ؆ ൫೙೛ᇲ൯ೝ೐ሺష೙೛ᇲሻ
ೝǨ ߣ��������������� ൌ  ����Ԣ݌݊

 
4.2.4  Normal distribution 
  The �normal� or �Gaussian� distribution is a continuous probability 
distribution that has a two-parameter probability density function as given 
below: 

 
If ̱ܺܰሺߤǡ  ሻ��I.e.the random variable X is normally distributed  withߪ
parameters ߤǡ   then ,ߪ
 
E(x)=ߤ��ǡ���ܸܽݎሺܺሻ ൌ  �ଶǡߪ

Pr( ) Pr( ) Pr( ) Pr( )

( ) ( ) ( ) ( )Z Z

a b b a
a X b Z Z Z

b a normcdf b normcdf a

   
   

 

   
        

   
 

ͺǤ͸Ǥͺ.ͷ�Approximating  Binomial Distribution with  Normal  
   we will now focus on using the normal distribution to approximate 
binomial probabilities.   tŚĞŶ�ƉΖ�ŝƐ�ĐůŽƐĞ�ƚŽ�Ϭ͘ϱ the distribution tends to be 
symmetric  as the normal distribution is symmetric.  In other words when 
ƚŚĞ� ƉƌŽƉŽƌƟŽŶ;Ɖ͛� Ϳ� ŝƐ� ŶĞĂƌ� ƚŽ�Ϭ͘ϱ� ƚŚĞ�ĂƉƉƌŽǆŝŵĂƟŽŶ� ŐŝǀĞƐ� ďĞƩĞƌ� � ƌĞƐƵůƚƐ�
ƚŚĂŶ�ǁŚĞŶ�ŝƚ� ŝƐ�ŶĞĂƌ�ƚŽ��Ϭ�Žƌ�ϭ͘��  However for any given proportion(p'), as 
the sample size increases, the distribution tends to the shape of normal 
distribution.   The grater the sample size(n)  the better the approximation.   
,ĂůĚ;ϭϵϱϮͿ�ƐŚŽǁƐ�ƚŚĂƚ��ǁŚĞŶ� 

��Ԣሺͳ െ �Ԣሻ ��൐ ͻ݊�ݎ݋��� ൐ ͻ
�ᇱሺͳ െ �ᇱሻ 

the binomial distribution is acceptably close to the normal distribution 
;:ŽŚŶƐŽŶ͕� ϮϬϬϬ� ƉĂŐĞϯϯϵͿ� .  Another common practice for choosing the 
normal distribution to approximate  binomial is when 
 
  5',5'1  nppn      or 

   5)1(,min  pnpn    or 

  � ൐ ��݉݅݊�ሼ ହ୮ᇲ ǡ
ହ

ଵି୮ᇲ}. 
 

 
 2

2

-
-

21

2

x

f x e x




 
    
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To approximate the probabilities of a binomial distribution with normal  we 
could use either of the followings: 

  




























qpn

pnr

qpn

pnr
pnr ZZ

5.05.0
,Pr  

Or   1
Pr ,

2 ' '

2( ')
2 ' '

r n p e
np q

r np
np q





 


. 

where  ׎୞�is cdf of standard normal distribution. 
Nowadays , with the development of softwares such as MATLAB , the need 
for approximation has  reduced significantly.  
 
4.2.5 Lognormal  Distribution 
  Lognormal  distribution with parameters ( )ϭ  has the following density 
function and mean and variance: 

21 (ln )
22 2

( ) 0
x

e
x

f x x


  


   

2

2 222( ) ( ) ( 1)E X e Var X e e
        

Its probabilities could be calculated from MATLAB command logncdf  or 
from standard normal distribution: 

)
ln

Pr()lnPr(ln)Pr(





a
ZaXaX  

FiŐ͘�ϰ-ϭ�^ŚŽǁƐ�ƐŽŵĞ�ŶŽƌŵĂů�ĂŶĚ�ůŽŐŶŽƌŵĂů�ĚŝƐƚƌŝďƵƟŽŶƐ�ĂƐ�ƐĂŵƉůĞƐ͘ 

 
Fig.  4.1  Sample lognormal  and normal distributions 
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ͺǤ͸ǤͻǤͷ 
Calculation of the parameters of  a lognormal distribution from the 
mean and variance 
  Given  a lognormal distribution with mean and variance  ܧሺܺሻ�&�ܸܽݎሺܺሻǡ� 
 

ଶߪ ൌ ݈݊�ሾܸܽݎሺܺሻȀܧଶሺܺሻሿ 
ߤ ൌ ሺܺሻܧ݈݊ െ�ఙమଶ . 

 
In  reliability theory , lognormal distribution is one of the distributions used 
for product life or repair time, in economics it is used for income. 
 
 
4.2.6 Exponential   Distribution 
   Exponential distribution is a one parameter continuous distribution 
whose density function is : 

,��

Where ɉ  is the parameter and Ʌ is the distribution mean.  
If random variable T is exponentially distributed with parameter �ɉ    then: 

  Pr( ) expcdf(t, )

( ) , ( )

t
tF t T t e e

E T Var T

  

 
 

 
      

   2
2

1 1
1 1

��

ͶǤ͵  Limit theorems 
   There� are several limit theorems dealing with the limiting distributions of 
mean , sum, maximum and minimum �of a large number of random 
variables.  It is usually  assumed that the random variables are either 
independent, or almost independent.   In this section we will mention two 
limiting theorem i.e. Central Limit Theorem and Fisher-Tippet theorem. 
/Ŷ� ĐŚĂƉƚĞƌ� ϭ� a common version of Central Limit Theorem was stated as 
follows: 
 
4.3.1 Central  Limit theorem(Lindeberg & Levy Theorem) 
  If Xϭ,�,Xi�.,Xn are  independent and identically distributed random 
variables  with mean  and standard deviation  ߪ�( 0    ), regardless of 
the distribution of the variables, as n increases the distribution of the 

  1t

t

f t e e 





 
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variables mean( തܺ ��� tends to the normal distribution ,N
n

 
 
 

and also the 

distribution of 
1

n

i
i

X

 tends to the  normal distribution  ,N n n  . 

Now  another version is described.  
 
4.3.2 Central  Limit Theorem(Lyapounov Conditions) 
   Let   Xϭ,�,Xi�.,Xn be a sequence of   independent  random variables  

with arbitrary distributions and means ,.., n 1 and finite variances 

,.., n 2 2
1  ( i  20 ).  Also  let   random variable Yn be defined as 

1 1

2

1

n n

i i
i i

n n

i
i

X
Y





 





 


 

Note that���ሺ�୬ሻ ൌ Ͳ�����������ሺ�୬ሻ ൌ ͳǤ���

  

 
Then, under the following conditions 

3

31

2 3

1

| |
lim 0 | | 1,...,

( )

n

i i
i

i inn

i
i

X
X i n












  
      
 
 
 




 

as n increase, We have 

   Pr n Z
n

Y x x


  
. 

where  
 .୞ሺ�ሻ is the cumulative density function of standard normal for a given x׎
 

ͶǤͶFisher -Tippet  Theorem 
   Let  the sequence of  random variables Xϭ ����� Xn  are independent and 

identically distributed , then  as n increases,  the distribution of their 
maximum (����ሺ ௜ܺሻ) tends to a GEV distribution; and their minimum tends 
to another  GEV. 
 

ͶǤͷPickands� Theorem  
   What  ŝƐ�ŬŶŽǁŶ�ĂƐ�WŝĐŬĂŶĚ͛Ɛ�ƚŚĞŽƌĞŵ�;WŝĐŬĂŶĚƐ͕ϭϵϳϱͿĐŽƵůĚ�ďĞ�Ɛƚated as 
follows: 

   Suppose that we have a sample of n mutually independent and 
identically distributed (iid) random variables with common but unknown 
continuous distribution function F(x), then  the distribution of the data 
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exceeding a  large threshold u converges towards a generalized Pareto 
distribution(GPD).  In other words 
the conditional distribution of ܺ given that ܺ ൒  tends to  a GPD.   This ݑ
theorem,   which is applicable to a wide range of continuous distributions, 
is used in a method called POT method  in the theory of extreme value 
analysis.  
 
4.6  Estimation of Mean, Standard Deviation and 
Variance of a Production Process 
   Let k random samples with sample sizes nϭ,���� ,nk have been drawn from 

a production process or a population, then the mean, standard deviation 
and variance are estimated as described below: 
 
4.6.1Point Estimate of Process Mean 
      If  from a process ,k sample with means  �ഥܺ ௜ǡ���݅ ൌ ͳǡʹǥ Ǥ ǡ ݇ is available 
then the estimate of the mean of the process is given by: 






i

ii

n

Xn
X� . 

4.6.2 Confidence Interval(Interval Estimate) for the   
          Process Mean 
  If the process is normally distributed or almost normally distributed, and 

the sample sizes nϭ,���� ,nk are different  but close; then a confidence 

interval for the process mean is given by: 

1,1,
2

,

k

i
iS

X tnn

n
n

k
  


   ܵҧ ൌ σ ௌ೔ೖ೔సభ
௞  

 
Where  Sϭ,�, SK   are standard deviations of the k samples drawn from the 
process. 
 
4.6.3Estimate of the Process Standard Deviation 
  If the process is normally distributed and in statistical control, then 
standard deviation is estimated by: 

4
� S

c   

where cϰ is read from Table U for /
k

i
i

n n n k


 
1

. 
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4.6.4 Estimate of the  Process Variance 
       Let ௜ܵଶ���݅ǡ ൌ ͳǡ Ǥ Ǥ ǡ ݇  be the variances of k samples taken from a process 
or population with variance  2 , and the process is in control, then the 
estimate of 2 is: 

ଶ෢ߪ ൌ
( )

( )

k

i i
i

i

n S

n k
 










2

2 1
1

; 

Needless to say if the sample sizes are equal the estimate of  2 would be 

ଶ෢ߪ ൌ
k

i
i

S
S

k

 2

2 1 . 

 
ͶǤ͹   Goodness of Fit 
   What should be done to  evaluate fitting a statistical distribution to a 
series of  data or a frequency distribution? Two ways for dealing with this 
purpose are͗� ϭͿ goodness of fit tests such as Pearson Chi-square general 
goodness of fit test, Bartlet  goodness of fit test for exponential distribution 
and ϮͿa graphical device named Q-Q plot.   The tests are easily  found in 
text books; Appendix A at the end the this chapter delas with Bartlet test.  
The Q-Q plot is  described here.  It should be added that before using the 
test  or the plot, drawing the histogram and the calculation of coefficient of 
skewness of the dataset are useful to  evaluate the symmetry of the  
distribution of the dataset.  This coefficient  is a measure that studies the 
degree and the direction of departure from symmetry. 
 
4.7.1  Q-Q plot 
        Quantile-Quantile(Q-Q) plot is a  graphical device to observe  whether 
a particular distribution fits a dataset  or not.  In this graph the observed 
data and the corresponding data obtained from the distribution are plotted 
against each other in an X-Y coordinate plane.  The better the population 
follows the distribution, the closer the points to the angle bisector of the 
first quarter of the X-Y plane .The procedure for preparing a  Q-Q plot is as 
follows: 
^Žƌƚ�dŚĞ�ƐĂŵƉůĞ�ŽĨ�ĚĂƚĂ�ĨƌŽŵ�ŵŝŶŝŵƵŵ�ƚŽ�ŵĂǆŝŵƵŵ͕�ŐŝǀŝŶŐ�ƌĂŶŬ�ϭ�ƚŚƌŽƵŐŚ�
n:

 ( ) ( ), ...,1 nX X  

Allocate a number F(i), called plotting position calculated from  one the 
following formulae  to each  )( ix .  In fact  F(i) is a number  near to relative 
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frequency and an estimate for the cumulative distribution function 
at ( ) .ix    
There are many formulae  for plotting position including the followings: 

A)Gumbel  Plotting position    

One of the first formulae for Plotting position was given by Gumbel: 

( ) , i 1,...,n 
1

i
F i

n
 

  

B) Plotting position for normal distribution 
There are some formulae for the normal case including 
;�ĞƐƚĞƌĮĞůĚ͕ϭϵϵϬ�ƉĂŐĞϱϮͿ: 

0.5
( )

i
F i

n


   ��

or  ;'ŽĚĂ͕ϮϬϬϬ�ƉĂŐĞ�ϮϴϳͿ: 
0.375

( )
0.25

i
F i

n





.��

C) Plotting position for Weibull distribution with parameters A,B,C 
 ;'ŽĚĂ͕ϮϬϬϬ�ƉĂŐĞ�ϮϴϳͿ: 

. .
( ) . .

i a
F i a b

n b C C


    


0 2 7 0 2 30 2 0 0 2 0  

 
D) Plotting position for Exponential Distribution  
   Since Exponential distribution could be considered  a Webult with 
�сϭ�ƚŚĞŶ: 

0.47
( )

0.43

i
F i

n





 

For each F(i)͕�ŝсϭ͕͕͘͘Ŷ��ĐĂůĐƵůĂƚĞ� ,�
)(ix iсϭ,..,n from )(]�[ )( iFxF iX  where 

XF is the cumulative distribution function of the distribution under study. 

Plot the pairs (�x(i) �� �)(� ix	 in an X-Y coordinate plane, and fit a line to the 

points. The closer this line to the angle bisector of the first quarter of the 
plane, the better fits the distribution to the dataset.  It is worth knowing 
that the better the distribution fits the data set  the closer the  correlation 
coefficient of x(i) )(� ix	 ƚŽ�ϭ; but the vice versa is not necessarily true i.e. 

if the  correlation coefficient of  x(i) )(� ix	  is close ƚŽ�ϭ,necessarily the 

distribution does not fit  the dataset well. 
The correlation coefficient is calculated by the following formula: 
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   
( ) ( ) ( ) ( )

2 22 2
( ) ( ) ( ) ( )

� �

� �

i i i i

i i i i

n x x x x
R

n x x n x x




 

  
   

 

Example ϰ͘ϱ 
   The following table shows a sorted random sample, x(i)� 's,  from a 
population. Is the sample a representative of normal distribution? 
 
 Solution 
  To answer, a Q-Q plot is drawn. The mean and variance of the distribution 
is estimated as follows: 

  . 54.81�  X ,
4

� 11.7287
s

c
    

F(i)͕� ŝсϭ͕͕͘͘Ŷ� �  was computed using 
0.375

( )
0.25

i
F i

n





 as the plotting 

position, and inserted in the table. Then the corresponding )(� ix is 

calculated by equating the F(i)to the normal standard cumulative 
distribution, and calculating )(� ix from these equations.   

.�,�)()
�
��

Pr()�Pr(
4

)(
)( c

s
XiF

x
ZxX i

i 


 



  

sample calculation follows: 
For 1i  : 

  
� �( )

Pr( ) ( )
�

x i
Z F i






     

� 54.81(1) �Pr( )   0.0294 32.37(1) 11.7287/0.9876

x
Z x


     

or  ݔොሺଵሻ ൌ ሺͲǤͲʹͻͶǡͷͶǤͺͳǡͳͳǤͺ͹ͷͳሻݒ݊݅݉ݎ݋݊ ൌ ͵ʹǤ͵͸ͻͺǤ 
The following table contains all the results  

Rank(i) )( ix� � F(i) )(� ix�� Rank(i) )( ix� � F(i) )(� ix 
��� ϯϮ�� �������� ������ � ��� � ϱϵ �������� ������ �
��� ϯϰ ������� � ������ � ��� � ϱϵ ������� � ������ �
��� ϯϵ ������� � ������ � ��� � ϲϬ ������� � �������
�� � ϰϰ ������� � ������ � ��� � ϲϭ ������� � ������ �
�� � ϰϲ ������� � ������ � ��� � ϲϰ ������� � ������ �
�� � ϰϳ ������� � ������ � ��� � ϲϳ ������� � ������ �
�� � ϱϬ ������� � ������ � ��� � ϲϴ ������� � ������ �
��� ϱϭ ������� � ������� ��� � ϳϬ ������� � ������ �
�� � ϱϭ ������� � ������ � ��� � ϳϬ ������� � ������ �
���� ϱϮ ������� � ������ � �� ϳϭ �������� ����� 
���� ϱϲ �������� �������     
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( )ix 's and )(� ix ΖƐ�ŚĂǀĞ��ďĞĞŶ�ƉůŽƩĞĚ�ĂŐĂŝŶƐƚ�ĞĂĐŚ�ŽƚŚĞƌ�ŝŶ�&ŝŐ͘�ϰ͘Ϯ�ĂŶĚ�Ă�ůŝŶĞ�

fitted to them.  

Fig. 4.2  Q-Q plot with
i - 0.375F( i  ) =
n + 0.25

. 

Fig. 4.3   Q-Q plot with
i - 0.5F( i ) =

n
. 

 
Since the points are near to the fitted line and the line is close to the angle 
bisector of the first quarter of the X-Y coordinate plane, it is concluded that 
the normal distribution fits the dataset. 
 
    In MATLAB, the command qqplot could be utilized to make a   Q-Q plot 
from the dataset  X.ϭ  The Q-Q plot of  &ŝŐ͘�ϰ͘ϯ�was made by this command.  
The difference of the two plots  is not significant. 
The correlation  coefficient(r)  between ( ) ( )� ,i ix x is calculated by 

R=corrcoef(X,Xhat);rсZ;ϭ͕ϮͿ� 
where  
X         is the vector containing  y;ŝͿ͕�/͕сϭ͕Ϯ͕ϯ͘͘ 
Xhat    is the vector containing  ݔොሺ݅ሻǡ ݅ ൌ ͳǡʹǡ ǤǤ��  
 ǁŚŝĐŚ�ŐŝǀĞƐ� �Ϭ͘ϵϴϮϲ͘� �dŚŝƐ�ǀĂůƵĞ͕�ďĞŝŶŐ�ŶĞĂƌ� ƚŽ�ϭ͕� � ƚŽŐĞƚŚĞƌ�ǁŝƚŚ� ƚŚĞ�Y-Q 
plot of Fig. ϰ-Ϯ�Žƌ� Fig. ϰ-ϯ�ŝŶĚŝĐĂƚĞ�that normal distribution is a good fit for 
the data best fit. 
 
 
 
 

                                                           
ϭ>>�X=[�.data]; pd=makedist('normal', mu, sigma);qqplot(X,pd) 
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pp=(i-0.375)/(n+0.25) 
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Some solved problems: 
�ǆĂŵƉůĞ�ϰ͘ϲ 
   Ϯϱ�ƉĞƌĐĞŶƚ�ŽĨ�Ă�ŬŝŶĚ�ŽĨ�ĨĂŶ�ŚĂǀĞ�Ă�ůŝĨĞ�ŽĨ�ŵŽƌĞ�ƚŚĂŶ�ϭϬϬ͕ϬϬϬ�ŚŽƵƌƐ͘��
/Ŷ�Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϰϱ�ĨƌŽŵ�this  product ,what is the probability that  
ϭϯ�ĨĂŶƐ�ǁŽƌŬ���ŵŽƌĞ�ƚŚĂŶ�ϭϬϬ͕ϬϬϬ�ŚŽƵƌƐ͘ 
 
Solution 
 Let     X=Number ŽĨ� ĨĂŶƐ� ǁŝƚŚ� ůŝĨĞ� ŐƌĞĂƚĞƌ� ƚŚĂŶ� ϭϬϬϬϬϬ hr in the 
sample. 
a)With binomial distribution( Exact Solution) 

' 0.25p    Ŷсϰϱ 

ܲሺܺ ൌ ͳ͵ሻ ൌ ቀͶͷͳ͵ቁ ሺǤ ʹͷሻଵଷሺǤ ͹ͷሻସହିଵଷ ൌ ሺͳ͵ǡ݂݀݌݋ܾ݊݅ Ͷͷǡ Ǥʹͷሻ ൌ ͲǤͳͲͻ͵. 

b)With Poisson Distribution 
Verify that the conditions for approximation with Poisson 
distribution  are not satisfied. 
 
c)With Normal Distribution   
Since ݊݌ᇱ ൐ ͷ�ǡ ݊ሺͳ െ ᇱሻ݌ ൐ ͷǡ��then the conditions for 
approximation with normal  distributions are satisfied. 

' 0.25p    Ŷсϰϱ 

 

2( ')

2 ' '

' 11.25 ' ' 2.905

1
Pr ,  0.1145

2 ' '

r np

np q

np np q

X r n p e
np q




 

  

 

In another way: 

ܲሺܺ ൌ �ݎ݋��ሻݎ   




























qpn

pnr

qpn

pnr
pnr ZZ

5.05.0
,Pr  

ܲሺܺ ൌ ሻݎ ؆ ߮௓ሺݖଶሻ െ ߮௓ሺݖଵሻ 
0.5 13 11.25 0.5 2.25 2.252 0.772 2.90545 0.25 0.75 8.4375

r np
Z

np q

   
    

   
��

1
1

' 0.5 13 11.2 0.55
0.43

'(1 ') 45 0.25 0.75

r np
z

np p

   
  

  
 

     2 1Pr 13 0.7794 0.6664 0.113Z ZX z z       . 
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Example ϰ͘ϳ 
  &ƌŽŵ�Ă�ƉƌŽĚƵĐƟŽŶ�ƉƌŽĐĞƐƐ�Ă�ďĂƚĐŚ�ŽĨ�ƐŝǌĞ�ϭϬϬϬϬ�ŝƐ�ƉƌĞƉĂƌĞĚ͕�ƚŚŝƐ�
prŽĐĞƐƐ��ƉƌŽĚƵĐĞƐ��Ϭ͘ϭй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƚĞŵƐ�Žƌ�ĚĞĨĞĐƟǀĞƐ.  
 
a)What is the probability of existing exactly ϭϬ�ĚĞĨĞĐƟǀĞ�ƉƌŽĚƵĐƚƐ�ŝŶ�
the batch, 
b) find  r=umber of defectives in the lot in such a way that the 
probability of existing more that this value as defective products in 
the batch ŝƐ�Ϭ͘Ϭϱ. 
 
Solution 
a) 
Exact solution 

   '( )r n rn
P X r p q

r
 

   
 

    ŶсϭϬϬϬϬ   ƉΖсϬ͘ϬϬϭ���ƌсϭϬ 

Wƌ;yсϭϬͿс ďŝŶŽƉĚĨ;ϭϬ͕�ϭϬϬϬϬ͕Ϭ͘ϬϬϭͿ= Ϭ͘ϭϮϱϮ 
 
approximation using the following normal  distribution pdf : 

 

2( ')

2 ' '1
Pr ,  

2 ' '

r np

np qX r n p e
np q




  

 

��ሺܺ ൌ ͳͲȁ݊ ൌ ͳͲͲͲͲǡ ᇱ݌ ൌ ͲǤͲͲͳሻ
؆ ሺͳͲǡͳͲͲͲͲ݂݀݌݉ݎ݋݊ כ ሺͲǤͲͲͳሻǡ ሺͳͲͲͲͲݐݎݍݏ כ ሺͲǤͲͲͳሻ
כ ሺǤͻͻͻሻሻሻ ൌ ͲǤͳʹ͸ʹ 

b)Using normal approximation 
ŶсϭϬϬϬϬ     ƉΖсϬ͘ϬϬϭ����Wƌ;yхƌͿсϬ͘Ϭϱ��ƌс͍�� 
E(X)= ' 10000 .001 10np     

ଡ଼ߪ ൌ ' ' 10000 .001 .999 3.161np q      

 Pr 1 Pr 0.05
r

r np
X r Z


 

     
 

         
10

Pr( ) .95
3.161

r
Z


     

10
1.645

3.161

r
r


   ϭϱ͘ϭϵϵ 

or       ƌсŶŽƌŵŝŶǀ;͘ϵϱ͕ϭϬ͕ϯ͘ϭϲϭ)=ϭϱ.ϭϵͻ խ ͳͷ 
            ďŝŶŽŝŶǀ;Ϭ͘ϵϱ͕�ϭϬϬϬϬ͕Ϭ͘ϬϬϭͿсϭϱ�gives the exact answer. 
 
Example ϰ͘ϴ

      A bĂƚĐŚ��ĐŽŶƚĂŝŶƐ��ϱϲ�ŶŽŶ-ĚĞĨĞĐƟǀĞ�ĂŶĚ�ϰ�ĚĞĨĞĐƟǀĞ products .  A random 
ƐĂŵƉůĞ�ŽĨ���ϱ�ŝƐ�ƐĞůĞĐƚĞĚ.  What is the probability of observing no defective, 
 ϯ ĚĞĨĞĐƟǀĞƐ��ĂŶĚ�ůĞƐƐ�ƚŚĂŶ�ϯ�ĚĞĨĞĐƟǀĞƐ�ŝŶ�ƚŚĞ�ƐĂŵƉůĞ͘� Do not use 
approximation; find exact solution. 
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Solution 
The exact distribution is hyper geometric  

5460456  nDN  

699.0
5461512

38198164

5

60

5

56

0

4

5

4

60

0Pr 




















































n

D

N

r  

Or  hygepdf(Ϭ,ϲϬ,ϰ,ϱͿсϬ͘ϲϵϵϰ 
 

001.0
5461512

15404

5

60

2

56

3

4

5

4

60

3Pr 




















































n

D

N

r  

  Or  hygepdf(ϯ,ϲϬ,ϰ,ϱͿс�Ϭ͘ϬϬϭϭ 

60 60 60 60

Pr 2 4 Pr 0 4 Pr 1 4 Pr 2 4

5 5 5 5

N N N N

r D r D r D r D

n n n n

           
                         
                 

ŚǇŐĞĐĚĨ;Ϯ͕ϲϬ͕ϰ͕ϱͿ=  Ϭ͘ϵϵϴϵ. 
 
Example ϰ͘ϵ 
  ϰϬ random  samples were drawn from a production process and the 
proportion of the defectives in each sample  was calculated; the following 
table shows the results; 
 

Sample  

proportion defectives(pi) 
Ϭ͘Ϭϰ Ϭ͘Ϭϯ Ϭ͘ϬϮ Ϭ͕Ϭϭ Ϭ 

Frequency(fi) ϯ ϳ ϵ ϭϲ ϱ 

 
a) Estimate the  proportion  of  defectives in the process and the standard  
deviation  of  this proportion. 
b).If the samples are of size ϭϬ and the proportion of the defectives in the 
process is ƉΖсϭϳ͘Ϭϯϰй.  What is theoretically the mean and standard 
deviation of the proportion of defectives in each sample? 
 
Solution 
a)the mean of proportion(݌ҧ) is estimated: 
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         
01675.0

40

67.0

40

001.01602.0903.0704.03



p

and the standard deviation: 

( )
.

5
2

1
5

1

0 157
1

i i
i

i
i

f p p
s

f






 






 

( )
. .

5
2

1
5

1

0 155
i i

i
rms

i
i

f p p

f
 




 



 

b) 
Theoretically the mean of the sample proportion defective(p) is E(p)=p' 
сϬ͘ϭϳϬϯϰ 
and its standard deviation is  

  
p

0.17034 1-0.17034p q
ó = = =0.1189

10n

 
. 

      At the end of this chapter  some concepts of descriptive statisticsϭ are 
reviewed without illustration, which is easily available on the internet. 
 
ͶǤͺ  Measures  of Central   tendency 
    The central tendency�  measures  of a set of measurements are some  
numbers   that best summarize the entire set , numbers in some way 
"central" to the set.   An application of central tendency measure is  in the 
comparison of frequency distribution.  These measures, including mean, 
mode and median, are described here. 
4.8.1  Arithmetic mean 
The arithmetic mean of a set  1,..., nx x with frequencies 1 , ..., nf f , 

denoted by � തܺ is calculated as follows: 

i i i
i i i

i i

f x f
X p x p

f f
    

 

The following table illustrates the calculations 

ix
 if  ii fx

 

 
59.5

68

380
X  

Ϯ ϭϮ Ϯϰ 
ϯ ϭϲ ϰϴ 
ϴ ϭϴ ϭϰϰ 
ϵ ϭϵ ϭϳϭ 
-ϭ Ϯ -Ϯ 
-ϱ ϭ -ϱ 
sum ϲϴ ϯϴϬ 

                                                           
ϭ�Descriptive statistics deal with the presentation, numerical processing and 
graphical representation of a data set. 
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It worth mentioning that the  mean of a random sample, or the mean of 

several തܺ ǡݏ, denoted by തܺത are unbiased estimators for the population 
mean (ߤ): 

�ì=X or X . 
 

4.8.2 Median  
   The median  related to a data set, denoted by Me or X �ŝƐ�Ă�ǀĂůƵĞ�ƚŚĂƚ�ϱϬ�
percent of the total set falls below anĚ� ϱϬ� ƉĞƌĐĞŶƚ  falls above it. If the 
dataset  is odd, the number falling in the middle of the sorted set  is the 
median;  if the data set is even the arithmetic ŵĞĂŶ�ŽĨ�ƚŚĞ�Ϯ�ŶƵŵďĞƌƐ�ƚŚĂƚ�
fall in the middle of the sorted set is the median. The median of a 
ĚŝƐƚƌŝďƵƟŽŶ�ŝƐ�Ă�ǀĂůƵĞ�ƚŚĂƚ�ďŝƐĞĐƚƐ�ƚŚĞ�ĚŝƐƚƌŝďƵƟŽŶ�ŝŶƚŽ�Ϯ�ĞƋƵĂů�ƉĂƌƚƐ͘ 
 
Example ϰ͘ϭϬ 
    dŽ�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ŵĞĚŝĂŶ�ŽĨ�΂ϭϵϬ͕ϭϴϬ͕ ϮϬϬ͕ϭϵϱ͕ϭϴϱ΃͕�ĮƌƐƚ�ǁĞ�ƐŽƌƚ�ƚŚĞ�ƐĞƚ�
ĂƐ�ĨŽůůŽǁƐ͗΂ϮϬϬ͕ϭϵϱ͕ϭϵϬ͕ϭϴϱ͕ϭϴϬ΃͖�ƚŚĞ�ŵĞĚŝĂŶ�ŝƐ͗DĞсϭϵϬ� 
TŽ� ĐĂůĐƵůĂƚĞ� ƚŚĞ� ŵĞĚŝĂŶ� ŽĨ� ΂ϮϬϬ͕ϭϵϱ͕ϭϵϬ͕ϭϴϱ͕ϭϳϱ͕ϭϳϬ΃͕� ƐŝŶĐĞ� ƚŚĞ� ƐĞƚ� ŝƐ�

sorted and even the median is:� 190 185
187.5

2
Me


  . 

ϰ͘ϴ͘Ϯ͘ϭThe Median of Grouped Data 
   If the variable is continuous and a the sample is not available , but instead 
it has been grouped into k  classes  of width c with given  frequencies, the 
median is given by: 

                               

1 2

K
i

i
c

f
F

X L c
f




  




 
where 

fi ��  The frequency of ith group 

n The total frequency 
L The lower bound of  " median class " 
Median class is the first class whose cumulative frequency is greater 

or equal 
2

n
 

K no of classes 

cF  the  cumulative frequency before the median class 
 

f�� the frequency of the class median 
 

c the class width 
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4.8.3  Mode 
       Mode is the value that has the highest frequency in a data set. 

For the data set  1,..., nX X with 1,..., nf f the Xi  with the highest frequency is 

the median. 
ͺǤ;Ǥ͹Ǥͷ  The Mode of  Grouped Data 
For grouped data, , use the following formula to the mode: 

c
dd

d
LMode 




21

1  

where 
c The width of the class with the highest frequency( modal class  ) 

 
dϭ  the difference between the frequency of the  modal class and the frequency of 

 the class  preceding the modal class, 
 

dϮ the difference between the frequency of the modal class and the frequency of  
the class succeeding the modal class 
 

L Lower boundary of the modal class 
 
ͺǤ;Ǥ͹Ǥ͸  The Mode of a Distribution 
    If the probability density function(pdf) of  the distribution of a random 
variable is given, to calculate the mode of the distribution, get the 
derivative of the function and equate it to zero. The mode results from the 
ƐŽůƵƟŽŶ�ŽĨ�ƚŚŝƐ�ĞƋƵĂƟŽŶ͘��&ŝŐƵƌĞ�ϰ͘ϰ�Ɛhows the modes of two pdfs. 
 

��
Fig. 4.4 the mode of 2 probability density functions��

��
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��
4.8.4  Geometric Mean 
   The geometric mean is a measure of central tendency.  The   geometric   

mean  (G) of the non-negative dataset 1,..., nx x is defined as: 

n
nxxxG ...21 ��  or   

1

n

i

G n x i

  or 

  



n

i
i

xxx

n x
n

xxxx
n

G

n
1

log...loglog

321 log
1

...log
1

log

21

  
 

 If  the  weights  , i 1, ..., kw i  are allocated to 1,.., kx x , the  formula for 

the geometric mean would be: 
1

1

i
i

k w
w
i

i

G x


 
  
 
 . 

   A useful application of  G  as a measure of summary  is  when changes in 
the data occur in percentages. If there is any negative or zero values in the 
data, do not use this mean.  
 
Example ϰ͘ϭϭ 
  The production of a factory in the last five years  has been reported in 
ratios as follows indicating the production of each year to the production 
of its preceding year: 
ͳǤͳǡ ͲǤͻǡ ʹǤ͵ǡ ͳǤ͵ǡ ͳǤ͵ͷ. 
tŚĂƚ�ŝƐ�ƚŚĞ�ŵĞĂŶ�ŽĨ�ƉƌŽĚƵĐƟŽŶ�ƌĂƟŽ�ŝŶ�ƚŚĞ�ƉĂƚ�ϱ�ǇĞĂƌƐ͘ 
 
Solution 

n
nxxxG ...21 =ሺͳǤͳ כ ͲǤͻ כ ʹǤ͵ כ ͳǤ͵ כ ͳǤ͵ͷሻభమ ؆ ʹ 

That is on the average the production in each year of  the past ϱ years has 
been doubled. 
 
ͶǤͻMeasures of dispersion 
   Measures of dispersion give us an indication of how broadly our data are 
spread out from their central tendency. Mostly used measures of statistical 
dispersion i.e. the variance, standard deviation and range are dealt here. 
 
4.9.1  Range(R) 
The range of a sample( 1,...., nx x )  is the difference between the highest 
and lowest scores in the data set:    R=Xmax ��� Xmin� 
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4.9.2  Variance (ࡿ૛ሻ 
The variance of a set of data 1,..., nx x   
Is  : 

      2 2 2 2 2
2

2

1 1 1
ii i

x nX X n Xx X x nX
s

n n n

  
  

  
 

 
 

SϮ  is an unbiased estimator of the population variance, however the 
following  value is a biased estimator for the population variance. 

 

 2 2
2 2i i
rms

x X x
X

n n



   

 
If the data contains frequencies, then 

 2 2 2
2

1 1
i i i i

i
i

f x X f x nX
s n f

f n

 
  

 
    

 
4.9.3  Standard deviation 
 

 2 2 2

1 1
i i i i i

i i

f x X f X X f
s

f f

 
 

 
  
   

Neither   S nor  ߪ௥௠௦ given by: 

   




 




i

i
iii

i

ii

i

ii
rms f

f
pXxp

f

Xxf
X

f

xf 2
2

2

2


 

is an unbiased estimator for population standard deviation; but for the 
standard deviation of a normal distribution the following formulae are 
useful: 

ොߪ ൌ ܵ
Ͷܥ ݎ݋

തܵ
Ͷ                  ɐෝܥ ൌ

ୖ
ୢమ ��

ഥୖ
ୢమ    

4C is read from Table U or calculated from MATLAB: 
n=�.͖ĐϰсƐƋƌƚ;Ϯͬ;Ŷ-ϭͿͿ͘ΎŐĂŵŵĂ;ŶͬϮͿͬŐĂŵŵĂ;;Ŷ-ϭͿͬϮͿ �����  

2d is also read from Table U or calculated in MATLAB from: 
� ൌ ڮ ǢƉĚ�с�ŵĂŬĞĚŝƐƚ;ΖŶŽƌŵĂůΖ͕Ϭ͕ϭͿ͖ĨƵŶ�с�Λ;ǆͿ�;ϭ-;ϭ- cdf(pd,x)).^n-
(cdf(pd,x)).^n);   ĚϮ�с�ŝŶƚĞŐƌĂů;ĨƵŶ͕-inf,inf) 

However, as stated earlier, the  estimator ɐෝ ൌ ഥୖ
ୢమ has a larger mean 

square error(MSE) than doesߪ�ො ൌ തܵ
 Ͷ ; some references stronglyܥ
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suggest  using  ߪො ൌ തܵ
 Ͷ to estimate the standard deviation of normalܥ

populations (Derman &Ross,1997 page 92). 
 
A P P E N D I X    A  
Barltlett's Goodness of fit test for exponential 
distribution 
  There are several tests concerning probability distributions 
�goodness of fit�.  Some of them could be used for all distributions, 

such as Pearson�s chi- squared goodness of fit test.  But there are 
tests developed for a specific distribution .  One of the tests of the  
latter kind is described below.  
 
Bartlett�s test  for exponential distribution 
To deal with the following hypotheses  
HϬ: The distribution is exponential 
Hϭ: The distribution is not exponential 
using Bartlett� test do the followings: 
dĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�Ăƚ�ůĞĂƐƚ�ϮϬ :�ଵ��ǥ ��୰ݎ���� ൒ ʹͲ,  where 

�௜  is the time of the  ith event; calculate the statistic B given by: 

1 1

1 1
2 ln ln

1
1

6

r r

i ii i
r t t

r r
B

r

r

 

               




 

 
which has a chi-squared distribution with r-ϭ�ĚĞŐƌĞĞƐ�ŽĨ�ĨƌĞĞĚŽŵ�
under the null hypothesis.  If B is outside �ሾ���ɖଵିಉ

మ��ǡ୰ିଵ
ଶ ������ɖಉ

మ��ǡ୰ିଵ
ଶ ��ሿ, 

reject HϬ; Ƚ  is the level of significance of the test. 
 

Example A-ϭ 
  dŚĞ�ĨŽůůŽǁŝŶŐ�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϮϬ�ǁĂƐ�ƚĂŬĞŶ�Ĩƌom the life of a 
kind of lamp.  

���� ��� ���� ���� ���� ���� ���� ���� ���� ���� 
���� ���� ���� ���� ��� ��� ��� ���� ���� ���� 
 
/Ɛ�ƚŚĞ�ůŝĨĞ�ŽĨ�ƚŚĞ�ůĂŵƉƐ�ĚŝƐƚƌŝďƵƚĞĚ�ǁŝƚŚ�Ϭ͘ϵϱ�ůĞǀĞů�ŽĨ�ĐŽŶĮĚĞŶĐĞ͍� 
If yes, give its mean and its pdf. 
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Solution 
HϬ: The life distribution is exponential 
Hϭ: The life  distribution is not exponential 
The statistic is: 

1 1

1 1
2 ln ln

1
1

6

r r

i ii i
r t t

r r
B

r

r

 

               




 
 

20

1
50.1 20.9 ... 88.6 10.7 836.3ii

t


       
20

1
( ) 50.1 20.9 ... 88.6 10.7 63.9385ii

Ln t Ln Ln Ln Ln


       

836.3 63.94
2×20 Ln -

20 20
19.34

20+1
1+

6 20

B

  
     



 

ɖଵି஑ଶ��ǡ୰ିଵ
ଶ ൌ ���ʹ���ሺͲǤͲͷǡͳͻሻ ൌ ͳͲǤͳͳ͹Ͳ 

ɖ஑
ଶ��ǡ୰ିଵ
ଶ ൌ ���ʹ���ሺͲǤͻͷǡͳͻሻ ൌ ͵ͲǤͳͶͳͷ 

The value of B is inside �ሾ���ɖଵିಉ
మ��ǡ୰ିଵ

ଶ ൌ ͳͲǤͳ����������ɖಉ
మ��ǡ୰ିଵ
ଶ �ൌ ͵ͲǤͳሿ 

Therefore HϬ is not rejected i.e.  one of the distributions fitting the lifetime 

is the exponential with meanɅ෠ ൌ σ ୲౟మబ౟సభ
ଶ଴ ൌ ଼ଷ଺Ǥଷ

ଶ଴ ؆ ͶͳǤͺʹ    and the density 

function��݂ሺݐሻ ൌ ଵ
ఏ ൈ ݁

ష೟
ഇ ൌ� ଵ

ସଵǤ଼ଶൈ ݁
ష೟

రభǤఴమ. 
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A P P E N D I X    B :Testing Hypothesis concerning  
exponential distribution mean(ીሻͳ 
   The development of this hypothesis test is based on the fact that n 
items are placed on test and the test is truncated at the rth 

failure(r<n); and 
ଶ௥ఏ෡
ఏ   is distributed as  a chi-square ǁŝƚŚ�Ϯƌ�ĚĞŐƌĞĞ�ŽĨ�

freedom;  
Consider the  hypotheses 
�଴ǣ Ʌ ൌ Ʌ଴, 
Hϭ : ߠ ൐  .଴ߠ
Then for a significance level of�Ƚ, the probability of accepting Ho is 

ܲܽ ൌ ��ቆʹߠݎ෠ߠ଴ ൑ ߯ఈǡଶ௥ଶ ቤߠ ൌ ଴ቇߠ ൌ ͳ െ  ߙ

�����  

෠ߠ   is MTTF for the product  given by ;<ĂƉƵƌ�Θ�>ĂŵďĞƌƐŽŶ�͕ϭϵϳϳ�ƉĂŐĞ�
ϮϱϮͿ 
 

෠ߠ ൌ σ ௜ݔ ൅ ሺ݊ െ ሺ௥ሻ௥௜ୀଵݔሻݎ
ݎ  

������ 
n        : is the sample size 
xi        : time(cycles,�) to ith ĨĂŝůƵƌĞ���ŝсϭ͕Ϯ͕͕͘͘�ƌ 
�ሺ୰ሻ   :the maximum of time (or cycle,�) to failure among the  r failed 
items ( ) 
 
The procedure for performing the test is :   
Take a random sample of size n,   
Place  the devices in the sample  on test without replacement,  
When  the rth failed item( )happened, stop the test, 

Calculate the statistic  ߯଴ଶ ൌ ଶ௥ఏ෡
ఏబ � 

Reject HϬ  ŝĨ�;<ĂƉƵƌ�Θ>ĂŵďĞƌƐŽŶ͕ϭϵϳϳ�ƉĂŐĞ�ϮϲϰͿ� 
߯଴ଶ ൐ ߯ఈǡଶ௥ଶ . 

The  rejection criteria for other alternative Hypotheses are given in 
the following table : 
 

                                                           
ϭ   �ǆƚƌĂĐƚĞĚ�ĨƌŽŵ�<ĂƉƵƌ�Θ�>ĂŵďĞƌƐŽŶ�͕ϭϵϳϳ�ƉĂŐĞ�Ϯϲϯ 

r n

r n
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Testing Hypothesis concerning  Exponential Distribution  mean(ࣂሻ 
۶૙ǣ ી ൌ ી૙������������������������������������������������૏૙૛ ൌ ૛ܚી෡

ી૙  

Hϭ Reject HϬ Do not reject HϬ 
 

ߠ ്  ଴ߠ
 

2
0   

2 2

1 , 2 , 22 2
,

r r  


 
  

 

2
0

2 2

1 , 2 , 22 2
,

r r 



 




 
  

 

ߠ ൏  ଴ߠ
 

2 2
0 1 ,2r    

2 2
0 1 , 2[ , )r     

ߠ ൐  ଴ߠ
 

2 2
0 ,2r   

2 2
0 , 20[ , ]r   

 
Note that this test could be used for testing the failure rate of an 
exponential distribution which is  the reciprocal of its mean.  
 
Example B-ϭ 
  Consider the data in the following  table, which represents  an 
ordered sample of cycleƐ� ƚŽ� ĨĂŝůƵƌĞ� ĨŽƌ� ƚŚƌŽƩůĞ� ƌĞƚƵƌŶ� ƐƉƌŝŶŐƐ͘� ϮϬ�
springs were tested under conditions similar to those encountered in 
actual use. The test was truncated at the time of the tenth failure 
ĂŵŽŶŐ��ŶсϮϬ�ƐƉƌŝŶŐƐ.  
 

ϭϬ ϵ ϴ ϳ ϲ ϱ ϰ ϯ Ϯ ϭ i 

Ϯ͕Ϭϵϵ͕ϭϵϵ 

ϭ͕ϮϮϭ͕ϯϵϯ 

ϭ͕Ϭϱϱ͕ϱϮϴ 

ϭ͕Ϭϰϯ͕ϯϬϳ 

ϲϮϲ͕ϯϬϬ 

ϱϯϬ͕ϭϬϬ 

ϰϯϮ͕Ϯϵϴ 

Ϯϳϳ͕ϳϲϭ 

Ϯϰϱ͕ϱϵϯ 

ϭϵϬ͕ϰϯϳ 

Cycles 
to 
failure�
 :(ሺ௜ሻݔ)

Ordered 
 
Suppose the cycle numbers are distributed exponentially and we are 
interested in testing whether the mean of this distribution is greater 
ƚŚĂŶ�ϭŵŝůůŝŽŶ�ĐǇcles. Estimate the mean cycle to failure and perform 
the appropriate test with ߙ ൌ ͲǤͲͷǤ 
Answer 

 

6
0

6
1

: 10

: 10

H cycles

H cycles








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ŶсϮϬ�͕ƌсϭϬ 
ሺ௥ሻୀ୫ୟ୶�ሺ௑ሺଵሻǡǥǡ௑ሺ௥ሻሻݔ ൌ ʹǡͲͻͻǡͳͻͻ

 
߯଴ଶ ൌ ෠ߠݎʹ

଴ߠ  

෠ߠ ൌ σ ሺ௜ሻݔ ൅ ሺ݊ െ ሺ௥ሻ௥௜ୀଵݔሻݎ
ݎ  

Ʌ෠ ൌ ʹͺ͹ͳ͵ͻͳ 
If ߯଴ଶ ൐ ߯ఈǡଶ௥ଶ    HϬ is rejected 

 

Then HϬ is   strongly  rejected and we conclude 
ߠ ൐ ͳͲͲͲǡͲͲͲ�ܿݏ݈݁ܿݕǤ   
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

2 2
0 0.05,206

(2)(10)(2871391)
57.4 31.41

10
    
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Exercises 
  4.1 
If the probability of observing a defective in a sample is 0.025, what is the 
probability of observing 15 defectives in a sample of size fifty?  

-Using binomial distribution 
-Using Poisson Approximation 
-Using normal approximation 

  4.2 
A random  sample of size380 was taken from a production process with 3% 
defective proportion.  What is the probability of  observing 15 defective 
products in the sample using 

a) normal approximation 
b) Poisson  approximation 
Which approximation is better? Why? 

   4.3 
A  batch contains 4 defective and 56 non-defective�products�   A sample of 
size 5 is selected from this batch, what is the probability of observing 3, 2 
and 1 defective(s) in the sample? What is the probability of observing less 
that 2 defectives in the sample? 
 
  4.4 
The following samples was randomly  taken from a population; using Q-Q 
plot determine if an exponential distribution fits the data? 
0.9106    2.7064    0.2603    0.3373    3.1250   13.8574    4.7871    1.5136    
4.8462    0.6998     0.2442    5.2073    0.2001    2.6728    8.5476    0.6205    
5.9222    4.8475    3.9038    12.5448  
 

If youth but knew, If old age but could,��
Si jeunesse savait, Si vieillesse pouvait,��

(French Proverb) 
 
��
��
��
��
��
��
��
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Chapter 5��
 

Two  Attribute 
Control Charts:        
p  Chart&            
np Chart 

 
��
��
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Chapter ͷ  p    & np  Control Charts 
Aims 
   In this chapter , Ϯ�ĐŽŶƚrol charts used for attributes  i.e. p chart and np 
chart are described.  p-chart is the chart for  fraction rejected as non-
conforming to specifications.  np-chart is the chart for the number of 
defective items in the process.   tŚŝůĞ� � ďŽƚŚ� �ŽĨ� ƚŚĞƐĞ�Ϯ�ĐŚarts could be  
used for monitoring fraction defectives, np chart is used when the sample 
sizes are the same. 

ͷǤͳ�Introduction 
   One the limitation of the control charts introduced earlier is that  they 
could monitor variables(measurable quality characteristics) while many 
quality characteristics can be observed only as attributes.  Attribute 
characteristics are either �good� or �bad.�  In other words, they either 
conform to the prescribed specification  or not.  This chapter and the next  
deal with control charts for attributes, most common of them  are: 
ϭ-p-ĐŚĂƌƚ������Ϯ-np-ĐŚĂƌƚ�����ϯ��-ĐŚĂƌƚ�����ϰ-u-chart     D-chart 
   dŚŝƐ� � ĐŚĂƉƚĞƌ� � ŝŶ� ĐŽŶĐĞƌŶĞĚ�ǁŝƚŚ� ƚŚĞ� � ĮƌƐƚ� Ϯ� ĐŽŶƚƌŽů� ĐŚĂƌƚƐ� �ǁŚŝĐŚ� ĚĞĂů�
with monitoring defectives  in a  production process  and the next chapter  
with ƚŚĞ�ŽƚŚĞƌ�ϯ�charts which  deal with number of defects in the product.  
Before dealing  with these charts let us define  the proportion   defective in 
a sample.  The proportion of defectives in a sample (p)is: 
 
p= 
The number of nonconforming products (defectives) observed in the 
sample divided by  the sample size, 
 
The percent defectives in a sample ൌ ͳͲͲ ൈ � .     
  For a sample of size n drawn from a population or process  with fraction 
defectives p', the mean and standard deviation of  p would be: 

'(1 ')
, ( ) 'p

p p
E p p

n
 

 
. 

ͷǤʹ�p  control chart 
  The most common control chart for attributes is the p-chart.  p is the 
sample the fraction defectives of sample of size, say, n drawn from the 
process.  A simple rule used to determine the sample size for plotting  
control charts used  for  proportion defective( p and np charts )is : 
Start testing the products individually  as  they are produced.  
  Do as much as observations until  the first defective product is produced;  
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The no. of observations until reaching the first defective product, is 
selected  as sample size  n.   
 
 5.2.1  Steps for constructing  a p-chart  
-several  random samples of size  ݊௜ǡ ݅ ൌ ͳǡǥ ǡ ݇ are taken from the 

process,  

-the number of nonconforming products in each subgroup(sample) is 

determined(ri) 

 - pi, proportion of nonconforming items in the i th subgroup is calculated: 

௜݌ ൌ ��௥೔
���௡೔  and  

-a table  like the one below is prepared: 

 
Subgroup  No. 

(i) 
in ௜ ipݎ   

ϭ ϭϬϬ Ϯ Ϭ͘ϬϮ 
Ϯ ϴϬϬ ϰ Ϭ͘ϬϬϱ 
�� ��  ��
K . . . 

 
 
p chart limits �standard( '

0p ) known 
   If 0p' , the standard or aimed-at  proportion defective for the process  is 

given, cĂůĐƵůĂƚĞ�ϯ-sigma control limits as follows,  as it is conventional in Dr. 
Shewhart's  control chart ƚŽ�ĐĂůĐƵůĂƚĞ�ϯ-sigma limits unless otherwise 
stated:  

  0 0
0

3 (1 )
3

p' p'
p'UCL E p

p p n



    , 

'
0( ) pCL E p  ,  

  0 0
0

(1 )3 p' p'
3 p'LCL E p

p p n



    . 

 
If the value obtained for  ܮܥܮ௣  is negative ,set ܮܥܮ௣ ൌ Ͳ. 
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p chart limits �standard( '
0p )unknown 

   If the standard or aimed-at  proportion defective for the process  is not  
given, the mean of proportion defectives of the samples �� p )is substituted 

for '
0p in the above limits: 

3
3

(1 )
(1 )UCL

n n

p p
p p p p   


                          

  CL p  

3
3

(1 )
(1 )LCL

n n

p p
p p p p   


  

where 
�� Total number of defectives observed in all 

subgroups 
r

p
n
 

 
Total number inspected 

 

i i i

i i

n p r
p

n n
  
  ; 

If the sample sizes of the k given subgroups  are equal, then: 

k

p

kn

pn

n

np
pnn iii

i



 

. 
when the sample size is not constant, the control limits would not be 
straight lines, but all comments mentioned regarding in-control and out-of-
control conditions in the discussion of the previous Shewhart's control 
charts are valid here. 
Example ϱ͘ϭ 
  Using the following  table(IshiKawa, ϭϵϴϯ),construct  a suitable control 
chart . 

LCL= 

3 pp  (%) 
UCL= 
3 pp  (%) 

Proportion  
defective 

p(%)��

Number of 
defectives ��

(np)��
Sample 
size(n)��

Subgroup 
No. 

���������� ��.������� ���������
������������ ��.�� ���� ����� ��� �

����� ������� ������ ���� ����� ��� �

����� ������� ��������� ����� ��� �

����� ������� ����� ���� ����� ��� �

����� ������� ����� ���� ����� ��� �

����� ������� ������ ��������� ����
����� ������� ��������������� ��� �
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LCL= 

3 pp  (%) 
UCL= 
3 pp  (%) 

Proportion  
defective 

p(%)��

Number of 
defectives ��

(np)��
Sample 
size(n)��

Subgroup 
No. 

���� ������� ����� ��������� ��� �

����� ������� ������ ���� ����� �����
����� ������� ������ ���� ����� ���� �

����� ������� ���������� ����� ���� �

����� ������� ������ ���� ����� ���� �

����� ������� ���������� ����� ���� �

����� ������� �������������� ���� �

����� ������� ������ ���� ����� ���� �
�� ������� ����� ������� ���� �

����� ������� ����� ��� ����� ���� �

����� ������� ������ ���� ����� ���� �

����� ������� ���������� ����� ���� �

����� ������� ������ ���� ����� ���� �

����� ������� ���������� ����� �����
����� ������� ����� ���� ����� ���� �

������������ ����� ��������� ���� �

����� ������� ����� ��������� �����
������610 5925 Sum 

 
Solution 

Central line����� %)3.10(103.0
5925

610





n

np
p       

3 (1 ) 3 0.103(0.897) 0.912p p    

 
Fig. 5-1  p- chart for Example 5.1ϭ 

 

Upper Limit : 
3 0.912

3 0.103
(1 )

(1 )UCL
n n n

p p
p p p p     


  

Lower limit  :� (1 ) 0.912
3 0.103

P P
LCL P

n n


   

 

                                                           
ϭ�With thanks to Mrs Hosna Khazad, former student of Dept. Of Industrial Eng. of 
the college of Engineering of  Shahid Bahonar University of Kerman, Iran 
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  The limits for each subgroup depends on the subgroup size.  Therefore the upper 
and lower  limits of the chart are not straight lines.  The calculated limits  and p for 
each subgroup are in the above table and chart is shown ŝŶ�&ŝŐ͘�ϱ-ϭ͘ 
   �Ɛ�ŝƚ� ŝƐ�ĞǀŝĚĞŶƚ��ĨƌŽŵ��&ŝŐ͘�ϱ-ϭ, since the sample sizes are not equal, the control 
limits are not be straight lines and since the points have fallen within the control 
limits and are scattered randomly and no special pattern is observed it is 
concluded  the proportion defectives in the process is  in-control. 
 
Example ϱ͘Ϯ   
  Calculate the ϯ-sigma limits of p-chart  for the data given in the following 
table. 
Solution 
The control limits of each subgroup is calculated as follows: 
 

3p pUCL p    

3p pLCL p    

36
0.05

720

np
p

n
  


 

 
3 (1 )

3 p

p p

n



  

 3 1 3 0.05 0.95 3 0.0475 0.65p p      �� 
 
The limits and p for each subgroup based on the above formulae  are  
shown in the following table ��  

Hour Sample 
size(n)��

No of 
defectives 

(np)��
ͳ
ξ݊ p 

௣ߪ͵ ൌ 

ሺξ
ൈ p

p

p

UCL

3
�� LCLp��

ҧ݌= െ ��௣ߪ͵
��� ��� � ��� ������ � ������ ������� �������� � 
�� � ��� � ��� ����� � ����� � ������ ������� � � 
�� � ��� � �� � ������ �� � ����� � ������� � � 
�� � ��� � �� � ������� ����� � ������ � ������� � � 
�� � ��� � �� � ������ � �� � ������ � ������� � � 
�� � ��� � �� � ������ � ����� � ������ � �������� � 
�� � ��� � �� � ����� � �� � ����� � ������� � � 
�� � ��� � �� � ������ � ����� � ���� � ������� � � 
�� � ��� � �� � ������ � ����� � ����� � ������� � � 
��� � ��� � �� � ������ � ����� � ����� � ������� � � 
��� � ��� � �� � ������ � ����� � ������ � ������� � � 
��� � ��� � �� � ������ � ����� � ������ � �������� � 
��� � ��� � �� � ������ � ����� � ������ � ������� � � 
��� � ��� � �� � ������� �� � ������ � ������� � � 
��� � ��� � �� � ������ � ����� � ������ � ������� � � 
���� �� � ���� � ����� ������ � 

sum ��� 
36

np


 36
0.05

720

np
p

n
  


�������͵ඥ݌ҧሺͳ െ �ҧሻ݌ ൌ ͲǤ͸ͷ 
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The following figure shows the corresponding  p-chart. 

 

 

Fig. 5-2  p- chart for Example 5.2ϭ 
End   of    Example   ϱ͘Ϯ. 
 
The results and decisions based on the p-chart��
   After constructing a control chart for monitoring the proportion 
defectives of a process, some results could be obtained including the 
following: 
ϭͿ 
   Detecting the subgroups falling outside the control limit; searching for 
and resolving the causes if possible. The causes may be attributable to such 
factors as a specific machine, worker or group of workers, a new batch of 
raw materials, a new supplier, a new method, to name a few possibilities. 
ϮͿ 
  Deciding on the status of the proportion defectives of the process; 
whether it is in-control or out-of-control. 
ϯͿ� 
  Estimating the percent defectives of the process.  If there are no sign of 
out control in the p-chart , ݌ҧ is the best estimate of mean number 
ĐŽŶĨŽƌŵŝƟĞƐ�ƉĞƌ�ƉƌŽĚƵĐƚ� ŝŶ� ƚŚĞ�ƉƌŽĐĞƐƐ;ĞǆƚƌĂĐƚĞĚ� ĨƌŽŵ��ĞƐƚĞƌĮĞůĚ� ͕ϭϵϵϬ͕�
ƉĂŐĞ�ϭϴϱͿ 
ϰͿ 
  Decision on the control limits for future use. 
 
The following g example  illustrates the p-chart and the decisions. 
 
 

                                                           
ϭ�With thanks to Mr. Ali Maghsoudi,  student of Dept. Of Industrial Eng. of the 
college of Engineering of  Shahid Bahonar University of Kerman, Iran 
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Example 5. 3  (An extensive  example ((Example 4-3 Grant and Leavenworth,1988, page 245) 
ILLUSTRATION OF CALCULATIONS NECESSARY FOR CONTROL CHART 
FOR FRACTION DEFECTIVE  
Facts of the Case 
 

  dŚŝƐ� ĞǆĂŵƉůĞ�ĂƉƉůŝĞƐ� ƚŽ� Ă�ϰ-ŵŽŶƚŚ� ƌĞĐŽƌĚ�ŽĨ�ĚĂŝůǇ� ϭϬϬй� ŝŶƐƉĞĐƟŽŶ�ŽĨ� Ă�
single critical quality characteristic of a part for an electrical device. It is 
intended chiefly as an illustration of how control limits are calculated with 
variable production, and of the setting and revision of standard values for 
fraction rejected.  
  When, after a change in design, the production of this part "was started 
early in June, the daily fraction defective was computed and plotted on a 
chart. At the end of the month, the average fraction defective p was 
computed. Trial control limits were computed for each point.  A standard 
value of fraction defective p' was then established to apply to future 
production. During July new control limits were computed and plotted 
daily based on the number of parts n inspected during the day. A single set 
of control limits was established for August, based on the estimated 
average daily reduction. At the end of August, a revised p' was computed 
to apply to September, and the control chart was continued during 
September with this revised value.  
 
Calculation of trial control limits 
  Table ϱ-ϭ shows the number inspected and the number rejected as 
defective each day during June. The fraction defective each day is the 
number of parts rejected divided by the number inspected that day. For 
ĞǆĂŵƉůĞ͕�ĨŽƌ�:ƵŶĞ�ϲ, �� ൌ ଷଵ

ଷଷହ଴ ൌ ͲǤͲͲͻ͵ с�Ϭ͘ϵϯ%.  
  At the end of the month, the average fraction defective p  is computed.  
It should be emphasized that the correct way to calculate p  is to divide 
the total number rejected in the period by the total number of parts 
inspected during that period. Whenever the subgroup size (in this case, the 
daily number inspected) is not constant, it is incorrect to calculate the 
simple  average of݌௜values.         The standard deviation of the fraction 
rejected was calculated based on this value of p сϬ͘Ϭϭϰϱ͘� �EŽƚĞ� ƚŚĂƚ� ƚŚĞ�

value of  3 (1 )p p was calculated only once  to apply to all calculations 

ŽĨ�ƚŚĞ�ĐŽŶƚƌŽů�ůŝŵŝƚƐ͘��dŚƵƐ�ĨŽƌ�:ƵŶĞ�ϲ͕���േ͵ߪ௣ ൌ�േ ଴Ǥଷହ଼଺
ξଷଷହ଴ ൌ േͲǤͲͲ͸ʹǤ 

 The daily values of pi and the control limits for each day are shown in Fig. 
ϱ-ϯ͘ϭ ͘���/Ŷ�ƚŚŝƐ�ĮŐƵƌĞ͕�ƉĞƌ�ĐĞŶƚ�ƌĞũĞĐƚĞĚ�;ůϬϬƉͿ�ƌĂƚŚĞƌ�ƚŚĂŶ fraction  rejected, 
has been plotted.  
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Table 5.1  
Calculation of the trial control limits of p chart for June.  
Data on a single quality characteristic of a part of an 
electrical device 
 

Date ni 
Number 
rejected 

�r� 
pi��

௣ߪ͵ ൌ 

ሺ ͳඥ݊௜ሻ ൈ ͵ඥ݌ҧሺͳ െ ҧሻ� p݌

p

p

UCL

3


 

LCLp��
ҧ݌= െ  ௣ߪ͵

June  ϲ ϯϯϱ
Ϭ 

ϯϭ Ϭ͘ϬϬϵϯ Ϭ͘ϬϬϲϮ Ϭ͘ϬϮϬϳ Ϭ͘ϬϬϴϯ 
ϳ ϯϯϱ

 
ϭϭϯ Ϭ͘Ϭϯϯϳ Ϭ͘ϬϬϲϮ Ϭ͘ϬϮϬϳ Ϭ͘ϬϬϴϯ 

ϴ ϭϱϬϵ Ϯϴ Ϭ͘Ϭϭϴϲ Ϭ͘ϬϬϵϮ Ϭ͘ϬϮϯϳ Ϭ͘ϬϬϱϯ 
ϵ Ϯϭϵ

Ϭ 
ϮϬ Ϭ͘ϬϬϵϭ�� Ϭ͘ϬϬϳϳ Ϭ͘ϬϮϮϮ�� Ϭ͘ϬϬϲϴ 

ϭϭ Ϯϲϳϴ ϯϱ Ϭ͘Ϭϭϯϭ Ϭ͘ϬϬϲϵ�� Ϭ͘ϬϮϭϰ Ϭ͘ϬϬϳϲ 
ϭϮ ϯϮϱϮ ϲϴ Ϭ͘ϬϮϬϵ Ϭ͘ϬϬϲϯ�� Ϭ͘ϬϮϬϴ Ϭ͘ϬϬϴϮ 
ϭϯ ϰϲϰ

 
ϯϯϵ Ϭ͘ϬϳϯϬ Ϭ͘ϬϬϱϯ Ϭ͘Ϭϭϵϴ Ϭ͘ϬϬϵϮ 

ϭϰ ϯϳϴ
 

ϭϮ Ϭ͘ϬϬϯϮ Ϭ͘ϬϬϱϴ Ϭ͘ϬϮϬϯ Ϭ͘ϬϬϴϳ 
ϭϱ Ϯϵϵ

 
ϯ Ϭ͘ϬϬϭϬ Ϭ͘ϬϬϲϲ Ϭ͘ϬϮϭϭ Ϭ͘ϬϬϳϵ 

ϭϲ ϯϯϴϮ ϭϳ Ϭ͘ϬϬϱϬ�� Ϭ͘ϬϬϲϮ Ϭ͘ϬϮϬϳ Ϭ͘ϬϬϴϯ 
ϭϴ ϯϲϵϰ ϭϰ�� Ϭ͘ϬϬϯϴ Ϭ͘ϬϬϱϵ Ϭ͘ϬϮϬϰ Ϭ͘ϬϬϴϲ 
ϭϵ ϯϬϱϮ ϴ Ϭ͘ϬϬϮϲ Ϭ͘ϬϬϲϱ Ϭ͘ϬϮϭϬ�� Ϭ͘ϬϬϴϬ 
ϮϬ ϯϰϳϳ Ϯϳ Ϭ͘ϬϬϳϴ Ϭ͘ϬϬϲϭ Ϭ͘ϬϮϬϲ Ϭ͘ϬϬϴϰ 
Ϯϭ ϰϬϱ

 
ϰϰ Ϭ͘ϬϭϬϵ Ϭ͘ϬϬϱϲ Ϭ͘ϬϮϬϭ Ϭ͘ϬϬϴϵ 

ϮϮ ϯϬϰϮ ϳϬ Ϭ͘ϬϮϯϬ Ϭ͘ϬϬϲϱ Ϭ͘ϬϮϭϬ Ϭ͘ϬϬϴϬ 
Ϯϯ ϭϲϮϯ ϭϮ Ϭ͘ϬϬϳϰ Ϭ͘ϬϬϴϵ�� Ϭ͘ϬϮϯϰ Ϭ͘ϬϬϱϲ 
Ϯϱ ϵϭϱ ϵ Ϭ͘ϬϬϵϴ Ϭ͘Ϭϭϭϵ Ϭ͘ϬϮϲϰ Ϭ͘ϬϬϮϲ 
Ϯϲ ϭϲϰϰ ϭ Ϭ͘ϬϬϬϲ Ϭ͘ϬϬϴϴ Ϭ͘ϬϮϯϯ Ϭ͘ϬϬϱϳ 
Ϯϳ ϭϱϳϮ ϮϮ Ϭ͘ϬϭϰϬ Ϭ͘ϬϬϵϬ Ϭ͘ϬϮϯϱ Ϭ͘ϬϬϱϱ 
Ϯϴ ϭϵϲ

 
ϯ�� Ϭ͘ϬϬϭϱ Ϭ͘ϬϬϴϭ Ϭ͘ϬϮϮϲ Ϭ͘ϬϬϲϰ 

Ϯϵ ϮϰϰϬ ϯ Ϭ͘ϬϬϭϮ Ϭ͘ϬϬϳϯ�� Ϭ͘ϬϮϭϴ�� Ϭ͘ϬϬϳϮ 
ϯϬ ϮϬϴϲ ϭ Ϭ͘ϬϬϬϱ Ϭ͘ϬϬϳϵ�� Ϭ͘ϬϮϮϰ Ϭ͘ϬϬϲϲ��
Totals�� ϲϬϲϴϬ ϴϴϬ     

i 880total number rejected
0.0145

totalnumber inspected
60688i

r

n
p    




3 p(l - p) 3 0.0145(l - 0.145) 0.3586   

 
   Because per cent defective is more readily understood by both shop and 
administrative personnel, it is usually desirable for fraction rejected to be 
converted to per cent rejected for all plotting. 
 
Determination of aimed-at value of fraction rejected ܘ૙ᇱ 
   If all the points fall within the trial control limits, the aimed-at value ࢖૙ᇱ   
may be assumed to be equal to p .  
  Here many points fell outside the trial control limits. In such cases, the 
decision as to the value of ࢖૙ᇱ  to be used calls for judgment as to what 
process average fraction rejected can be maintained in the future, 
provided the occasional assignable causes of bad quality can be eliminated. 
An aid to such judgment may be obtained by computing a revised value of 
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p , eliminating the days on which p fell 
ƚŚĞƐĞ� ĚĂǇƐ͕� :ƵŶĞ�ϳ͕� ϭϮ͕� ϭϯ͕� ĂŶĚ� ϮϮ͕� ĞůŝŵŝŶĂƚĞĚ͕� ƚŚĞ� ƌĞŵĂŝŶŝŶŐ� ŶƵŵďĞƌ� ŽĨ�
ƌĞũĞĐƚƐ� ŝƐ�ϮϵϬ�ĂŶĚ�ƚŚĞ�ƌĞŵĂŝŶŝŶŐ�ŶƵŵďĞƌ� ŝŶƐƉĞĐƚĞĚ� ŝƐ�ϰϲ͕ϯϵϵ͘�dŚĞ�ƌĞ
p  с�ϮϵϬͬϰϲϯϵϵ�с�Ϭ͘ϬϬϲϯ͘��ŌĞƌ�ĐŽŶƐŝĚĞƌĂƟŽŶ�ŽĨ� ƚŚŝƐ�ĂŶĚ�ŽĨ� ƚŚĞ�ƉƌĞǀŝŽƵƐ�

record on similar parts of slightly different design, it was decided to assume 
૙ᇱ࢖  с�Ϭ͘ϬϬϲϱ͘ 
 

Fig 5.3.1  p-control chart 
( after Grant 

 

 
 
Calculation of control Limits based on s
   Table ϱ-Ϯ�gives the daily numbers inspected and rejecte
shows the calculation of control limits based on the 
rejected.  
  dŚŝƐ�ĐĂůĐƵůĂƟŽŶ�ĂƉƉĞĂƌƐ�ƚŽ�ďĞ�ĂůŵŽƐƚ�ŝĚĞŶƟĐĂů�ǁŝƚŚ�ƚŚĂƚ�ƐŚŽǁŶ�ŝŶ�dĂďůĞ�ϱ
ϭ͘�dŚĞ�ǀĂůƵĞ�ŽĨܘ�૙ᇱ  is used in the calculation of limits in Table
�ҧ ǁĂƐ�ƵƐĞĚ݌ ŝŶ�dĂďůĞ�ϱ-ϭ͘��dŚĞ�ƉƌĂĐƟĐĂů�ĚŝīĞƌĞŶĐĞ� ŝƐ�ƚŚĂƚ�ǁŚĞƌĞ�
no control limits can be computed until 
the period. Where a standard or aimed at value 
advance, the limits can be computed each day and drawn on the control 
chart as the day�s point is plotted. In this way, the control chart provides a 

Control 

ϭϱϯ 

 

, eliminating the days on which p fell above the upper control limit. With 
ƚŚĞƐĞ� ĚĂǇƐ͕� :ƵŶĞ�ϳ͕� ϭϮ͕� ϭϯ͕� ĂŶĚ� ϮϮ͕� ĞůŝŵŝŶĂƚĞĚ͕� ƚŚĞ� ƌĞŵĂŝŶŝŶŐ� ŶƵŵďĞƌ� ŽĨ�
ƌĞũĞĐƚƐ� ŝƐ�ϮϵϬ�ĂŶĚ�ƚŚĞ�ƌĞŵĂŝŶŝŶŐ�ŶƵŵďĞƌ� ŝŶƐƉĞĐƚĞĚ� ŝƐ�ϰϲ͕ϯϵϵ͘�dŚĞ�ƌĞvised 

с�ϮϵϬͬϰϲϯϵϵ�с�Ϭ͘ϬϬϲϯ͘��ŌĞƌ�ĐŽŶƐŝĚĞƌĂƟŽŶ�ŽĨ� ƚŚŝƐ�ĂŶĚ�ŽĨ� ƚŚĞ�ƉƌĞǀŝŽƵƐ�
record on similar parts of slightly different design, it was decided to assume 

 
control chart  for the months  of June and July 

rant & Leavenwoth,1988 ) 

ion of control Limits based on standard Fraction rejected, ܘ૙ᇱ   
gives the daily numbers inspected and rejected during July and 

shows the calculation of control limits based on the aimed-at fraction 

dŚŝƐ�ĐĂůĐƵůĂƟŽŶ�ĂƉƉĞĂƌƐ�ƚŽ�ďĞ�ĂůŵŽƐƚ�ŝĚĞŶƟĐĂů�ǁŝƚŚ�ƚŚĂƚ�ƐŚŽǁŶ�ŝŶ�dĂďůĞ�ϱ-
is used in the calculation of limits in Table ϱ-Ϯ�ǁŚĞrever 

ϭ͘��dŚĞ�ƉƌĂĐƟĐĂů�ĚŝīĞƌĞŶĐĞ� ŝƐ�ƚŚĂƚ�ǁŚĞƌĞ݌�ҧ is used, 
no control limits can be computed until ݌ҧ is known, i.e. not until the end of 
the period. Where a standard or aimed at value ݌଴ᇱ   is established in 

limits can be computed each day and drawn on the control 
chart as the day�s point is plotted. In this way, the control chart provides a 
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ϭϱϰ 

 

basis for immediate action whenever a point goes outside the control 
limits.  

Establishment of Control Limits Based on Expected Average Subgroup 
Size.  
   �ůƚŚŽƵŐŚ� ƚŚĞ� ĐŽƌƌĞĐƚ� ƉŽƐŝƟŽŶ� ŽĨ� ϯ-sigma control limits on a p chart 
depends on subgroup size (in this case, a subgroup is the number of parts 
inspected each day), the calculation of new limits for each new subgroup 
consumes some time and effort. Where the variation in subgroup size is 
not too great (for example, where the maximum and minimum subgroups 
ĂƌĞ� ŶŽƚ� ŵŽƌĞ� ƚŚĂŶ� Ϯϱй� ĂǁĂǇ� ĨƌŽŵ� ƚŚĞ� ĂǀĞƌĂŐĞͿ� ŝƚ� ŽŌĞŶ� ŵĂǇ� ďĞ� ŐŽŽĚ�
enough for practical purposes to establish a single set of control limits 
based on the expected average subgroup size.  In this way, limits may be 
established at the start of a period (for instance, a month) and projected 
ahead for the entire period. 
   

Table 5-2 Computation of daily control limits based on 0p'
for JulyData on a single quality characteristic of a part of an electrical device 
 

Date n i
 

Number 
rejected 

�r� 
pi��

in

3

' (1 ' )0 03

p

p p

 



��

UCLp LCLp 

:ƵůǇ���Ϯ ϮϮϮϴ ϰ Ϭ͘ϬϬϭϴ Ϭ͘ϬϬϱϭ�� Ϭ͘Ϭϭϭϲ�� Ϭ͘ϬϬϭϰ 

ϯ ϮϬϴϳ ϵ Ϭ͘ϬϬϰϯ Ϭ͘ϬϬϱϯ Ϭ͘Ϭϭϭϴ Ϭ͘ϬϬϭϮ 
ϱ ϮϬϴϴ ϯ Ϭ͘ϬϬϭϰ Ϭ͘ϬϬϱϯ Ϭ͘Ϭϭϭϴ Ϭ͘ϬϬϭϮ 
ϲ ϭϳϰϲ Ϯ Ϭ͘ϬϬϭϭ Ϭ͘ϬϬϱϴ Ϭ͘ϬϭϮϯ Ϭ͘ϬϬϬϳ 
ϳ ϮϬϳϲ ϭ Ϭ͘ϬϬϬϱ Ϭ͘ϬϬϱϯ Ϭ͘Ϭϭϭϴ Ϭ͘ϬϬϭϮ 
ϵ Ϯϭϲϰ ϭ Ϭ͘ϬϬϬϱ Ϭ͘ϬϬϱϮ Ϭ͘Ϭϭϭϳ Ϭ͘ϬϬϭϯ 
ϭϬ Ϯϴϱϱ ϱ Ϭ͘ϬϬϭϴ Ϭ͘ϬϬϰϱ Ϭ͘ϬϭϭϬ Ϭ͘ϬϬϮϬ 
ϭϭ ϮϱϲϬ ϱ Ϭ͘ϬϬϮϬ Ϭ͘ϬϬϰϴ Ϭ͘Ϭϭϭϯ Ϭ͘ϬϬϭϳ 
ϭϮ Ϯϱϰϱ ϭϰ Ϭ͘ϬϬϱϱ Ϭ͘ϬϬϰϴ Ϭ͘Ϭϭϭϯ Ϭ͘ϬϬϭϳ 
ϭϯ ϭϴϳϰ ϭ Ϭ͘ϬϬϬϱ Ϭ͘ϬϬϱϲ Ϭ͘ϬϭϮϭ Ϭ͘ϬϬϬϵ 
ϭϰ ϮϯϮϵ Ϯϰ Ϭ͘ϬϭϬϯ Ϭ͘ϬϬϱϬ Ϭ͘Ϭϭϭϱ Ϭ͘ϬϬϭϱ 
ϭϲ Ϯϳϰϰ ϯϬ Ϭ͘ϬϭϬϵ Ϭ͘ϬϬϰϲ Ϭ͘Ϭϭϭϭ Ϭ͘ϬϬϭϵ 
ϭϳ Ϯϲϭϵ ϳϳ Ϭ͘ϬϮϵϰ Ϭ͘ϬϬϰϳ Ϭ͘ϬϭϭϮ Ϭ͘ϬϬϭϴ 
ϭϴ ϮϮϭϭ ϱ Ϭ͘ϬϬϮϯ Ϭ͘ϬϬϱϭ Ϭ͘Ϭϭϭϲ Ϭ͘ϬϬϭϰ 
ϭϵ ϭϳϰϲ ϭϵ Ϭ͘ϬϭϬϵ Ϭ͘ϬϬϱϴ Ϭ͘ϬϭϮϯ Ϭ͘ϬϬϬϳ 
ϮϬ ϮϲϮϴ Ϯϴ Ϭ͘ϬϭϬϳ Ϭ͘ϬϬϰϳ Ϭ͘ϬϭϭϮ Ϭ͘ϬϬϭϴ 
Ϯϭ Ϯϯϲϲ ϱ Ϭ͘ϬϬϮϭ Ϭ͘ϬϬϱϬ Ϭ͘Ϭϭϭϱ Ϭ͘ϬϬϭϱ 
Ϯϯ Ϯϵϱϰ Ϯϯ Ϭ͘ϬϬϳϴ Ϭ͘ϬϬϰϰ Ϭ͘ϬϭϬϵ Ϭ͘ϬϬϮϭ 
Ϯϰ Ϯϱϴϲ ϯϮ Ϭ͘ϬϭϮϰ Ϭ͘ϬϬϰϳ Ϭ͘ϬϭϭϮ Ϭ͘ϬϬϭϴ 
Ϯϱ ϮϳϵϬ ϴ Ϭ͘ϬϬϮϵ Ϭ͘ϬϬϰϲ Ϭ͘Ϭϭϭϭ Ϭ͘ϬϬϭϵ 
Ϯϲ Ϯϵϲϴ ϯϬ Ϭ͘ϬϭϬϭ Ϭ͘ϬϬϰϰ Ϭ͘ϬϭϬϵ Ϭ͘ϬϬϮϭ 
Ϯϳ ϯϭϬϬ ϭϯ Ϭ͘ϬϬϰϮ Ϭ͘ϬϬϰϯ Ϭ͘ϬϭϬϴ Ϭ͘ϬϬϮϮ 
Ϯϴ ϭϯϱϵ ϰ Ϭ͘ϬϬϮϵ Ϭ͘ϬϬϲϱ Ϭ͘ϬϭϯϬ Ϭ͘ϬϬϬϬ 
ϯϬ ϯϵϰϬ ϯϵ Ϭ͘ϬϬϵϵ Ϭ͘ϬϬϯϴ Ϭ͘ϬϭϬϯ Ϭ͘ϬϬϮϳ 
ϯϭ ϯϭϯϴ ϭϭ Ϭ͘ϬϬϯϱ Ϭ͘ϬϬϰϯ Ϭ͘ϬϭϬϴ Ϭ͘ϬϬϮϮ 

Total ϲϭϳϬϭ ϯϵϯ     
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Table 5-3 Record of daily fraction rejected with control limits 
computed on daily production and aimed-at value of࢖�૙ƍ  
Date n i

 
Number 
rejected 

�r� 
pi�� Date n i

 
Number 
rejected 

�r� 
pi��

+ ϭ Aug 
� 

ϯϬϲϴ ϲ Ϭ͘ϬϬϮϬ ++ϭ Sept  
 ϭ^ĞƉƚ�� 

Ϯϱϯϵ ϯ Ϭ͘ϬϬϭϮ 
Ϯ ϳϳϲ ϯ Ϭ͘ϬϬϯϵ ϯ ϮϰϮϱ ϭϲ Ϭ͘ϬϬϲϲ 
ϯ ϮϬϴϲ ϭϲ Ϭ͘ϬϬϳϳ ϰ ϭϱϯϳ ϵ Ϭ͘ϬϬϱϵ 
ϰ ϯϲϱϮ ϭϬ Ϭ͘ϬϬϮϳ ϱ ϮϴϱϮ ϭϳ Ϭ͘ϬϬϲϬ 
ϲ ϮϲϬϲ ϯ Ϭ͘ϬϬϭϮ ϲ Ϯϵϱϯ ϭϲ Ϭ͘ϬϬϱϰ 
ϳ�� Ϯϭϱϵ Ϯϭ Ϭ͘ϬϬϵϳ ϳ Ϯϲϰϵ ϱ Ϭ͘ϬϬϭϵ 
ϴ Ϯϳϰϱ Ϯϳ Ϭ͘ϬϬϵϴ ϴ Ϯϴϯϱ ϰ Ϭ͘ϬϬϭϰ 
ϵ ϮϲϬϲ ϯ Ϭ͘ϬϬϭϮ ϭϬ ϮϳϱϮ ϲ Ϭ͘ϬϬϮϮ 
ϭϬ Ϯϭϱϵ Ϯϭ Ϭ͘ϬϬϵϳ ϭϭ ϴϵϮ ϭ Ϭ͘ϬϬϭϭ 
ϭϭ Ϯϳϰϱ ϮϮ Ϭ͘ϬϬϴϬ ϭϮ ϯϭϴϲ ϳ Ϭ͘ϬϬϮϮ 
ϭϯ ϯϭϭϰ ϯϬ Ϭ͘ϬϬϴϬ ϭϯ Ϯϲϰϲ ϱ Ϭ͘ϬϬϭϵ 
ϭϰ ϭϳϲϴ ϭϴ Ϭ͘ϬϭϬϮ ϭϰ Ϯϳϭϰ ϰ Ϭ͘ϬϬϭϱ 
ϭϱ ϯϮϬϴ Ϯϵ Ϭ͘ϬϬϵϬ ϭϱ Ϯϴϳϴ ϱ Ϭ͘ϬϬϭϳ 
ϭϲ ϮϲϮϵ Ϯ Ϭ͘ϬϬϬϴ ϭϳ Ϯϯϴϰ ϲ Ϭ͘ϬϬϮϱ 
ϭϳ�� ϯϱϳϲ ϵ Ϭ͘ϬϬϮϱ ϭϴ Ϯϲϯϵ ϱ Ϭ͘ϬϬϭϵ 
ϭϴ ϮϮϲϮ ϭϱ Ϭ͘ϬϬϲϲ ϭϵ ϯϭϲϬ ϳ Ϭ͘ϬϬϮϮ 
ϮϬ ϯϮϵϰ ϱ Ϭ͘ϬϬϭϱ ϮϬ ϭϴϵϱ ϭϭ Ϭ͘ϬϬϱϴ 
Ϯϭ ϯϬϮϲ ϱ Ϭ͘ϬϬϭϳ Ϯϭ ϰϮϴϳ ϭϯ Ϭ͘ϬϬϯϬ 
ϮϮ Ϯϳϭϯ ϭϬ Ϭ͘ϬϬϯϳ ϮϮ Ϯϵϭϳ ϯ Ϭ͘ϬϬϭϬ 
Ϯϯ Ϯϲϴϳ Ϯϰ Ϭ͘ϬϬϴϵ Ϯϰ Ϯϰϳϵ ϭ Ϭ͘ϬϬϬϰ 
Ϯϰ ϯϴϮϰ Ϯϯ Ϭ͘ϬϬϲϬ Ϯϱ ϭϵϵϭ Ϯ Ϭ͘ϬϬϭϬ 
Ϯϱ ϯϮϲϱ ϭϮ Ϭ͘ϬϬϯϳ Ϯϲ ϯϮϴϬ ϭϬ Ϭ͘ϬϬϯϬ 
Ϯϳ ϭϮϬϱ ϭϰ Ϭ͘Ϭϭϭϲ�� Ϯϳ Ϯϭϵϱ ϭϱ Ϭ͘ϬϬϲϴ 
Ϯϴ ϯϬϯϱ ϳ Ϭ͘ϬϬϮϯ Ϯϴ ϮϱϳϬ ϯ Ϭ͘ϬϬϭϮ 
Ϯϵ Ϯϳϵϯ ϲ Ϭ͘ϬϬϮϭ Ϯϵ ϯϯϮϯ ϯ Ϭ͘ϬϬϬϵ 
ϯϬ ϯϮϵϱ ϭϰ Ϭ͘ϬϬϰϮ     
ϯϭ ϯϮϮϳ ϭϴ Ϭ͘ϬϬϱϲ     

Total ϳϯϱϮϯ�� ϯϳϯ  Total ϲϱϵϳϴ ϭϳϳ  

+For August: 
�ƐƟŵĂƚĞĚ�ĂǀĞƌĂŐĞ�ĚĂŝůǇ�ƉƌŽĚƵĐƟŽŶ�сϮϲϬϬ 

Aimed-at fraction rejected 
'
0 .0065p 

 

͵ɐ୮ ൌ ඨ�଴ᇱ ሺͳ െ �଴ᇱ ሻ� ൌ 

0

0

0.0065 (1 0.0065)
3 0.0047

'
UCL =p +3ó =0.0065+0.0047=0.0112

p

'
LCL =p -3ó =0.0065-0.0047=0.0018

p

p

p

n

 


 

Average daily production for August 
73523

23 =2723 

For August p =
373

.0051
73523

  

��For September 
�ƐƟŵĂƚĞĚ�ĂǀĞƌĂŐĞ�ĚĂŝůǇ�ƉƌŽĚƵĐƟŽŶ�сϮϳϬϬ 
Aimed- at fraction rejected '

0 .0051p   

3 0.0041p   

UCL =0.0051+0.0041=0.0092
p

LCL =0.0065-0.0047=0.0010
p

 

   
At the end of July the situation was reviewed to consider the possibility of 
doing this. It was decided that daily output was well enough stabilized to 
justify the use of a single set of control limits during August. Average daily 
ƉƌŽĚƵĐƟŽŶ�ĚƵƌŝŶŐ�:ƵůǇ�ŚĂĚ�ďĞĞŶ�ϲϭϳϬϭͬϮϱ�с�Ϯϰϲϴ͘�dŚĞ�ĞƐƟŵĂƚĞĚ�ĂǀĞƌĂŐĞ�
ĚĂŝůǇ�ŽƵƚƉƵƚ�ĚƵƌŝŶŐ�DŽŶƚŚ�ŽĨ��ƵŐƵƐƚ�ǁĂƐ�ϮϲϬϬ͖� ƚŚŝƐ�ǁĂƐ�ĂƐƐƵŵĞĚ�ĂƐ� ƚŚĞ�
value of n for calculation of control limits. As ݌ҧ  during July had been 



                                                         

ϯϵϯͬϲϭϳϬϭ�с�Ϭ͘ϬϬϲϰ͕�ŶŽ�ĐŚĂŶŐĞ�ǁĂƐ�ŵĂĚĞ�ŝŶ�ƚŚĞ�Ăŝŵ
ĐĂůĐƵůĂƟŽŶƐ�ĨŽƌ�ƚŚĞ�ĐŽŶƚƌŽů�ůŝŵŝƚƐ�ĨŽƌ��ƵŐƵƐƚ�ĂƌĞ�ƐŚŽǁŶ�ŝŶ�dĂďůĞ�ϱ
  Whenever control limits are set in this way on an expected average valu
of n, any points on the control chart that are either outside the limits or 
just inside the limits require more critical examination to see whether the 
limits as drawn really apply to these points. Whenever the subgroup size is 
larger than the assumed average value of n, the true limits are inside those 
drawn. Whenever the subgroup size is smaller, the true limits are outside.
  ^ƵĐŚ�Ă�ĐĂůĐƵůĂƟŽŶ�ǁĂƐ�ŵĂĚĞ�ĨŽƌ��ƵŐƵƐƚ�Ϯϳ͕�ǁŚĞŶ�Ɖ�ǁĂƐ� �Ϭ͘Ϭϭϭϲ͘�dŚŝƐ� ŝƐ�
ĂďŽǀĞ� ƚŚĞ� ƵƉƉĞƌ� ĐŽŶƚƌŽů� ůŝŵŝƚ� ŽĨ� Ϭ͘ϬϭϭϮ� ǁŚŝĐŚ� ǁĂƐ� ĐŽŵƉƵƚĞ
ĂƐƐƵŵĞĚ�ĚĂŝůǇ�ƉƌŽĚƵĐƟŽŶ�ŽĨ�Ϯ͕ϲϬϬ͘� ���ƌĞǀŝƐĞĚ�ƵƉƉĞƌ�ĐŽŶƚƌŽů� ůŝŵŝƚ� ĨŽƌ� ƚŚŝƐ�
ĚĂǇ�ďĂƐĞĚ�ŽŶ�ƚŚĞ�ĂĐƚƵĂů�ƉƌŽĚƵĐƟŽŶ�ŽĨ�ϭϮϬϱ�ŝƐ�Ϭ͘Ϭϭϯϰ͘
ƚŚŝƐ�ĚĂǇ�ĂƌĞ�ŝŶĚŝĐĂƚĞĚ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ�;&ŝŐ͘�ϱ͘ϯ
point was actually not out of control.
 
Further Revision of ܘ૙ᇱ 

  During August, the average fraction rejected 

EŽ� ƉŽŝŶƚƐ� ĨĞůů� ĂďŽǀĞ� ƚŚĞ� ƵƉƉĞƌ� ĐŽŶƚƌŽů� ůŝŵŝƚ͘� dŚŝƐ� ǀĂůƵĞ͕� Ϭ͘ϬϬϱϭ͕� ǁĂƐ�
therefore assumed as �଴ᇱ  to apply to September. Control limits for 
September ǁĞƌĞ� ďĂƐĞĚ� ŽŶ� ĂŶ� ĞƐƟŵĂƚĞĚ� ĂǀĞƌĂŐĞ� ƐƵďŐƌŽƵƉ� ƐŝǌĞ� ŽĨ� ϮϳϬϬ͘�

(Daily production during August had been  

^ĞƉƚĞŵďĞƌ� ǁŝƚŚ� ĐĂůĐƵůĂƚĞĚ� ĐŽŶƚƌŽů� ůŝŵŝƚƐ� ĂƌĞ� ƐŚŽǁŶ� ŝŶ� dĂďůĞ� ϱ
ƉůŽƩĞĚ�ŝŶ�&ŝŐ͘�ϱ͘ϯ͘Ϯ.  

Fig 5.3.2 p-chart  for Mon
( after Grant 

The process quality during September improved even more. Although only 
two points fell below the lower control limit during the m
confirmation of the existence of a new better level of qu
an extreme run for eleven points 
central line. For the month, the process average 
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ϯϵϯͬϲϭϳϬϭ�с�Ϭ͘ϬϬϲϰ͕�ŶŽ�ĐŚĂŶŐĞ�ǁĂƐ�ŵĂĚĞ�ŝŶ�ƚŚĞ�Ăŝŵ-at �଴ᇱ   ŽĨ�Ϭ͘ϬϬϲϱ͘��dŚĞ�
ĐĂůĐƵůĂƟŽŶƐ�ĨŽƌ�ƚŚĞ�ĐŽŶƚƌŽů�ůŝŵŝƚƐ�ĨŽƌ��ƵŐƵƐƚ�ĂƌĞ�ƐŚŽǁŶ�ŝŶ�dĂďůĞ�ϱ-ϯ͘� 

Whenever control limits are set in this way on an expected average value 
of n, any points on the control chart that are either outside the limits or 
just inside the limits require more critical examination to see whether the 
limits as drawn really apply to these points. Whenever the subgroup size is 

erage value of n, the true limits are inside those 
drawn. Whenever the subgroup size is smaller, the true limits are outside. 
^ƵĐŚ�Ă�ĐĂůĐƵůĂƟŽŶ�ǁĂƐ�ŵĂĚĞ�ĨŽƌ��ƵŐƵƐƚ�Ϯϳ͕�ǁŚĞŶ�Ɖ�ǁĂƐ� �Ϭ͘Ϭϭϭϲ͘�dŚŝƐ� ŝƐ�
ĂďŽǀĞ� ƚŚĞ� ƵƉƉĞƌ� ĐŽŶƚƌŽů� ůŝŵŝƚ� ŽĨ� Ϭ͘ϬϭϭϮ� ǁŚŝĐŚ� ǁĂƐ� ĐŽŵƉƵƚĞd for the 
ĂƐƐƵŵĞĚ�ĚĂŝůǇ�ƉƌŽĚƵĐƟŽŶ�ŽĨ�Ϯ͕ϲϬϬ͘� ���ƌĞǀŝƐĞĚ�ƵƉƉĞƌ�ĐŽŶƚƌŽů� ůŝŵŝƚ� ĨŽƌ� ƚŚŝƐ�
ĚĂǇ�ďĂƐĞĚ�ŽŶ�ƚŚĞ�ĂĐƚƵĂů�ƉƌŽĚƵĐƟŽŶ�ŽĨ�ϭϮϬϱ�ŝƐ�Ϭ͘Ϭϭϯϰ͘ The revised limits for 
ƚŚŝƐ�ĚĂǇ�ĂƌĞ�ŝŶĚŝĐĂƚĞĚ�ŽŶ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ�;&ŝŐ͘�ϱ͘ϯ͘Ϯ) ; they show that the 

ly not out of control.  

During August, the average fraction rejected p was 
ଷ଻ଷ
଻ଷହଶଷсϬ͘ϬϬϱϭ͘ 

EŽ� ƉŽŝŶƚƐ� ĨĞůů� ĂďŽǀĞ� ƚŚĞ� ƵƉƉĞƌ� ĐŽŶƚƌŽů� ůŝŵŝƚ͘� dŚŝƐ� ǀĂůƵĞ͕� Ϭ͘ϬϬϱϭ͕� ǁĂƐ�
to apply to September. Control limits for 

ǁĞƌĞ� ďĂƐĞĚ� ŽŶ� ĂŶ� ĞƐƟŵĂƚĞĚ� ĂǀĞƌĂŐĞ� ƐƵďŐƌŽƵƉ� ƐŝǌĞ� ŽĨ� ϮϳϬϬ͘�

(Daily production during August had been  
଻ଷହଶଷ
ଶ଻ ൌ ʹ͹ʹ͵Ǥ  Daily values for 

^ĞƉƚĞŵďĞƌ� ǁŝƚŚ� ĐĂůĐƵůĂƚĞĚ� ĐŽŶƚƌŽů� ůŝŵŝƚƐ� ĂƌĞ� ƐŚŽǁŶ� ŝŶ� dĂďůĞ� ϱ-ϯ� ĂŶĚ�

 
chart  for Month  of August  and September 

after Grant & Leavenwoth,1988) 
 
 

The process quality during September improved even more. Although only 
two points fell below the lower control limit during the month, 

ence of a new better level of quality was given by 
extreme run for eleven points -ĨƌŽŵ�^ĞƉƚĞŵďĞƌ�ϳ� ƚŽ�ϭϵ�� below the 

central line. For the month, the process average p  ǁĂƐ� ϭϳϳͬϲϱϵϳϴ� = 
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Ϭ͘ϬϬϮϳ͘� dŚŝƐ� ũƵƐƟĮĞĚ� Ă� ĨƵƌƚŚĞƌ� ĚŽǁŶǁĂƌĚ� ƌĞǀŝƐŝŽŶ� ŽĨ� ૙ᇱ࢖   ƚŽ� Ϭ͘ϬϬϮϳ� Ĩor 
October. The data and the control chart for October are not shown here.   
E n d of E x a m p l e ϱ͘ϯ. 
 
Aimed �at process average and necessity for  its revision  
    When plotting daily of weekly p-chart, it has to be noticed whether the 
calculated p is appropriate as the central line.  If all the points fell inside 
the chart, and no special pattern has been formed, the aimed-at  process 
average(࢖૙ᇱ ) is the calculated p .  If, for example, most of the points fall 
below the central line or above it, a revision has to be made on࢖�૙ᇱ Ǥ�  In Fig 
ϱ-ϯ͘ϭ most of the points fell below the central line, and some outside the 
upper limit.  Discarding the  points that  fall  outside and have assignable 
cause, new p is calculated and a new ࢖૙ᇱ  is set.  
 
Tests based on the theory of runs 
   Notice that the tests based on the theory of run, described when 
discussing control charts for variables, are valid for all Dr Shewhart's 
control chart.   

 
ͷǤ͵    np Control Chart 
    np control chart is another control chart used to monitor non-
conforming products.  This chart is an alternative to p-chart, used 
whenever the sample sizes are equal. When sample sizes are unequal, p-
control chart is used for monitoring rejects (non-conforming productcs); 
ŚŽǁĞǀĞƌ�ǁŚĞŶ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞƐ�ĂƌĞ�ĞƋƵĂů͕�ĞŝƚŚĞƌ�ŽĨ�ƚŚĞ�Ϯ�ĐŚĂƌƚƐ�ĐŽƵůĚ�ďĞ�
used.�� 
���If r is the number of non-conforming products in a sample of size n drawn 
from a population or process  with fraction rejected ݌ᇱ and the fraction 
rejected in the sample is p, then 

r=np and  ( ) , ( ) 1E r np Var r np p     . 

The upper and lower control limits for np control chart is given by: 

 ppnpnUCLnp  13   

Central line pn             

 ppnpnLCLnp  13
   

    Since a negative number of rejects is not possible, if the calculated value 
ĨŽƌ�ƚŚĞ�ůŽǁĞƌ�ĐŽŶƚƌŽů�ůŝŵŝƚ�ŝƐ�ŶĞŐĂƟǀĞ͕�ƚŚĞ�ůŝŵŝƚ�ŝƐ�ƐĞƚ�Ăƚ�Ϭ͘ϬϬ͘

 
    If p', the standard  or aimed-at fraction rejected for the process, is not 
given �ത   is substituted for p'.  
    All comments mentioned earlier on  in-control and out -of -control 
conditions  of control charts are valid here.   When no sign of out-of control 
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is observed on the chart, the process mean of nonconformities per unit 
product is  under  control and  �ത   is a good estimate for the mean.  When 
the upper and lower limits are calculated based on the standard value p' 
and there is state of in control, the process mean of nonconformities per 
unit product coincides p'. 
 
Example ϱ͘ϰϭ    
 dĂďůĞ� ϱ-ϰ� ƐŚŽǁƐ� ƚŚĞ� ŶƵŵďĞƌ� ŽĨ� ĚĞĨĞĐƟǀĞƐ� ŝŶ� ϯϬ� ƐƵďŐƌŽƵƉs ŽĨ� ƐŝǌĞ� ϭϬϬ 
drawn from a certain  electroplating process.   Construct a suitable control 
chart.  Is the process operating is in control or out of  control?  
 

Table 5-4 Number of defectives in 30 samples drawn from an 
electroplating process 

 Number 
 of 

defectives 

Sample 
Size 
(ni) 

Sub-
group  

No. 
(i) 

 Number 
 of 

defectiv
es 

Sample 
Size 
(ni) 

Sub-
group  

No. 
(i) 

 Number 
 of 

defectives 

Sample 
Size 
(ni) 

Sub-
group  

No.��
(i) 

�� ��� �� � ��� �� ������ � 
� ��� �� � ��� ����� ��� ���
������ �� � ��� ����� ��� ���
� ��� �� � ��� �� � ��� ���
� ��� �� � ��� �� � ��� � 
������ �� � ��� �� � ��� � 
� ��� �� � ��� �� � ��� � 
� ��� �� � ��� �� � ��� � 
� ��� �� � ��� �� � ��� � 
� ��� �� �� ��� �� � ��� �� 
��� ���� sum       
��� ��� mean       

 
Solution 
The limits for the np control chart: 

3 (1 ) 3 1 4.30 (6.22) (.98) 4.3 6.09 10.39

3 (1 ) 4.3 6.09 0 0

np

np np

UCL np np p np np p

LCL np np p LCL

          

       

129
100 4.30

3000
CL np     

 

In MATLAB the following instructions result in Fig. ϱ͘ ϰ  for this 
example; 

                                                           
ϭ
Extracted from Persian translation of Ishikawa( 1983 )with minor changes. 

� 
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��d�с΀ϭ�����ϲ�����ϱ�����ϱ�����ϰ�����ϯ�����Ϯ�����Ϯ�����ϰ�����ϲ�����Ϯ�����ϭ�����ϯ���ϭ�����ϰ����ϱ�����
ϰ�����ϭ�����ϲ����ϭϱ����ϭϮ�����ϲ�����ϯ�����ϰ�����ϯ�����ϯ�����Ϯ�����ϱ�����ϳ�����ϰ΁͖ A=DATA; 
st = controlchart(A,'charttype'͕΂ΖŶƉΖ΃͕ΖƵŶŝƚΖ͕�ϭϬϬ);fprintf('Parameter 
estimates:  mu = %g, sigma = %g\n',st.mu,st.sigma); xlabel('Sample No.'); 

 
Fig. 5.5 np control chart   for the data of Table 5-4 using MATLAB 
 
   �ĐĐŽƌĚŝŶŐ�ƚŽ�&ŝŐ͘�ϱ-ϰ��ǁŚŝĐŚ�ƐŚŽǁƐ�ƚŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ͕�ƚŚĞ�ƉƌŽĐĞƐƐ�
percent of nonconforming items  is out of control because some 
subgroups have fallen outside the chart. 
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Exercises 
ϱ͘ϭ;�W͘ϳ-ϭ'ƌĂŶƚ�ΘůĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϲϳͿ 
  An electronic company manufactures several types of cathode ray tubes 
on a mass production basis.   During the past month, Type A has caused 
ĐŽŶƐŝĚĞƌĂďůĞ�ĚŝĸĐƵůƚǇ�͘��dŚĞ�ĨŽůůŽǁŝŶŐ�ƚĂďůĞ�ĐŽŶƚĂŝŶƐ�ĚĂƚĂ�ĨƌŽŵ�Ϯϭ�ĚĂǇƐ�ŽĨ�
ƚŚŝƐ�ƚƌŽƵďůŝŶŐ�ƉĞƌŝŽĚ͘� ��ŽŵƉƵƚĞ�ƚŚĞ�ĐĞŶƚƌĂů� ůŝŶĞ�ĂŶĚ�ϯ-sigma control limits 
for a p-ĐŚĂƌƚ�ĨŽƌ�ƚŚŝƐ�ƚƵďĞ�ƉƌŽĐĞƐƐ͘��ϭϬϬ�ƵŶŝƚs are inspected daily. 

 

Day 
fraction 
rejected 

(p) 
Day 

fraction 
rejected 

(p) 

1 0.22 12 0.46��
2�� 0.33 13 0.31��
3 0.24�� 14 0.24 
4�� 0.20 15 0.22 

5�� 0.18 16 0.22 
6�� 0.24 17 0.29 
7 0.24�� 18 0.31 

8 0.29 19 0.21 

9�� 0.18 20 0.26 
10 0.27 21 0.24 
11�� 0.31   

Answer Ϭ͘ϯϵϮ, Ϭ͘ϮϲϬ , Ϭ͘ϭϮϴ   
ϱ͘Ϯ�� 
   To compute  �ത   , it is not always correct to calculate the  regular 
(unweighted ) mean of p's.  To show this, calculate the right value of �ത   for 
the table given below.  Compare this with the regular �ത   .  Why  are they 
different?  Why unweighted index is not a suitable index for proportion 
rejected of the population? 

 
Batch 
No. 

Number 
of 

inspected 

Number 
out of 

specifications 

 
P 

ϭ ϭϮϬϬ ϭϴ Ϭ͘ϬϭϱϬ 
Ϯ ϳϱϬ ϰϬ Ϭ͘Ϭϱϯ 
ϯ ϭϭϱϬ Ϯϲ Ϭ͘ϬϮϯ 
ϰ ϳϱ ϭϱ Ϭ͘ϮϬϬ 
ϱ ϮϮϱ Ϯϯ Ϭ͘ϭϬϮ 

Sum ϮϰϬϬ   
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ϱ͘ϰ ( ϳ-ϰ�'ƌĂŶƚ�ΘůĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϲϴͿ 
   A manufacturer purchases small bolts in cartons that usually contain 
several thousand bolts. Each shipment consists of a number of cartons. As 
ƉĂƌƚ�ŽĨ�ƚŚĞ�ĂĐĐĞƉƚĂŶĐĞ�ƉƌŽĐĞĚƵƌĞ�ĨŽƌ�ƚŚĞƐĞ�ďŽůƚƐ͕�ϰϬϬ�ďŽůts are selected at 
random from each carton and are subjected to visual inspection for certain 
non-ĐŽŶĨŽƌŵŝƟĞƐ͘�/Ŷ��Ă�ƐŚŝƉŵĞŶƚ�ŽĨ�ϭϬ�ĐĂƌƚŽŶƐ͕�ƚŚĞ�ƌĞƐƉĞĐƟǀĞ�ƉĞƌĐĞŶƚĂŐĞƐ�
of rejected bolts in the samples from ƚŚĞ� ϭϬ cartons ĂƌĞ� Ϭ͕� Ϭ͕� Ϭ͘ϱ͕� Ϭ͘ϳϱ͕�
Ϭ͕Ϯ͘Ϭ͕�Ϭ͘Ϯϱ͕�Ϭ͕�Ϭ͘Ϯϱ͕�ĂŶĚ�ϭ͘Ϯϱ͘��ŽĞƐ�ƚŚŝƐ�ƐŚŝƉŵĞŶƚ�ŽĨ�ďŽůƚƐ�ĂƉƉĞĂƌ�ƚŽ�ĞǆŚŝďŝƚ�
statistical control with respect to the quality characteristics examined in 
this inspection? 
 Hint. Plot p-chart ��>�>WсϬ�͕�h�>WсϬ͘ϬϭϲͿ 
ϱ͘ϱ( ϳ͘ϱ'ƌĂŶƚ�ΘůĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϲϴͿ 
    An item ŝƐ�ŵĂĚĞ�ŝŶ�ůŽƚƐ�ŽĨ�ϮϬϬ�ĞĂĐŚ͘�dŚĞ�ůŽƚƐ�ĂƌĞ�ŐŝǀĞŶ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ͘�
dŚĞ�ƌĞĐŽƌĚ�ƐŚĞĞƚ� ĨŽƌ�ƚŚĞ�ĮƌƐƚ�Ϯϱ� ůŽƚƐ� ŝŶƐƉĞĐƚĞĚ�ƐŚŽǁĞĚ�ƚŚĂƚ�Ă� ƚŽƚĂů�ŽĨ�ϳϱ�
items did not conform to specifications.  
a)  
  Determine the trial limits for an np chart. 
b)  
  Assume that all points fall within the control limits. What is your estimate 
of the process average fraction nonconforming ρ୮ ? 
c)  
 /Ĩ� ƚŚŝƐ� ƌĞŵĂŝŶƐ� ƵŶĐŚĂŶŐĞĚ͕� ǁŚĂƚ� ŝƐ� ƚŚĞ� ƉƌŽďĂďŝůŝƚǇ� ƚŚĂƚ� ƚŚĞ� ϮϲƚŚ� ůŽƚ�ǁŝůů�
ĐŽŶƚĂŝŶ� ĞǆĂĐƚůǇ� ϳ� ŶŽŶĐŽŶĨŽƌŵŝŶŐ� ƵŶŝƚƐ͍� dŚĂƚ� ŝƚ� ǁŝůů� ĐŽŶƚĂŝŶ ϳ� Žr more 
nonconforming units? 
Answers: 
 ;ĂͿ�h�>ŶƉсϴ͘ϭϱϳ����>�>ŶƉсϬ���;ď�ͿϬ͘Ϭϭϱ����;ĐͿ��Ϭ͘ϬϮϮ͕�Ϭ͘Ϭϯϰ� 
 
ϱ͘ϲ ;�W͘ϳ-ϲŐƌĂŶƚ�ΘůĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϲϴͿ 
   Daily inspection records are maintained on the production of a special-
ĚĞƐŝŐŶ�ĞůĞĐƚƌŽŶŝĐ�ĚĞǀŝĐĞ͘�ϭϬϬ� ŝƚĞŵƐ have been inspected each day for the 
ƉĂƐƚ�Ϯϭ�ĚĂǇƐ͘���ƚŽƚĂů�ŽĨ�ϱϰϲ�ŝƚĞms failed during a psevere heat stress test. 
dŚĞ�ϰ�ŚŝŐŚĞƐƚ�ĂŶĚ�ůŽǁĞƐƚ��ǀĂůƵĞƐ�ŽĨ�Ɖ�ĂƌĞ͗ 

Highest Lowest 
Ϭ͘ϰϲ Ϭ͘ϭϴ 
Ϭ͘ϯϯ Ϭ͘ϭϴ 
Ϭ͘ϯϭ Ϭ͘ϮϬ 
Ϭ͘ϯϭ Ϭ͘Ϯϭ 

 
a) ĐŽŵƉƵƚĞ�ƚŚĞ�ĐĞŶƚƌĂů�ůŝŶĞ�ĂŶĚ�ϯ-sigma trial control limits for a p chart. Is 
the process operating in control?  
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�ŶƐǁĞƌ͗�Ϭ͘ϯϵϮ�Ϭ͘ϮϲϬ�Ϭ͘ϭϮϴ 
b) Recommend an aimed-at value ĨŽƌ� ƚŚĞ� ŵĞĂŶ� ĂŶĚ� ϯ-sigma limits for 
continued use of the p chart. 
�ŶƐǁĞƌ͗�Ϭ͘ϯϴϬ�Ϭ͘ϮϱϬ�Ϭ͘ϭϮϬ 
ϱ͘ϳ 
   A production process haƐ� ϭй� ĂƐ� ŶŽŶĐŽŶĨŽƌŵŝƚǇ� ƉƌŽƉŽƌƟŽŶ͘� � ^ĞǀĞƌĂů�
ƐĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϮϬϬ�ŚĂǀĞ�ďĞĞŶ�ĚƌĂǁŶ�ĨƌŽŵ�ƚŚŝƐ�ƉƌŽĐĞƐƐ͘ 
a)What is the expected number defective product in each sample? 
b)Calculate the upper control limit for an np chart such that the probability 
of falling a samƉůĞ�ĂďŽǀĞ�ƚŚŝƐ�ůŝŵŝƚ�ŝƐ�ϱй�͘ 
 
ϱ͘ϴ;�W͘ϳ͘ϭϱ'ƌĂŶƚ�ΘůĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϳϬͿ  
   �� ŵĂŶƵĨĂĐƚƵƌĞƌ� ǁŝƐŚĞƐ� ƚŽ� ŵĂŝŶƚĂŝŶ� Ă� ƉƌŽĐĞƐƐ� ĂǀĞƌĂŐĞ� ŽĨ� ϭй�
ŶŽŶĐŽŶĨŽƌŵŝŶŐ� ƉƌŽĚƵĐƚ� Žƌ� ůĞƐƐ͘� ϭϱϬϬ� ƵŶŝƚƐ� ĂƌĞ� ƉƌŽĚƵĐĞĚ� ƉĞƌ� ĚĂǇ͕� ĂŶĚ� Ϯ�
days� runs are combined to form a shipping lot. /ƚ�ŝƐ�ĚĞĐŝĚĞĚ�ƚŽ�ƐĂŵƉůĞ�ϮϱϬ�
units each day and use an np chart to control production.  
;ĂͿ�&ŝŶĚ�ƚŚĞ�ϯ-sigma control limits for this process. 
;ďͿ��ƐƐƵŵĞ� ƚŚĂƚ� ƚŚĞ�ƉƌŽĐĞƐƐ� ƐŚŝŌƐ� ĨƌŽŵ�ϭ� ƚŽ�ϰй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚ͘�
Find the probability that the shift will be detected as the result of the first 
day�s sampling after the shift occurs. 
ϱ͘ϵ 
Three ƐĂŵƉůĞƐ� ŽĨ� ƐŝǌĞ� ϭϬϬ͕ϭϱϬ� ĂŶĚ� ϭϴϬϬ� ŚĂǀĞ� ďĞĞŶ� ĞǆƚƌĂĐƚĞĚ� ĨƌŽŵ� Ă�
process.  What are the upper and lower control limits for a p-chart  with 
aimed-at �଴ᇱ сϮй͘� 

Answer:  

Sample 
No. 

P0

U C L =p

+3óp 
 

0

LCL =p

-3ó pp 
 

ϭ Ϭ͘ϬϲϮ Ϭ 
Ϯ Ϭ͘Ϭϱϰ Ϭ 
ϯ Ϭ͘Ϭϯ Ϭ͘Ϭϭ 

 
 

Learn truthfulness before speaking 
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��
���������͸      C  , u  &  D Control Charts 
 
Aims 

 
  This chapter  deals with  a set of attribute control charts for  monitoring 
non-conformities or defects  in a manufacturing process;  i.e.C chart and u 
chart and D-chart are introduced.  While  both  C and u control charts  are  
used for monitoring  a nonconformity ,C  chart is used when the sample 
sizes are the same.  D-ĐŚĂƌƚ� ŝƐ�Ă�ŵŽĚŝĮĐĂƟŽŶ�ŽĨ�ƚŚĞ�ĮƌƐƚ�Ϯ�ĐŚĂƌƚƐ�ƵƐĞĚ�ƚŽ�
monitor simultaneously several different categories of defects of varying 
importance  in a product. 
 
͸Ǥͳ�C  Control Chart 

              C control chart is an attribute control chart  usually used to monitor 
the  number of one kind of defect or nonconformity in a unit of  product or 
or in a group of items, based on the samples taken from the process at 
given times (hours, shifts, days, weeks, months, etc.); however, this chart  
sometimes allows the practitioner to assign each sample more than one 
kind of defect which are similar.   The suitable distribution for  the  total 
count of a kind of  defect  in an individual  unit  products (or in individual  
samples  of equal size) is Poisson with� mean and variance ɉ and probability 
function:  

 
 .

Pr
!

x e
X x

x

 

 
 

Where 
 ɉ is the mean of the count of  non-conformities per unit.  
 
  The upper and lower control limits for the  C chart  are calculated 
using the  following formulas;  if a negative value for the ��� was 
obtained, replace it with zero. 
 
6.1.1 C-chart limits �standard(C') known 
  If C�, a standard  or aimed-at value for  average  number of  
nonconformities  per sample size(n) is given then,  where n is usually 
ϭ�Žƌ�ĂŶǇ�ĐŽŶƐƚĂŶƚ�ǀĂůƵĞ�ŝŶ�Ăůů�ƐĂŵƉůĞƐ�,: 
���େ ൌ �ᇱ ൅ ͵ξ�ᇱ 
C.L.=��ᇱ 
���େ ൌ �ᇱ െ ͵ξ�ᇱ 
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6.1.2  C-chart limits �C' unknown 
   If  no standard  of aimed-at  value for C�  is available then  
 

c

c

UCL c c

CL c

LCL c c

 



 

3

3

 

where 
 c is the average of observed non-conformities  per sample .  
  when c   has been  used, if all samples fall within the upper and 
lower  limits and no special pattern is observed, conclude  no special 
problem exists the process; otherwise there is a problem or some 
problems within the process which have to be identified.   when C' 
has been used in the calculation  of  the limits, and the above 
conditions are hold, the mean of the  count of the defect or 
nonconformity under study is in-control. 
 
Example 6.1  
  Plot the c chart for the following data: 
 

Date Number 
inspected 

Count of 
defects(C) 

1/1 1 0 
1/2 1 1 
1/3 1 3 

Solution 
  Since  C' is not given, c is used: 

c ൌ ଴ାଵାଷ
ଷ ൌ ͳǤ͵͵      

4 4
3 3 4.8

3 3
CUCL c c    

 
Central line:   1.33c   

0
4 3 4 4 6

3 0
3 33 3

 0.9761C CLCL c c LCL         
 

&ŝŐƵƌĞ�ϲ͘ϭ�ƐŚŽǁƐ�ƚŚĞ�ĐŚĂƌƚ͘ 
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Fig. 6.1 the c chart for Example  6.1. 

 
 
Example 6.2  
  The following table  gives ƚŚĞ� ŶƵŵďĞƌ� Ă� ŬŝŶĚ� ŽĨ� ĚĞĨĞĐƚ� ĨŽƵŶĚ� ŝŶ� ϮϬ�
samples  of the same size drawn from a production process.  Find  c , 
compute trial control  limits and plot a c control chart .  What value of  
aimed-at  number of defects  cϬ, would you suggest for the following 
period? 
 

Number 
of 

Defects 
( c)��

Sample 
No. 

Number 
of 

Defects(c)��
Sample 

No. 

�������������
� �� ����� �

� ��� �� � 
� �� � � 
� �� � � 
� �� � � 
� �� � � 
� �� ���� 
� ��� �� � 
� �� � �� 

ϴϮ Sum 
  

 
 
 



                                               

 
Solution 
  Since the sample sizes are the same
given then c is used instead: 

7 5 ... 3 82
4.1

20 20

3 4.1 3 4.1 1.97 0 0c

c

LCL c c

  
  

        

3 4.1 3 4.1 10.17cUCL c c     
 

dŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ�ĨŽƌ�ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ŝƐ�ŐŝǀĞŶ�ŝŶ�&ŝŐ͘�ϲ͘Ϯ͘
 

Fig 6.2 Control chart for non conformities
  
Since  none of the points is out of the limits and no other special out
control sign is observed, �ത   is a good estimate for average  number of  non
conformities in the process per n (sample size )products.   Furthermore  f
future use the current limits are recommended.
 
ͼǤ͸   u  Control Chart 
   For monitoring the number of def
are unequal, u control chart is used instead 
number of  conformities per unit of the  product in the  i
�୧ ൌ ୡ౟

୬౟  ( or in general  � ൌ ୡ
୬).  Unit of the product could be

square meter, one component etc
every ƐĂǇ�ϱ�ŵ�Žƌ�ϱŵϮ��ĂƐ�ŽŶĞ�ƵŶŝƚ͘���Ƶ�ĐŚĂƌƚ�ŝƐ�ƵƐƵĂůůǇ�ƵƐĞĚ�ǁŚĞŶ�ƚŚĞ�
sample sizes are different; however there is no restriction for using the 
chart when the sample sizes are the  same.  In the latter case the limits 
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sample sizes are the same C chart could be used.  C' is not 
 

4.1

3 4.1 3 4.1 1.97 0 0        
 

3 4.1 3 4.1 10.17       

dŚĞ�ĐŽŶƚƌŽů�ĐŚĂƌƚ�ĨŽƌ�ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ŝƐ�ŐŝǀĞŶ�ŝŶ�&ŝŐ͘�ϲ͘Ϯ͘ 

 
rol chart for non conformities; data of Example 6.2 

he points is out of the limits and no other special out-of- 
ത is a good estimate for average  number of  non- 

conformities in the process per n (sample size )products.   Furthermore  for 
are recommended. 

number of defects in the process, if the sample sizes 
used instead of c chart.  ui  is the 

number of  conformities per unit of the  product in the  ith sample: 
).  Unit of the product could be a meter, a 

square meter, one component etc�  In this chart we are allowed to define 
ƐĂǇ�ϱ�ŵ�Žƌ�ϱŵϮ��ĂƐ�ŽŶĞ�ƵŶŝƚ͘���Ƶ�ĐŚĂƌƚ�ŝƐ�ƵƐƵĂůůǇ�ƵƐĞĚ�ǁŚĞŶ�ƚŚĞ�

sample sizes are different; however there is no restriction for using the 
are the  same.  In the latter case the limits 
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would be straight lines, in the former case each subgroup would have its 
own limits. The upper and lower limits of u chart are calculated as follows: 
 
6.2.1 u chart limits �standard(u') known 
  If ݑᇱ,the standard or aimed-at  number of nonconformities per unit 
ƉƌŽĚƵĐƚ;ϭ�ŵĞƚĞƌ�͕�ŽŶĞ�ĐŽŵƉŽŶĞŶƚ͕͘͘Ϳ,  is  given, then: 
if the standard or aimed-at number of conformities per sample is denoted 

by c', we have �ᇱ ൌ ୡᇱ
୬   and ߪ��௨ ൌ ට௨ᇱ௡    because: 

   
2 2

1 '
( ) ( )

c c
u V ar u V ar c

n n n
          

2

' ' ' '
' ( ) u

c nu u u
u Var u

n n n n
      . 

Then, the limits in this case would be: 

3
'U

i

u
UCL u

n


          

'C L u ����  
3

'U

i

u
LCL u

n


  . 

where �୧ is the size of ith sample. 
when the sample size is not constant, the control limits would not be 
straight lines, but all comments mentioned regarding in-control and out -of 
-control conditions in the discussion of  previous Shewhart control charts 
are valid here. 
 
6.2.2 u-chart limits �u' unknown 
 

If  u'  is not available, �ത calculated  as follows, substitutes  u', 





i

i

n

c
u  

Total observed defects in k samples 
Sum of k sample sizes 

and the control  limits are: 
3

3

p

i

p

i

u
UCL u

n

CL u

u
LCL u

n

 



 

 

when 0 0p pLCL LCL   . 
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  If all points fall within the limits and no special pattern is observed, 
conclude the variations are random and there is no problem in the process 
from the point of view of the number of conformities in the product.  
Otherwise there are problems whose causes have to be detected.   And 
also if u' has been used as a standard value, conclude that the mean of the 
number of the nonconformity under study is according to the given 
standard. 
  In  all Shewhart's  control chart including u chart if the sample sizes are 
unequal, the  control limits would not be straight lines and each sample 
would have its own limits.  If the variation of the sample sizes is not that 
much, a mean sample size( ത݊) could be computed and  a common upper 
and lower control limits be calculated for all the samples, which would be 
straight lines;e.g.  in the case of u chart: 

. ,     
n

uó         3óulimits  control
k

1 in
n uu




k

i

 
 

Example6.3  
  Plot the suitable control chart for the ĨŽůůŽǁŝŶŐ�ϮϬ�ƐĂmples.  Is the 
process in control? 

3

U

i

LCL

u
u

n




��

3

U

i

UCL

u
u

n




��

count of 
the defect 
per meter 

in the 
sample(ݑ௜) 

 

count  of  a 
special defect in 

the sample 
(ܿ௜)��

Sample 
length 

in meter 
(ni) 

Sample 
No. 
( i)��
��
��

������� ��� �� ��� ����
������� ��� �� ��� ��� �
�� ����� ��� ����� ��� �
�� ����� ��� �� ��� ��� �
�� ����� ��� �� ��� �� 
�� ����� ��� �� ����� ��� �
�� ����� ��� �� ����� ����
�� ����� ��� �� ����� ��� �
�� ����� ��� �� ����� ��� �
�� ����� ��� �� ����� �����
�� ����� ��� ������� ���� �
�� ����� ��� �� ����� �����
�� ����� ��� �� ����� ���� �
�� ����� ��� �� ����� ���� �
�� ����� ��� �� ����� ���� �
�� ����� ����  �� ����� ��� 
�� ����� � �� ����������
�� ����� ��� �� ����� ���� �
�� ����� ��� �� ����� ���� �
������� � ������� �����

തݑ ൌ ͹ͷ
ʹͷǤ͵ ൌ ʹǤͻ͸ͷݑ����������ഥ ؆ ͵ 75� �25.3� �Sum 
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Solution 
  Since sample sizes are  different

lower control limits have been calculated using 

ŝŶƚŽ�ƚŚĞ�ĂďŽǀĞ�ƚĂďůĞ͘��&ŝŐƵƌĞ�ϲ-ϯ�ƐŚŽǁƐ�ƚŚĞ�ĐŚĂƌ
outside the limits and no special pattern is observed; therefore the 
variations are random and the proc
the count of the special defect (nonconformity) 
furthermore �ത  can be considered a good estimate of  nonconformities per 
unit in the process. 

              Fig. 6-3 u- chart for the data of 
 
Notice that  
-all comments mentioned regarding in
conditions in the discussion of the previous Shewhart 's control charts are 
valid here. 
-the tests based on the theory of runs, described when discussing control 
charts for variables, are valid for all Dr Shewhart's control chart including c 
chart and u chart.   
  
͸Ǥ͵�Classification of Nonconformities
   Possible defects of a unit product are 
seriousness.  A common  ƉƌŽĐĞĚƵƌĞ�ĚŝǀŝĚĞ�ƚŚĞ�ĚĞĨĞĐƚƐ�ŝŶƚŽ�ϯ�Žƌ�ϰ�ĐůĂƐƐĞƐ
Depending on factors such as

Control 

ϭϳϭ 

 

ample sizes are  different, then for each sample the upper and 

lower control limits have been calculated using �ത ൌ ଻ହ
ଶହǤଷ ؆ ͵ and inserted 

ϯ�ƐŚŽǁƐ�ƚŚĞ�ĐŚĂƌt for u.   No point has fallen 
outside the limits and no special pattern is observed; therefore the 
variations are random and the process is in control from the viewpoint of 

(nonconformity)  per meter of the product; 
can be considered a good estimate of  nonconformities per 

 
chart for the data of Example 6.3 

all comments mentioned regarding in-control and out -of -control 
on of the previous Shewhart 's control charts are 

the tests based on the theory of runs, described when discussing control 
charts for variables, are valid for all Dr Shewhart's control chart including c 

  
on of Nonconformities and their Weights 

unit product are classified according to their 
ƉƌŽĐĞĚƵƌĞ�ĚŝǀŝĚĞ�ƚŚĞ�ĚĞĨĞĐƚƐ�ŝŶƚŽ�ϯ�Žƌ�ϰ�ĐůĂƐƐĞƐ. 

such as the complexity of product a type of 
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classification is used.  Two types of classification of defects  are described 
here: 
 
6.3.1   Three-class Defect Classification 
  The catalogue of standard Mil-STD-ϭϬϱ�� ĐůĂƐƐŝĮĞƐ� ĚĞĨĞĐƚs or 
nonconformities ŝŶƚŽ�ϯ�ĐůĂƐƐĞƐϭ: 
 
ͼǤ͹ǤͷǤͷ  Critical defect 
    A critical defect is a defect that judgment and experience indicate 
it would result in hazardous or unsafe conditions for individuals 
using, maintaining,  or depending upon the product  or a defect that 
judgment and experience indicate is likely to prevent performance of 
the tactical function of a major end item such as a ship, aircraft,  
tank,  missile,  or space vehicle. 
 
ͼǤ͹Ǥͷ͸  Major defect 
   A major defect is a defect, other than critical, that is likely to result 
in failure, or to reduce materially the usability of the unit of product 
for its intended purpose. 
  
ͼǤ͹ǤͷǤ͹  Minor defect 
    A minor defect is a defect that is not likely to reduce materially the 
usability of the unit of product for its intended purpose, or is a 
departure from established standards having little bearing on the 
effective use or operation of the unit.  

 
6.3.2  Four-class Defect  Classification 
   The late ,͘&͘��ŽĚŐĞ�ĐůĂƐƐŝĮĞƐ�ƚŚĞ�ĚĞĨĞĐƚƐ� ŝŶƚŽ�ϰ�ĐůĂƐƐĞƐ as follows            
(Extracted from: Grant & LeavenworƚŚ�͕ϭϵϴϴ, p. Ϯϵϯ and StamatiƐ͕ϮϬϬϯ  ƉĂŐĞϭϳϱ��Ϯ)  
 
ͼǤ͹Ǥ͸Ǥͷ  Class �A� Defects � Very serious. 
This class 
-Will render unit  totally unfit for service;   
-Will surely cause operating failure in service which cannot be readily 
fixed on the job 
-Is likely to cause personal injury or property damage.  

                                                           
1�From Catalogue: MIL-STD-105�Sampling Procedures & Tables for Inspection by Attributes 
ʹStamati,�D.H.2003, 6 Sigma and Beyond: Statistical Process Control, Vol 4 St Lucie Press  
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ͼǤ͹Ǥ͸Ǥ͸  Class �B� Defects � Serious.  
This class 
-Wll probably, but not surely, cause Class A operating failure  
-Will surely cause trouble of a nature less serious than Class A 
operating failure, e.g. adjustment failure, operation below standard, 
etc.  
-will surely cause increased maintenance or decreased life.  
 
ͼǤ͹Ǥ͸Ǥ͹   Class �C� Defects � Moderately serious 
This class 
-May  cause operating failure in service.  
-May cause trouble of a nature less serious than operating failure.  
-Is likely to cause increased maintenance or decreased life.  
-Forms major defects of appearance, finish, or workmanship. 
 
ͼǤ͹Ǥ͸Ǥͺ  Class �D� Defects � Not serious.  
This class  
-Will not cause operating failure of the unit in service.  
-Forms minor defects of appearance, finish or workmanship.  
 
6.3.3  Weighting 
   Once a classification of all defects is established, demerits( weights) may 
then be assigned to each class of defect.  Common weights are  in the 
ƌĂŶŐĞƐ�;Ϭ͕ϭͿ�Žƌ�;ϭ͕ϭϬͿ�Žƌ�;ϭ͕ϭϬϬͿ͘���For example some researchers have used 
ǁĞŝŐŚƚƐ�ϭ for minor defect ͕�ϯ for major and  ϵ�ĨŽƌ critical in  ϯ-class type 
;�ĞƐƚĞƌĮĞůĚ͕ϭϵϵϬ͕�ƉĂŐĞϭϴϵͿ�ĂŶĚ�ǁĞŝŐŚƚ�ϭ͕ϮϬ͕ϰϬ͕ϭϬϬ�in ϰ-class type for class 
D, C, B and A respectively ;'ƌĂŶƚ�ĂŶĚ�ůĞĂǀĞŶ�ǁŽƌƚŚ͕ϭϵϴϴ͕ƉϭŐĞϮϵϰͿ͘�� 

͸ǤͶ�D control chart 
   A demerit control chart (D-ĐŚĂƌƚ� ͿŝƐ� Ă� ŵŽĚŝĮĐĂƟŽŶ� ŽĨ� ƚŚĞ� ĮƌƐƚ� Ϯ�
charts and is used to monitor simultaneously different classes of 
defects of varying importance  in a product. An application of this 
chart is in the field of Total Quality Control.   
   After classifying and weighting the defects, D chart is plotted.  The 
variable defined for this chart is denoted by letter D.  IŶ� Ă� ϯ-class 
type of classification, D for each sample is  given by (BĞƐƚĞƌĮĞůĚ͕ϭϵϵϬ�
page ϭϴϵͿ: 

ܦ ൌ ௖ܹݑ௖ ൅ ௠ܹ௔ݑ௠௔ ൅ ௠ܹ௜ݑ௠௜ 
where 
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uc      Count of critical defects per unit in the sample 

uma  �� Count of major defects per unit in the sample 

umi    Count of minor defects per unit in the sample 

Wc    Weight(penalty) assigned to critical defects 

Wma� Weight assigned to major defects 

Wmi Weight assigned to minor defects 
 

D which is an index of the defect per unit could be called demerit  per unit 
in the sample.  D control chart  plots all demerits per unit product.  
 
6.4.1   D chart   Upper and Lower control limit 
   Depending on whether a standard value for the index of defects in 
the product, denoted by ܦ଴ , is specified or not  Ϯ�ĐĂƐĞƐ�ĂƌĞ�
distinguished below: 
 
ͼǤͺǤͷǤͷ������������limits:ࡰ�૙࢔࢝࢕࢔࢑� 
  For the ϯ-class Type defects, if the standard nonconformities per 
unit for the defects  in the process (i.e. uoc, uoma, uomi )are  known, 
the central line of the control D chart  is computed from: 

௢ܦ ൌ��ୡܿ݋ݑ ൅�୫୧݋ݑ�� ൅�୫ୟ݅�݋ݑ 
and the   limits are calculated from: 
஽ܮܥܷ ൌ 0D ൅ 03 D  

CLൌ ��௢ܦ
஽ܮܥܮ ൌ 0D െ 03 D  

 If ��� < Ϭ���������� ൌ ͲǤ 
where 

uoc The standard nonconformities per unit for the critical defect in the process 

uoma The standard nonconformities per unit for the major defect in the process 

uomi The standard nonconformities per unit for the minor defect in the process 

0D  =
2 2 2

c oc ma oma mi omiw u +w u +w u
=

n
 

 ௢ܦ
=The  standard or aimed-at index per unit product =     
௢ܦ    ൌ �୫୧ݑ଴௠௜ ൅�୫ୟݑ଴௠௔ ൅��ୡݑ଴௖  

 
To enter the ith subgroup into the chart , calculate  ܦ௜ as follows and 
show point ܦ௜  on the chart ; 
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௜ܦ ൌ� ௖ܹሺ��������������������������������
��������������

݊௜ ሻ

൅� ௠ܹ௔ሺ�������������������������������
��������������

݊௜ ሻ

൅� ௠ܹ௜ �ሺ�������������������������������
��������������

݊௜ ሻ 

or  ܦ௜ ൌ � ௖ܹ (uc)i+ ௠ܹ௔ (uma)i+ ௠ܹ௜ (umi )I, 
 

ͼǤͺǤͷǤ͸������������limits:ࡰ�૙࢔࢝࢕࢔࢑࢔࢛� 
   When the values of uoma , uomi,  uoc are not known for the process, replace 
uoc, uoma, uomi with the following variables respectively, when  
calculating the central line and the  limits : 
 

mau �� Count  of  major defects in k subgroups 
sum of k subgroup sizes 

 

miu �� Count  of  minor defects in k subgroups���
sum of k subgroup sizes 

 

Cu �� Count  of critical defects in k subgroups��
sum of k subgroup sizes 

and replace  
0D   by 1

k

i
i

D
D

k



. 

Example 6.4 (Based on Besterfield,1990 page 190) 

  Assume that Wcс�ϵ͕�Wma =ϯ͕Wmi с�ϭ�are used for a three-class weighting 
system. Determine the central line, and control limits for a D control chart, 
when �଴ୡсϬ͘Ϭϴ, �଴୫ୟсϬ͘ϱ,� ��଴୫୧сϯ͘� �dŚĞ�data of six samples are given in 
the following table. 
 
 
 
 
 
 
 
 
 
 

Count 
of 

minor 
defect 

Count 
of 

major 
defect 

Count 
of 

critical 
defect 

n  Date Sample 
No �� i� 

ϭϯϬ ϭϱ ϭ ϰϬ ϭͬϭ ϭ 
ϭϱϯ ϮϮ ϭ ϰϬ Ϯͬϭ Ϯ 
ϭϳϯ ϭϬ ϭ ϰϬ ϯͬϭ ϯ 
ϭϭϵ��ϭϱ Ϭ ϰϬ ϰͬϭ ϰ��
ϭϯϬ ϭϱ ϭ ϰϬ ϱͬϭ ϱ 
ϭϲϬ Ϯϲ Ϯ ϰϬ ϲͬϭ ϲ 
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Solution 
Calculation of aimed-at  ܦ௢ 
௢ܦ ൌ�୫୧ݑ଴௠௜ ൅�୫ୟݑ଴௠௔ ൅��ୡݑ଴௖ ൌ ͵ ൅ ͵ሺͲǤͷሻ ൅ ͻሺͲǤͲͺሻ ൌ ͷǤʹʹ 
 

n=40       
2 2 2
mi 0 ma 0 c 0

0D

W +W W
ó =

n
mi ma cu u u

=0.59 

0 0

0 0

3

3
D D

D D

UCL D

LCL D




 
 

 

Since the sample sizes are equal ,the upper and lower control  limits are 
straight lines: 
 
஽ܮܥܷ ൌ ͷǤʹʹ ൅ ͵ሺͲǤͷͻሻ ൌ ͸Ǥͻͻ 
௢ܦ ൌ ͷǤʹʹ 
஽ܮܥܮ ൌ ͷǤʹʹ െ ͵ሺͲǤͷͻሻ ൌ ͵ǤͶͷ 
 
Using the data of the problem, the variable for the ith sample was 
calculated from 
 
௜ܦ   ൌ � ௖ܹ (uc)i+ ௠ܹ௔ (uma)i+ ௠ܹ௜ (umi )I =9(uc)i+3 (uma)i+1(umi )I, 

 
where 

(uc)I��ൌ ሺଡ଼ిሻ୧
௡೔ ൌ ୡ୭୳୬୲�୭୤�ୡ୰୧୲୧ୡୟ୪�ୢୣ୤ୣୡ୲ୱ�୧୬�୧౪౞�ୱୟ୫୮୪ୣ��

�୧౪౞�ୱୟ୫୮୪ୣ�ୱ୧୸ୣ �ǡ�� 
(uma)I�ൌ ሺଡ଼ౣ౗ሻ୧

௡೔ ൌ ୡ୭୳୬୲�୭୤�୫ୟ୨୭୰�ୢୣ୤ୣୡ୲ୱ�୧୬�୧౪౞�ୱୟ୫୮୪ୣ��
�୧౪౞�ୱୟ୫୮୪ୣ�ୱ୧୸ୣ ǡ����� 

(umi )I ൌ ሺଡ଼ౣ౟ሻ୧
௡೔ ൌ ୡ୭୳୬୲�୭୤�୫୧୬୭୰�ୢୣ୤ୣୡ୲ୱ�୧୬�୧౪౞�ୱୟ୫୮୪ୣ��

�୧౪౞ୱୟ୫୮୪ୣ�ୱ୧୸ୣ Ǥ 
  

The results are in the last column, 
 

Date 
Sample 
No.(i) 

Sample 
size 

Count of 
critical 
defects 

(XC )i 

Count of 
major 

defects 
(Xma )i 

Count of 
minor 

defects 
(Xmi )i 

��

�� Demerit per unit product��
{ �ŝсϵ;Ƶc)iнϯ�;Ƶma)iнϭ;Ƶmi)i } 

 
ϭͬϭ ϭ ϰϬ ϭ ϭϱ ϭϯϬ ܦଵ ൌ �ͻሺ ͳͶͲሻ ൅ ͵ሺ

ͳͷ
ͶͲሻ ൅�ሺ

ͳ͵Ͳ
ͶͲ ሻ ൌ ͶǤ͸ 

Ϯͬϭ Ϯ ϰϬ
 

ϭ ϮϮ ϭϱϯ ܦଶ ൌ ͷǤ͹
 

ϯͬϭ ϯ ϰϬ
 

ϭ ϭϬ ϭϳϯ ܦଷ ൌ ͷǤ͵
 

ϰͬϭ ϰ ϰϬ
 

Ϭ ϭϱ ϭϭϵ ܦସ ൌ ͶǤͳ
 

ϱͬϭ ϱ ϰϬ
 

ϭ ϭϱ ϭϯϬ ܦହ ൌ ͶǤ͸
 

ϲͬϭ ϲ ϰϬ
 

Ϯ Ϯϲ ϭϲϬ ܦ଺ ൌ ͻ൬ ʹͶͲ൰ ൅ ͵ ൬
ʹ͸
ͶͲ൰ ൅�൬

ͳ͸Ͳ
ͶͲ ൰ ൌ ͸ǤͶ
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&ŝŐƵƌĞ�ϲ.ϰ�ƐŚŽǁƐ�ƚŚe chart. 

��
Fig. 6-4 Demerit control chart(D Chart) for Example 6.4 

(Besterfiled,ϭϵϵϬ�ƉĂŐĞϭϵϭͿ 
 
 

Example 6.5 
    Classifying dĞĨĞĐƚƐ�ŝŶƚŽ�ϰ�ĐůĂƐƐĞƐ͕�ǁĞŝŐŚƚƐ�ϭϬϬ͕�ϱϬ͕�ϭϬ͕ϭ�ĂƌĞ�ŐŝǀĞŶ�ƚŽ�ƚŚĞ�
classes A,B,C and D͘� � ϯ� � ƐĂŵƉůĞƐ� ŽĨ� ƐŝǌĞ� ϭϱϬϬ� ǁĞƌĞ drawn from the 
production process and the following table shows the results. If the 

standard indices for nonconformities  per unit of Types A,B,C,& D are 

respectively  uϬ� с�Ϭ͘ϬϬϭ, uϬ� с�Ϭ͘ϬϬϯ, uϬ� с�Ϭ͘ϬϬϴ &uϬ� с�Ϭ͘ϬϬϵ͘ 
Plot an attribute chart which monitor the all classes of defects 
simultaneously. 
 

Sample 
No.(i) 

Sample 
Size 

(�୧) 
Count of 
Class A 
Defects

 

(XA )i��

 
Count of 
Class B 
Defects

 

(XB )i��

Count of 
Class C 
Defect

 

(XC )i��

Count of 
Class D 
Defects

 

(XD )i��

ϭ ϭϱϬϬ Ϯ ϱ ϭϮ�� ϭϯ 
Ϯ ϭϱϬϬ ϭ ϲ ϭϬ ϮϬ 
ϯ�� ϭϱϬϬ�� ϯ Ϯ�� ϴ Ϯϰ 

 
Solution 
       D chart is suitable. Using the above standards i.e. 
uϬA с�Ϭ͘ϬϬϭ      uϬB с�Ϭ͘ϬϬϯ����    uϬC с�Ϭ͘ϬϬϴ        uϬD с�Ϭ͘ϬϬϵ 
 and the following demerits weights 
WA сϭϬϬ,  WB с�ϱϬ,    WC сϭϬ,    WD с�ϭ ƹ� we proceed as follows: 
The central line would be: 
DϬ = uϬ�WA + uϬ�WB + uϬ�WC + uϬ�WD  or 
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DϬ =  Ϭ͘ϭ�н�Ϭ͘ϭϱ�н�Ϭ͘Ϭϴ�н�Ϭ͘ϬϬϵ�с�Ϭ͘ϯϯϵ 
 

2 2 2 2
0 0 0 0

0
A A B B C C D D

D

W u W u W u W u

n


  
  

= 

1 3 8 910000 2500 100
1000 1000 1000 1000

1500

     
 =

11.0
1500

009.08.05.710



 

The limits:   
UCLD =ܦ௢ ൅ϯߪ௢஽ ൌ ͲǤ͵͵ͻ ൅ ͵ ൈ ͲǤͳͳ ൌ ͲǤ͸͸ͻ  

௢ܦ ൌ ͲǤ͵͵ͻ  

UCLD =ܦ௢ െϯߪ௢஽ ൌ ͲǤ͵͵ͻ െ ͵ ൈ ͲǤͳͳ ൌ ͲǤͲͳͳ 

For each sample, the variable D has been calculated using 
Di=WA(uA)i+WB(uB)i +Wc(uc)i +WD(uD)i. 

where  

(uA)iൌ ሺ��ሻ�
௡೔ �ǡ����      (uB)i ൌ ሺ��ሻ�

௡೔ ǡ          (uc)i ൌ ሺ��ሻ�
௡೔                     (uD)i �ൌ ሺ��ሻ�

௡೔ . 

dŚĞ�ĨŽůůŽǁŝŶŐ�ƚĂďůĞ�ƐŚŽǁƐ�ƚŚĞ�ϯ��i͛Ɛ�ĂŶĚ�&ŝŐ͘�ϲ͘ϱ�ƐŚŽǁƐ�ƚŚĞ�ĐŚĂƌƚ͘ 

��
Fig. 6-5 D- chart for Example 6.5ϭ 

Sample 
No. (i)��

 
Di=WA(uA)i+WB(uB)i +Wc(uc)i +WD(uD)i. ��

ϭ 40.0)
1500

13
()

1500

12
(10)

1500

5
(50)

1500

2
(1001 D��

Ϯ 
35.0)

1500

20
()

1500

10
(10)

1500

6
(50)

1500

1
(1002 D 

ϯ 34.0)
1500

24
()

1500

8
(10)

1500

2
(50)

1500

3
(1003 D ��

 
 

                                                           
ϭ�With thanks to Mr Amin Jafari former student of IE Dept ,college of Engineering 
of  Shahid Bahonar University of Kerman, Iran 
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It should be pointed out that:  
i) 
  Using  DϬ   as central line , and in the calculations of D chart limits implies 
an intent to apply pressure to bring a process to no worse than the 

stipulated level.  Using� ܦഥ ൌ σ ୈ౟ౡ౟సభ
୩   as central  line and in the calculation of 

limits implies an intent to illustrate how a process is performing 
;'ƌĂŶƚΘ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϮϵϱͿ͖�ǁŚĞƚŚĞƌ�ĚĞĨĞĐƚƐ�ĂƌĞ�ƌĂŶĚŽŵůǇ�
distributed in the  products or not.  

ii) 
  Q control chart is another attribute control chart  similar to D chart , 
ĚŝƐĐƵƐƐĞĚ�ŝŶ�ƌĞĨĞƌĞŶĐĞƐ�ƐƵĐŚ�ĂƐ�'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ;ϭϵϴϴͿ͘ 
 
iii) 
   Points indicating out of control status  on D chart are harder to interpret 
than they are on the c chart and do not necessarily direct attention to the 
causes of a problem. It may prove more desirable to use several c charts 
for process analysis purposes, one for each class, reserving the Q and D 
chart for upper-level management reporting (Grant, Leavenworth, 
ϭϵϴϴ͕ƉĂŐĞϮϵϱͿ. 
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Exercises 
ϲ͘ϭ (  ϴ͘ϭ�Grant &LĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�Ϯϵϲ) 

The following table gives the numbers of missing rivets noted at aircraft 
final inspection 

 
Airplane 

No. 

number 
of  

missing 
rivets 

 
Airplane 

No. 

number 
of  

missing 
rivets 

 
Airplane 

No. 

number 
of  

missing 
rivets 

201 8 210 12 218�� 14 

202 16�� 211 22 219 11 
203 14 212 16 220 9 
204 19 213 9 221 10 
205 11 214 26 222 23 
206 15 215 15 223 7 
207 8 216 9 224 27 
208 11 217�� 9 225 9 
209�� 21     

 
Find �ത  , compute trial control limits, and plot  a control chart for c.  What 
aimed-at value of  ܿ଴ᇱ ��would you suggest for the central line for the 
subsequent period? 
Answers:                   UCLCсϮϱ͘Ϯϴ;Ϯϱ͘ϱͿ�����͕��>�>Cс�Ϯ͘ϴϬ;Ϯ͕ϱͿ����ܿ଴ᇱсϭϮ͘ϵϲ 
ϲ͘Ϯ hƐĞ�WŽŝƐƐŽŶ�ĚŝƐƚƌŝďƵƟŽŶ�ƚŽ�ĮŶĚ�Ϭ͘ϵϵϱ�ĂŶĚ�Ϭ͘ϬϬϱ�ƉƌŽďĂďŝůŝƚǇ�ůŝŵŝƚƐ  for a 

c chart when c' c сϰ͘Ϯ��and also when ' 9.5c   .  
�ŶƐǁĞƌ͗�ϭ���͕���ϴ���Θ��ϱ���͕�ϭϱ 
ϲ͘ϯ  Find the trial control limits of a u chart for monitoring the surface 
finish of a certain product using the following data; plot the chart . Suppose 
the points falling outside the chart have assignable causes. Calculate the 
revised control limits. 
 

Batch 
No. 

Sample 
Size 

Total 
Non- 

confomities 

Batch 
No. 

Sample 
Size 

Total 
Non- 

confomities 

1 10 45 15 10 48 
2 10 51 16 11 35 
3 10 36 17 10 39 
4�� 9 48 18 10 29 
5 10 42 19 10 37 
6�� 10 5 20 10 33 
7�� 10 33 21 10 15 
8 8 27�� 22 10 33 
9 8 31 23 11 27 
10 8 22 24 10 23 
11 12 25 25 10 25 
12 12 35 26 10 41 
13 12 32 27 9�� 37 
14�� 10 43 28 10 28 
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ϲ͘ϰ ( ϴ-ϭϬ�'ƌĂŶƚ�Θ>ĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϮϵϳͿ 
   A textile manufacturing initiates use of a c chart to monitor the number 
of imperfections found in bolts of cloth.  Each bolt is the same length, 

ǁŝĚƚŚ͕� ǁĞĂǀĞ͕� ĂŶĚ� ĮďĞƌ� ĐŽŵƉŽƐŝƟŽŶ͘� �� ƚŽƚĂů� ŽĨ� ϭϰϱ� ŝŵƉĞƌĨĞĐƟŽŶƐ� ǁĞƌĞ�
found ŝŶ� ƚŚĞ� ůĂƐƚ� Ϯϱ� ďŽůƚƐ� ŝŶƐƉĞĐƚĞĚ͘� dŚĞ� ĨŽƵƌ� ŚŝŐŚĞƐƚ� ĂŶĚ� ůŽǁĞƐƚ� ĐŽƵŶƚƐ�
were: 
 

Count of imperfections
 

Highest Lowest 
20 4 
16 4 
10 5 
9�� 5 

 
a)�ĂůĐƵůĂƚĞ�ϯ-sigma control limits of an appropriate chart  for this 
process 
b) Is this process in control? If not, what aimed-at values for central 
line and control limits would you recommend for the next period? 
 
ϲ͘ϱ ;�W͘ϴ-Ϯϳ�'ƌĂŶƚ�Θ>ĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϯϬϭͿ 
  A u chart is used to control imperfections in the preparation of mats for 
advertising copy to be used in print media. The control statistic is number 
ŽĨ�ŇĂǁƐ�ƉĞƌ�ϭϬϬĐŵϮ of mat area. A standard value of µϬ ŽĨ�ϭ͘ϱ�ŇĂǁƐ�ƉĞƌ�
ϭϬϬĐŵϮ ŝƐ�ƵƐĞĚ͘���ƉĂƌƟĐƵůĂƌ�ŵĂƚ�ƐƵďũĞĐƚĞĚ�ƚŽ�ŝŶƐƉĞĐƟŽŶ�ŝƐ�ϭϴĐŵ�ďǇϮϲ�Đŵ�
ĂŶĚ�ǁĂƐ�ĨŽƵŶĚ�ƚŽ�ŚĂǀĞ�ϭϲ�ŇĂǁƐ͘��ĂͿ�ĂůĐƵůĂƚĞ�ĐŽŶƚƌŽů�ůŝŵŝƚƐ�ĨŽƌ�ƚŚŝƐ sample 
and test for conformance to the standard. 
b)  At the time that this inspection was performed, the process actually was 
operating at a µu ŽĨ�ϯ͘Ϭ�ŇĂǁƐ�ƉĞƌ�ϭϬϬĐŵϮ.   What is the probability of not 
detecting this fact from the sample? Use Poisson�s approximation ( where 
µc= nu). 
ϲ͘ϲ ;�W͘ϴ-ϯϬ�'ƌĂŶƚ�Θ>ĞĂǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϯϬϭͿ 
  A Producer of metal medallions and commemorative coins uses c charts 
to control imperfections on large orders for single items.  All imperfections  
are recorded but not all cauƐĞ� ĂŶĚ� ƵůƟŵĂƚĞ� ĚĞƐƚƌƵĐƟŽŶ� ŽĨ� ƚŚĞ� ŝƚĞŵ͘� ϯϬ�
ŝƚĞŵƐ� ĐŽŶƐƟƚƵƚĞ� ĂŶ� ŝŶƐƉĞĐƟŽŶ�ƵŶŝƚ͘� � �ŌĞƌ� ϮϬ� ŝŶƐƉĞĐƟŽŶ�ƵŶŝƚƐ� ŚĂǀĞ� ďĞĞŶ�
ŝŶƐƉĞĐƚĞĚ�ĂŶĚ�ƚŚĞ�ĚĂƚĂ�ƌĞĐŽƌĚĞĚ�͕�ƚŚĞ�ƚŽƚĂů�ĐŽƵŶƚ�ŽĨ�ŝŵƉĞƌĨĞĐƟŽŶƐ�ŝƐ�ϯϱ͘ 
 
a)Calculate the  control limits for c chart for this process. 
b)What is the probability of type I error for this chart. 
c)Find the probability of type II error, should the process shift to  a µc  of 
ϰ͘Ϭ͘ 
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ϲ͘ϳ  Construct a control chart for the data in the given table for empty 
bottle inspections of a soft drink manufacturer. Assume assignable causes 
for any points that are out of control.   What aimed-at values for central 
line and control limits would you recommend for the next period ? 
 

NUMBER 
OF 

BOTTLES��

CHIPS, 
SCRATCHES,  

OTHER 

FOREIGN 
MATERIAL 
ON SIDES 

FOREIGN 
MATERIAL 

ON 
BOTTOM 

TOTAL NON-��
CONFORMITIES 

40 9 9 27�� 45 
40 10 1 29 40 
40�� 8 0�� 25 33 
40 8 2 33 43 
40 10�� 6�� 46 62 
52 12 16 51�� 79 
52 15 2�� 43 60 
52 13 2�� 35 50 
52 12 2 59�� 73 
52�� 11 1 42 54 
52 15 15 25 55 
52�� 12 5 57 74 
52 14 2 27 43 
52 12 7 42 61 
40 11 2 30 43 
40 9 4 19 32 
40 5 6�� 34 45 
40 8 11 14 33 
40 3 9 38 50 
40 9 9 10 28 
52 13 8 37 58 
52 11 5 30 46 
52 14 10 47 71 
52 12 3 41 56 
52 12 2 28 42 

 
ϲ͘ϴ   Assuming that  Wcс�ϭϬ͕��tma сϱ͕��tmi с�ϭ�are used for a three-
class defect classification system , determine the central line, and 
control limits for a D control chart, when ݑ଴௖сϬ͘Ϭϴ��ˬݑ଴௠௔сϬ͘ϱ��ˬݑ଴௠௜сϯ 
ĂŶĚ�ŶсϱϬ͘ If a ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϱϬ�ŚĂƐ�ϭ�ĐƌŝƟĐĂů�ŶŽŶĐŽŶĨŽƌŵŝƚǇ͕�ϯϱ�ŵĂũŽƌ 
ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ĂŶĚ�ϭϭϬ�ŵŝŶŽƌ�ĚĞĨĞĐƚƐ, will this sample fall within 
the limit of the D control chart? 
 

��ůŽǁ�ƉĞƌĐĞŶƚ�ŽĨ�ƉĞŽƉůĞ�ůŝǀĞ�ϵϬ�ǇĞĂƌƐ 
��ŐƌĞĂƚ�ƉĞƌĐĞŶƚ�ƌĞƉĞĂƚ�ŽŶĞ�ǇĞĂƌ�ϵϬ�ƟŵĞƐ� 
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Chapter   7    Warning Limits &Adaptations  of Control Charts 
Aims 
  The objective of this chapter is to provide a description of  occasionally 
used  control charts.  Control charts such as തܺ chart with unequal sample 
sizes, control  chart for individual measurements, control charts for 
variables with probability limits, and തܺ chart with linear trend. The concept 
of moving range  and its application to statistical quality control is also 
pointed out.  The set of warning limits used  in control charts is  also 
introduced. 
 

͹ǤͳWarning Limits on Control  Charts 
   Some authors of quality control have advocated the use of  Ϯ sets 
of limits on certain control charts i.e. the outer and inner(warning) 
limits. The outer limits, sometimes called action limits, are the 
conventional limits, usually set Ăƚ�ϯ-sigma from the central line. The 
ŝŶŶĞƌ�ůŝŵŝƚƐ�ĂƌĞ�ƌĞĐŽŵŵĞŶĚĞĚ�ĂƐ�ǁĂƌŶŝŶŐ�ůŝŵŝƚƐ�ĂŶĚ�ĂƌĞ�ƵƐƵĂůůǇ�Ăƚ�Ϯ-
sigma.  &ŝŐƵƌĞ�ϳ-ϭ�ƐŚŽǁƐ�Ă control  chart with these two sets of limits 
i.e. UCL and LCL, upper and lower warning limits(UWL&LWL).  
   What follows in this section is some comments on warning limits of 
�ഥ� ĐŚĂƌƚ�ĨƌŽŵ�'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ�;ϭϵϴϴͿ�ƉĂŐĞ�ϯϬϳ͘ 

 
Fig. 7.1 A sample ࢄഥ� chart with UCL &LCL and UWL&LWL. 
 

    On the conventional തܺ� chart with only one set of limits, the chart  seems to give 
only two kinds of advice. It either says, �Look for trouble,� or it says, �Leave the 
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process alone.� This has the virtue of definiteness. However, any such definite 
advice is sure to be wrong part of the time.  >ŝŵŝƚƐ�ƉůĂĐĞĚ�Ăƚ�ϯ-sigma are seldom 
wrong when they say, �Look for trouble,� but are much more often wrong when 
they say, �Leave the process alone.�  
  The inner limits or warning limits seem to add a third kind of advice.   This might 
be phrased, �Start being suspicious that trouble is brewing.�  
     At first thought, the idea of having warning limits on തܺ charts may seem 
attractive. Nevertheless, there is a sound reason for the common practice of 
ŚĂǀŝŶŐ�ŽŶůǇ�ŽŶĞ�ƐĞƚ�ŽĨ�ůŝŵŝƚƐ�ĂŶĚ�ŚĂǀŝŶŐ�ƚŚĞƐĞ�ůŝŵŝƚƐ�Ăƚ�Žƌ�ŶĞĂƌ�ϯ-sigma. This reason 
is the greater definiteness of a single set of limits. Two sets of limits tend to be 
confusing with regard to the exact action to be taken when a point falls between 
the inner and the outer limits. This is particularly true if many of the people in a 
manufacturing plant who are using the തܺ and R control charts as a basis for action 
are not fully clear as to the principles underlying these charts. Inner limits will be 
ĞǆĐĞĞĚĞĚ� Ăƚ� ůĞĂƐƚ� ϱй� ŽĨ� ƚŚĞ� ƟŵĞ� ĂƐ� Ă� ŵĂƩĞƌ� ŽĨ� ĐŚĂŶĐĞ͘� /Ĩ� Ă� ƐŝŶŐůĞ� ƉŽŝŶƚ� ũƵƐƚ�
outside the inner limits is to be used as a basis for hunting for trouble there is 
bound to be unproductive hunting which may tend to destroy confidence in the 
control charts. Usually in a manufacturing plant so much trouble really exists that 
it does not pay to hunt for trouble without strong evidence that it is present.  
     Nevertheless, even though inner limits should not be drawn on most control 
charts, they can be extremely useful in the sophisticated interpretation of control 
charts by people who understand control-chart theory. Here the clue to action is 
given not by a single point outside either of the inner limits, but rather by two or 
more points, both outside the same inner limit. This is really a matter of sizing up 
extreme runs; it is somewhat comparable to the interpretation of extreme runs on 
the same side of the central line.  &Žƌ�ĞǆĂŵƉůĞ͕�Ϯ�ƉŽŝŶƚƐ�ŝŶ�ƐƵĐĐĞƐƐŝŽŶ�ŽƵƚƐŝĚĞ�ƚŚĞ�
same inner limit on an തܺ chart give even stronger evidence of a shift in process 
ĂǀĞƌĂŐĞ�ƚŚĂŶ�Ă�ƐŝŶŐůĞ�ƉŽŝŶƚ�ŽƵƚƐŝĚĞ�ƚŚĞ�ŽƵƚĞƌ�ůŝŵŝƚ͘�dǁŽ�ƉŽŝŶƚƐ�ŽƵƚ�ŽĨ�ϯ�ďĞǇŽŶĚ�ŽŶĞ�
ŝŶŶĞƌ�ůŝŵŝƚ͕�ϯ�ŽƵƚ�ŽĨ�ϳ͕�Žƌ�ϰ�ŽƵƚ ŽĨ�ϭϬ͕�ŵĂǇ�Ăůů�ďĞ�ĐŽŶƐŝĚĞƌĞĚ�ĂƐ�ĂƉƉƌŽƉƌŝĂƚĞ�ŐƌŽƵŶĚƐ�
for action.  
   However, this type of interpretation may be made by the quality control 
engineer or other qualified individual without confusing matters for his colleagues 
by having inner limit lines actually drawn on all തܺ charts. When a suspicious 
ƐĞƋƵĞŶĐĞ�ŽĨ�ƉŽŝŶƚƐ� ŝƐ�ŽďƐĞƌǀĞĚ�ĐůŽƐĞ� ƚŽ�Ă� ĐŽŶǀĞŶƟŽŶĂů�ϯ-sigma limit, the quality 
control engineer may imagine an inner limit two-thirds of the distance from the 
central line to the control limit.   Or, if this is too much strain on the imagination, 
such a line may be drawn lightly on the portion of the chart to be studied( Grant 
Θ>ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϯϬϳ-ϴ͘) 
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͹Ǥʹ  Control  charts adaptations 
  In this section the objective  is to introduce  some  control charts that are 
occasionally used. 
 
 ഥ control chart with unequal sample sizesࢄ 7.2.1
  If the sample size is not constant, the control limits would not be straight 
line and each sample would have its own limits varying with its size, such as 
the dashed- lines on the chart shown in Fig. ϳ-ϭ͘ 

 
Fig. 7-1  ࢄഥchart  illustrating variation of control limits with 

sample size 
(Extracted fromGrant &Leavenworth,1988 page303) 

What follows are some formulas for the limits of this case.  
 
�ĂƐĞϭ͗�ì and ó of the process are known 
   If the standard or aimed-at mean of the process in known, for ith  
subgroup with sample size �୧ the limits would be calculates as:  

௑തܮܥܷ ൌ ߤ ൅ ͵
ඥ݊௜

 ߪ

�� ൌ  ߤ�

௑തܮܥܮ ൌ ߤ െ ͵
ඥ݊௜

 ߪ

�ĂƐĞ�Ϯ͗ Process mean is known 
   In this case  the limits for ith,  subgroup with sample size �୧ are calculated 
from: 

௑തܮܥܷ ൌ തܺത ൅ ͵
ඥ݊௜

 ߪ

�� ൌ � തܺത 

௑തܮܥܮ ൌ തܺത െ ͵
ඥ݊௜

 ߪ
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where  
�ഥഥ , the mean of all    �ഥ's, is calculated from 

1

1

k

i i
i

k

i
i

n X
X

n









, 

 k    is the number of subgroups,  
ni     is the size of ith sample, 
A     is equal to  ଷඥ୬౟  
Needless to say, the samples with the same sample sizes have the same 
limits.  
 
�ĂƐĞϯ͗ ó of the process is unknown 
 The standard deviation (ɐ)of a normally distributed process, when not 
known, has to be estimated by  either of the following ways: 
 
-For each subgroup calculate its standard deviation �୧  then , if  the 

measurements are normally distributed, calculate 
4

� i
i

s

c
  .  The process 

standard deviation is estimated from ߪො ൌ ఙෝభశڮశఙෝೖ
௞  ;��ܿସis read from Table U. 

-For each subgroup with range ܴ௜  ,if  the measurements are normally 

distributed, calculate 
2

� i
i

R

d
   then ߪො ൌ ఙෝభశڮశఙෝೖ

௞  ;��݀ଶ  is read fromTable U. 

 
  When the sample sizes are large, the following points worth knowing: 

i) 
 For large samples, unless the largest subgroup is at least twice the 
smallest, it is satisfactory to compute un-weighted averages for the 
data(Grant and Leavenworth,1988 page 305): 

��ܺ�ഥഥ ൌ σ ௑ത೔�ೖ೔సభ
௞    ,   

1 ...�( ) ks s
s

k
  
 

 
instead of  

ܺ�ഥഥ ൌ σ ௡೔௑ത೔�ೖ೔సభ
σ ௡೔ೖ೔సభ

  and  ܵҧ ൌ ܵ௣ ൌ ටሺ௡భିଵሻௌభశڮశమ ሺ௡ೖିଵሻௌೖమ
௡భା௡మାିڮ௞ . 
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ii)   
 Table  U shows that���ܿସ aƉƉƌŽĂĐŚĞƐ�ϭ�as sample size increases to a 
largish number and in this case S would estimate the process standard 
deviation: 

1

4

...� ks ss
s

c k
  
  

 
iii)  
  It  could be verified that  for large sample sizes  the weighted average of 

the sample means(�ഥ୧  's)  and the un-weighted   ܺ�ഥഥ     i.eǤ ܺ�ഥഥ ൌ σ ௡೔௑ത೔�ೖ೔సభ
σ ௡೔ೖ೔సభ

 

and��ܺ�ഥഥ ൌ σ ௑ത೔�ೖ೔సభ
௞   are not that different. 

 

iv)  
   For large samples the following formulas could be used for X   and 
S charts( Grant & LeaveŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϯϬϰͿ: 

 
4 3 4 3

3 3
, , 1 , 1 .

2 2
S SU C L B S L C L B S B B

n n
       

                One  application of  approximating 3 3B ¡A , 4B as above is when they 

are not available from Table U for large sample sizes. 
 

v) 
  If the sample sizes are large or small but close to each other, an average n 

could be calculated from 1

k
n

iin n
k


   and straight line limits be calculated 

using this average sample size. This simplification is usually satisfactory for 
a start; separate limits for individual subgroup may be computed later for 
any doubtful cases  ;�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϯϬϱͿ; for the samples 
we are not sure fall outside or not. 
 
Example ϳ͘ϭ ;�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ, ƉĂŐĞ�ϯϬϱͿ 
  The shear strength of  a spot welding pƌŽĐĞƐƐ� ŝƐ� ƵŶĚĞƌ� ƐƚƵĚǇ͘� � &ƌŽŵ� ϵ� 
similar welding devices ϵ� ƌĂŶĚŽŵ�ƐĂŵƉůĞƐ� �ŽĨ�ĚŝīĞƌĞŶƚ� ƐŝǌĞƐ� ĂƌĞ� ŐŝǀĞŶ� ŝŶ�
the following table: 
 
 
 

3 3

3
X X

UCL X A S X AS LCL X A S X AS A
n

        
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M
ac

hi
ne

��

Number of 
tests��

��n� 

Shear   strength (MPa) 

Average ��
 

Standard 
deviation��

A 1 28 743 63 
B 127�� 695 47 
C 126�� 711 67 
D�� 114 668 51 
E 126 736 80 
F 126 791 58 
G 126 686�� 50 
H�� 111 801�� 92 
J�� 119 604 64 

Sum�� 1103 6435 572��
 

The differences in sample size are not large and the largest subgroup is less 
than the twice the smallest.  Therefore according to the rough rule in Sect. 
(i) it is satisfactory to compute  un-weighted averages: 

1

1

... 6435
715

9
... 572

64
9

k

k

X X
X MPa

k
S S

S MPa
k

 
  

 
  

 
For a start,  the control  limits are computed based on average subgroup 
size and later separate limits for any doubtful cases, if applicable.  The 
average size is 

 

1103
123

9
n  

 
The factors AϯˬBϯ �&�Bϰ are  not available from Table U for this  large sample 
size;  but may be computed  as follows: 

123
3

3  AA  

4

3
1 1.19

2
B

n
  

 

From these factors, the control limits may be computed for �ഥ  and S 
charts: 

69864715

73264715

123
3

3

123
3

3





SAXLCL

SAXUCL

X

X  
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3 3, , 1 , 14 3 3 42 2
UCL B S LCL B S B BS S n n

     ��

76.5164)
1232

3
1(

24.7664)
1232

3
1(











S

S

LCL

UCL

 
  If you plot the control charts with these limits, you will notice that both 
charts show lack of control.  That is, even though these spot welders are 
identical in design, they perform differently both with regard to average 
strength and uniformity of strength of welds(Grant and Leaven worth, 
ϭϵϴϴ�ƉĂŐĞϯϬϲͿ͘ 
 

  ഥ charts with probability limitsࢄ 7.2.2
   It is worth remembering that X values of the samples taken from a 
normally distributed universe follow the normal distribution and even from 
a non-normal universe, they approximately follow normal  distribution 
ǁŚĞŶ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�ϰ�Žƌ�ŵŽƌĞ;�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ͕�ƉĂŐĞ�ϯϭϲͿ.  
It  could be easily shown that, without a change in the universe, if the limits 
of X charts are computed according to the formulas given in the following 
sections the probability a point fall above UCL or under LCL is equal to���ఈ���ଶ. 

 

ͽǤ͸Ǥ͸Ǥͷ probability limits for  ࢄഥ charts  ì�&�ó known  
  If the standard ì�&�ó are given or are obtainable from the design 
specifications of the quality characteristic, then: 

 2

3X

Z

UCL A


       

ܮܥ ൌ     ߤ

2

3

Z

XLCL A


    

Where A is read from Table U and  

2
Z   from Table  ϲ�Ăt the end of the book. 

ͽǤ͸Ǥ͸Ǥ͸ Probability limits for  ࢄഥ charts  ì�&�ó unknown  
   If ì�&�ó are not given or cannot be obtained, then the central line is set as 

X , and for upper or lower control limits��ଶ������ଷ�are multiplied by 
୞ಉ
మ
ଷ : 
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3 3
2 2

3 3
X X

Z Z

UCL X A s LCL X A s
 

     

. .C L X           
 

2 2
2 2

3 3
X X

Z Z

UCL X A R LCL X A R
 

   
 �ଶ���� ��ଷ are read from Table U. 

For example if Ŷс�ϱ�ĂŶĚ�we would like the probability of the type I error in 

X  chart  ( falling a point under XLCL or above XUCL while no change has 

occurredͿ� ƚŽ� ďĞ� ƚŽƚĂůůǇ� Ϭ͘Ϭϱ then �ଶ ൌ ͲǤͷ͹͹���� ��ଷ ൌ ͳǤͶʹ͹� are 

multiplied by 0.025 1.96

3 3

Z
 . 

 
Example ϳ͘Ϯ 
    Assume that probability limits rather than ϯ-sigma limits are to used for 
തܺchart ƵƐŝŶŐ�ƐĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϰ�ǁŝƚŚ��ത сϮ͘ϭ  ��ഥഥ  сϭϬ͘Ϯ͘��/Ĩ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�of a 
point falling outside each limit, sampling from a normal universe were to 
ďĞ�Ϭ͘ϬϬϭ�ǁŝƚŚŽƵƚ�Ă�ĐŚĂŶŐĞ�ŝŶ�ƚŚĞ�ƵŶŝǀĞƌƐĞ͕ find the upper and lower 

control limits of the X chart. 
 
Solution: 

  
஑
ଶ ൌ ͲǤͲͲͳǤ    4. .C L X n   

3 3
2 2

3 3
X X

Z Z

UCL X A s LCL X A s
 

   
      

From Table U   Aϯсϭ͘ϲϰ͘   
Using MATLAB     ��଴Ǥ଴଴ଵ ൌ ��������ሺǤ ͻͻͻሻ ൌ ͲǤͺͶͳͳ 

���ଡ଼ഥ ൌ ͳͲǤʹ ൅ �଴Ǥ଴଴ଵ͵ ൈ ͳǤ͸͵ ൈ ʹǤͳ ؆ ͳͳǤͳ͸������������ 
���ଡ଼ഥ ൌ ͳͲǤʹ െ �଴Ǥ଴଴ଵ͵ ൈ ͳǤ͸͵ ൈ ʹǤͳ ؆ ͻǤʹͶ 

. . 10.2C L X   
If  subgroups data were given in the example the command 

����������ሺ����ǡ ͳ െ Ƚሻ  in  MATLAB  would draw the  X chart. 
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͹ǤʹǤ ͵   S Control Chart with probability limits  
   Assuming the production process is normally distributed, non -͵-
sigma control limits for S control charts based on type I error (Ƚሻ  are 
given by: 
 


n

S BUCL
,

2
1


ܮܥ               ൌ ܿସߪ 

 


n
S BLCL

,
2


 where 

 is the   process standard deviation which may be estimated by       ߪ 
ത܁
۱૝, �Ƚ      is the probability of type I error i.e. the probability, that with no  

 
change in the process or universe, a point will fall outside of the limits  
ሺ
�����Ƭ����������ǡͳͻͺͺ������͵ͳ͸ሻ 
 
�ସ�   is a ratio given by Table U 
 
�ଵିಉమ ǡ୬��Ƭ��ಉమǡ୬are ����������������������������������������͹-ͳ���� ͵�Ƚᇱܛ��Ǥ 
 
dĂďůĞ�ϳ-ϭ��&ĂĐƚŽƌƐ���۰૚ିહ૛ǡܖ��Ƭ�۰હ

૛ǡܖ�for probability limits of S chart 

;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϭϳͿ 

 
n 

Lower limits�� Upper limits 

B0.001�� B0. 005 B0.025 B0.975�� B0.995�� B0.999 

2 0.00 0.00 0.03 2.25 2.81 3.30 

3 0.04 0.07 0.16�� 1.92 2.30 2.63 
4�� 0.09 0.15 0.27�� 1.77�� 2.07 2.33 
5�� 0.15 0.22 0.35 1.67�� 1.92�� 2.15 
6�� 0.21 0.28 0.41 1.60 1.83�� 2.03 
7 0.25 0.33 0.45 1.56 1.76 1.93 
8�� 0.29 0.37�� 0.49 1.52 1,70 1.86 
9�� 0.33 0.41 0.52 1.48�� 1.65 1.80 
10�� 0.36�� 0.44 0.55 1.45�� 1.62 1.76 

 
�ǆĂŵƉůĞ�ϳ͘ϯ 
      The aimed-at standard deviation of a normally distributed process is 

0.2  ͘��^ĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϱ�is drawn from the process.  Find the probability 
limits of the  S-chart  with  Ƚ ൌ ͲǤͲͲʹǤ 
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Solution 
    Since the distribution of the process is normal we could use the following 
relationship to calculate the probability limits 
 

   43.02.015.25,999.0  BUCL S 
 CL=    19.02.094.04 c 

   03.02.015.05,001.0  BLCL S  
 
͹ǤʹǤ Ͷ R chart with Probability limits 
   Assuming the production process is normally distributed, non -ϯ-sigma 
control limits for R control charts based on type one error are given 
by(Grant &Leavenworth, ϭϵϴϴ�ƉĂŐĞ�ϯϭϳͿ͗ 




n

DUCLR
,

2
1


Ǥܥ  Ǥܮ ൌ ݀ଶߪ 

 


n
R DLCL

,
2


 

Where  
  is the   process standard deviation,  
dϮ� is a ratio given by Table U, 
�ଵିಉమǡ୬��ǡ �ಉ

మǡ୬  ĨĂĐƚŽƌƐ�ǁŚŽƐĞ�ǀĂůƵĞƐ�ĂƌĞ�ŐŝǀĞŶ�ŝŶ�dĂďůĞ�ϳ-Ϯ.  
 dĂďůĞ�ϳ-Ϯ�ϭFactors ࡰ��૚ିࢻ૛ǡ࢔��ǡ ࢻࡰ

૛ǡ࢔�for probability limits of R chart 

ȋ
�����Ƭ�����������ǡ�ͳͻͺͺ������͵ͳ͹Ȍǣ 
n Lower limits factors Upper limits factors��

D0.001 D0 005 D0.025 D0.975�� D0.995 D0.999 
2 0.00 0.01 0.04 3.17 3.97 4.65 
3 0.06 0.13 0.30 3.68 4.42 5.06��
4 0.20 0.34 0.59 3.98 4.69 5.31 
5 0.37 0.55 0.85 4.20 4.89 5.48 
6 0.53 0.75 1.07 4.36 5.03 5.62 
7�� 0.69 0.92 1.25 4.49 5.15 5.73 
8�� 0.83 1.08 1.41�� 4.60 5.25 5.82 
9�� 0.97�� 1.21 1.55 4.70 5.34 5.90 
10�� 1.08�� 1.33 1.67 4.78�� 5.42 5.97 

 
 
 
                                                           
ϭ��ǆƚĞŶƐŝǀĞ��ƚĂďůĞƐ��,ĂƌƚĞƌ͕�ϭϵϲϬ͕�dĂďůĞƐ�ŽĨ�ZĂŶŐĞ͙͘dŚĞ��ŶŶĂůƐ�ŽĨ�DĂƚŚĞŵĂƟĐĂů�^ƚĂƟƐƟĐƐ͕�
ǀŽů͘�ϯϭ͕�p͘�ϭϭϮϮ   ƩƉƐ͗ͬͬƉƌŽũĞĐƚĞƵĐůŝĚ͘ŽƌŐͬĚŽǁŶůŽĂĚͬƉĚĨͺϭͬĞƵĐůŝĚ͘ĂŽŵƐͬϭϭϳϳϳϬϱϲϴϰ 
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͹ǤʹǤ ͷ    Sʹ chart with Probability limits 
  If an aimed-at or standard or actual value for the process variance (ɐଶሻ is 
given and the probability of type I error(  Ƚ )is known, then the probability 
limits of  S2  control chart for a normally distributed processis given 
by(Derman & Ross, 1997 page 97): 
 

2 2 2

2 2 2
1 /2, 12 2

1 1
Pr( ) Pr( )

2 n nS S S

n n
S UCL UCL UCL 

  
  
 

     

=ୱమܮܥܷ
ఙమ
௡ିଵൈ ߯ഀమ ǡ௡ିଵ

ଶ  

Ǥܥ Ǥܮ ൌ  ଶߪ
=ୱమܮܥܮ

ఙమ
௡ିଵ ൈ ߯ଵିഀమǡ௡ିଵ

ଶ  

ɖಉ
మ ǡ୬ିଵ
ଶ  and ɖଵିಉమ ǡ୬ିଵ

ଶ �are read from Table 8 at the end of  the book or   

could be calculated using MATLAB: 

߯ఈ
ଶǡ௡ିଵ
ଶ ൌ ݒ݊݅ʹ݄݅ܿ ቀߙʹ ǡ ݊ െ ͳቁǡ�� 
�߯ଵିഀమ ǡ௡ିଵ
ଶ ൌ ݒ݊݅ʹ݄݅ܿ ቀͳ െ ఈ

ଶ ǡ ݊ െ ͳቁ. 

 
ɐଶ,if  not given, may be estimated by the mean of sample variances 

i.e. 2S . 
 
�ǆĂŵƉůĞ�ϳ͘ϰ(Derman &Ross ,ϭϵϵϳͿ 
  Draw the S2 control chart having  probability limits with 0.27%  for 
monitoring  a normally distributed process of which 20 samples  of size 5 
and the variances  given  in the following table . 
 
 

i 1 2 3 4 5 6 7 8 9 10 
SϮ 17.6 19.3 6.2 9.8 7.5 21.4 11.1 26 14.4 38.4 

i 11 12 13 14 15 16 17 18 19 20 
SϮ 16.4 15.6 9.9 16.2 12.2 67.2 63.3 15.9 17.4 12.6 

 
Solution 
The sample sizes are equal; the variance is estimated as follows: 

92.2020/)6.12...6.17(2 S  
The control limits are : 



=ୱమܮܥܷ
௦మതതത
௡ିଵൈ ߯ഀమǡ௡ିଵ

ଶ ൌ ଶ଴Ǥଽଶ
ହିଵ ൈ ͳ͹

Ǥܥ�� Ǥܮ ൌ ଶതതതݏ ൌ ʹͲǤͻʹ 

=ୱమܮܥܮ
�௦మതതത
௡ିଵൈ ߯ଵିഀమǡ௡ିଵ

ଶ =
15

92.20



߯ഀ
మǡ௡ିଵ
ଶ  and ߯ଵିഀమǡ௡ିଵ

ଶ  were calculated using  MATL

߯ఈ
ଶǡ௡ିଵ
ଶ ൌ ሺͲǤͲͲͳ͵ͷǡͶሻݒ݊݅ʹ݄݅ܿ ൌ
�߯ଵିഀమǡ௡ିଵ
ଶ ൌ ሺͳݒ݊݅ʹ݄݅ܿ െ ͲǤͲͲͳ͵ͷ

&ŝŐƵƌĞ�ϳ-Ϯ�ƐŚŽǁƐ�the control charts for 

Fig. 7.2    S2 Control Chart for  

Fig. 7.3    ܆ഥ�Control Chart for  
( Derman & Ross
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ͳ͹Ǥͺ ൌ ͻ͵Ǥͳ     

554.0106.0   

were calculated using  MATLAB: 

ሻ ൌ ͲǤͳͲ͸�� 
ͲͲͳ͵ͷǡͶሻ ൌ ͳ͹Ǥͺ. 

the control charts for S2 with the above control limits. 

 
Control Chart for  Example 7.3. 

 

 
Control Chart for  Example 7.3 

( Derman & Ross,1977page 97) 
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  Another control chart related to this example �Ǥ �Ǥ �ഥ� control chart 
ƐŚŽǁŶ� ŝŶ�&ŝŐ͘ϳ-ϯ͕�as well as the following comment on the process  
from ŵ��ĞƌŵĂŶ�ΘZŽƐƐ�;ϭϵϵϳͿ, is worth paying attention:  
 
" Note that XϭϬ and Xϭϱ fall outside the�ഥ control limits with the first value lying 
below ܮܥܮ௑ത  and the second above ܷܮܥ௑ത .  In addition, Xϭϲ is very close to its upper 
control limit. Hence, even though all of the sample variances lie within their 
control limits, it seems that the process has not yet established any type of 
statistical control for its average value�that is, it does not appear at present that 
the data values can be thought of as coming from some common normal 
population. We should thus delay for the moment any attempts to determine 
appropriate control charts for this system" ;�ĞƌŵĂŶ�ΘZŽƐƐ�͕ϭϵϵϳ��ƉĂŐĞϵϳͿ. 
 
͹ǤʹǤ ͸ Chart for individual measurements 
    It is reminded that USL and LSL are upper and lower limits of the design 
specification.   For example if the specification set by the designer is 
ͲǤͶͲ͵͹ േ ͲǤͲͲϭϯ  we have USL=Ϭ͘ϰϬϱϬ , LSL=Ϭ͘ϰϬϮϰ.   &ŝŐƵƌĞ�ϳ͘ϰ�shows, as 
a sample, a kind of chart that is not a control chart but sometimes are 
made from the individual measurements of each sample in Table ϳ-ϯ.   The  
ϱ observations of every subgroup are  plotted vertically  on the chart  with 
USL and LSL as chart limits 
 

 
Fig. 7-4  Chart for individuals using LSL and USL 
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Table7-3  Measurements of pitch diameter of threads on 
aircraft    fittings 
Values are expressed in units of 0.0001 inch in excess of 
0.4000 in. Dimension is specified as 0.4037±0.0013 inch 

Sample 
No. 

Measurement on each item  

Average��
��

Range 

 
of five items per hour 

ϭ ϯϲ ϯϱ ϯϰ ϯϯ ϯϮ ϯϰ͘Ϭ ϰ 
Ϯ ϯϭ ϯϭ ϯϰ ϯϮ ϯϬ ϯϭ͘ϲ ϰ 
ϯ ϯϬ ϯϬ ϯϮ ϯϬ ϯϮ ϯϬ͘ϴ Ϯ 
ϰ ϯϮ ϯϯ ϯϯ ϯϮ ϯϱ ϯϯ͘Ϭ ϯ 
ϱ ϯϮ ϯϰ ϯϳ ϯϳ ϯϱ ϯϱ͘Ϭ ϱ 
ϲ ϯϮ ϯϮ ϯϭ ϯϯ ϯϯ ϯϮ͘Ϯ Ϯ 
ϳ�� ϯϯ ϯϯ ϯϲ ϯϮ ϯϭ ϯϯ͘Ϭ ϱ 
ϴ Ϯϯ ϯϯ ϯϲ ϯϱ ϯϲ ϯϮ͘ϲ ϭϯ 
ϵ ϰϯ ϯϲ ϯϱ Ϯϰ ϯϭ ϯϯ͘ϴ ϭϵ 
ϭϬ�� ϯϲ ϯϱ ϯϲ ϰϭ�� ϰϭ ϯϳ͘ϴ ϲ 
ϭϭ ϯϰ ϯϴ ϯϱ ϯϰ ϯϴ ϯϱ͘ϴ ϰ 
ϭϮ ϯϲ ϯϴ ϯϵ ϯϵ ϰϬ ϯϴ͘ϰ ϰ 
ϭϯ ϯϲ�� ϰϬ ϯϱ Ϯϲ ϯϯ ϯϰ͘Ϭ ϭϰ 
ϭϰ ϯϲ ϯϱ�� ϯϳ ϯϰ�� ϯϯ ϯϱ͘Ϭ ϰ 
ϭϱ ϯϬ ϯϳ ϯϯ ϯϰ�� ϯϱ ϯϯ͘ϴ ϳ 
ϭϲ Ϯϴ ϯϭ ϯϯ ϯϯ ϯϯ ϯϭ͘ϲ ϱ 
ϭϳ ϯϯ ϯϬ�� ϯϰ ϯϯ ϯϱ�� ϯϯ͘Ϭ ϱ 
ϭϴ Ϯϳ Ϯϴ Ϯϵ Ϯϳ ϯϬ Ϯϴ͘Ϯ ϯ 
ϭϵ ϯϱ ϯϲ Ϯϵ Ϯϳ ϯϮ ϯϭ͘ϴ ϵ 
ϮϬ ϯϯ ϯϱ ϯϱ ϯϵ ϯϲ ϯϱ͘ϲ ϲ 

Total�� ϲϳϭ͘Ϭ ϭϮϰ 

��
The chart may be of interest to production supervision, but  does not give 
ƚŚĞ�ĚĞĮŶŝƚĞ�ďĂƐŝƐ�ĨŽƌ�ĂĐƟŽŶ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϴͿ.   
             
͹ǤʹǤ ͹  
Combination of  Chart for individual X and Moving Range 
(I-MR chart) 
   In some processes it may be desired to plot X values in a kind of graph 
described here.  In this case if  process ߪ  is not available, estimating ߪ 
from R is not possible, because each sample consists of one observation 
and no R is available; instead we use moving  range(MR).  Some examples 
of applications for individual X and Moving Range chart (I-MR chart) are  
certain chemical  processes or slow industrial processes ; short production 
runs where data are scarce; destructive testing; special process test, and 
any process where individual measurements are necessary or expensive. 
 
ͽǤ͸Ǥ ͽǤͷ  Definition  of moving range(MR) 
   It is easier to illustrate  moving rang than to define it.  Suppose 
having a sample of size k, successive  subgroups of size n i.e.

1 1{ . , ..., }, 1, 2,..., 1j j j nx x x j k n     
 are artificially constructed from 

the sample.  The subgroups are 



    Statistical   methods in Quality Control 

ϭϵϵ 

 

 1 2{ . ,..., }nx x x . 
� 

1 1{ . ,..., }j j j nx x x    
�  and 

1{ .,..., }k n kx x  . 
Then the range of each subgroup, called moving range, is calculated: 

1 1 1 1m a x { . , .. . , } m in { . , . . . , } , 1, 2 , . . . , 1j j j j n j j j nM R x x x x x x j k n          ,  n 
is usuaůůǇ�Ϯ�Žƌ�ϯ͘��/Ĩ�ŶсϮ�ƚŚĞŶ�ŵŽǀŝŶŐ�ƌĂŶŐĞ�ŝƐ�ƐŝŵƉůǇ�ƚŚĞ�ĚŝīĞƌĞŶĐĞ�
between two consecutive data points. 
 

DZ;ŶсϯͿ��DZ;ŶсϮͿ X��
��

 || minmax xx ��
 || 12 xx ��
 || 23 xx ��

xϭ��
x Ϯ��
x ϯ��

���������

��
��

 || minmax xx 
��

��

 || 1 jj xx  ��
xj��

xũнϭ���
��xj+Ϯ 

���������

��1k kx x    xk 
 
Example ϳ͘ϱ��
  Given the random sample 1 2 3 4 5 6( 2.1, 2, 2.5, 1.9, 2.3, 1.8)x x x x x x       
ĮŶĚ�DZΖƐ�ǁŝƚŚ�Ŷсϯ͘ 
Solution: 

1 max{2.1,2,2.5} min{2.1,2,2.5} 0.5MR       
2 max{2,2,5,1,9} min{2,2,5,1,9} 0.6MR     
2 3 40.6, 0.6, 0.5MR MR MR    

MR ൌ�ͲǤͷ ൅ �ͲǤ͸ ൅ ͲǤ͸ ൅ ͲǤͷͶ ൌ ͲǤͷͷ 

E nd  of Example. 
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ͽǤ͸Ǥ�ͽǤ͸��hart for  individual measurements- �� &ı :known 

  If the standard  or aimed-at values for  process mean and standard 
deviation �(�&ı) are known, then:  
 
���ଡ଼ ൌ ρ ൅ ͵ɐ��� 
���� ൌ �ρ��� 
���ଡ଼ ൌ ρ െ ͵ɐ��� 
ͽǤ͸Ǥ�ͽǤ͹��hart for  individual measurements- �� &ı :unknown 

  If �� &ı are not known or cannot be determined, they are estimated 
as: 
ρො ൌ ��ഥ��ǡ� 
�ɐෝ ൌ� ୢమ �, if the process is normally distributed. 

where  
�ഥ��          is the mean of 1 2, ,..., nx x x  

MR ����� ୑ୖభା�୑ୖమା�ǥ
୲୦ୣ�୬୳୫ୠୣ୰�୭୤�୑ୖᇱୱ ൌ

σ ୑ୖౠౡష౤షభౠసభ
୩ି୬ିଵ   

dϮ        a factor  obtainable from Table U given the size of moving 
subgroups i.e. n. 
 
The following   example illustrates the control chart for individual 
observations using moving rangesϭ 
 
�ǆĂŵƉůĞ�ϳ͘ϲ 
A new chemical process was studied to monitor its flow rate.  The 
ĨŽůůŽǁŝŶŐ�ϭϬ�ŵĞĂƐƵƌĞŵĞŶƚƐ�ŚĂǀĞ�ďĞĞŶ�ƌĞƉŽƌƚĞĚ   

 
 construct a control chart for the individual flow rates. Use moving 
range concept. Suppose the flow rat is normally distributed. 
 
Solution 
CŽůƵŵŶ�ϯ�ŽĨ�dĂďůĞ�ϳ-ϰ�shows the calculated  moviŶŐ�ƌĂŶŐĞƐ�ǁŝƚŚ�ŶсϮ 
Since   
௑ܮܥܷ ൌ ߤ ൅ Ǥܥ���  ���ߪ͵ Ǥܮ ൌ ௑ܮܥܷ�  ���ߤ� ൌ ߤ െ  ���ߪ͵
Short term estimates for ߤƬߪ��� are as follows: 

                                                           
ϭ(ŚƩƉ͗ͬͬǁǁǁ͘ŝƚů͘ŶŝƐƚ͘ŐŽǀͬĚŝǀϴϵϴͬŚĂŶĚďŽŽŬͬƉŵĐͬƐĞĐƟŽŶϯͬƉŵĐϯϮϮ͘ŚƚŵͿ͘� 

MR
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Table7-4   Data on the flow
Measurement  No. (j) 

ϭ 
Ϯ 
ϯ 
ϰ 
ϱ 
ϲ 
ϳ 
ϴ 
ϵ 
ϭϬ 

ρො ൌ � തܺ ൌ ͶͻǤ͸ ൅ڮ൅ ͷʹǤͳ
ͳͲ ൌ ͷͲǤͺͳ

Then the control limits are given by:
 
௑ܮܥܷ ൌ ρො ൅ ͵�ɐෝ ൌ ͷͲǤͺͳ ൅ ͵ሺͳ
Ǥܥ Ǥܮ ൌ �ͷͲǤͺͳ���� 
௑ܮܥܷ ൌൌ ρො െ ͵�ɐෝ ൌ ͷͲǤͺͳ െ ͵ሺ

Fig. 7-5  Control chart for 
(http://www.itl.nist.gov/div898

 

&ŝŐƵƌĞ�ϳ-ϱ�ƐŚŽǁƐ� ƚŚĞ� ĐŽŶƚƌŽů� ĐŚĂƌƚ͘�
outside either the UCL or LCL and  no special pattern is observed.
indicates the process is stable and
mentioning another way to construct the individuals chart is by using the 

Control 

ϮϬϭ 

 

flow-rate of a process 

Flowrate(xj) MRj;ŶсϮͿ 
ϰϵ͘ϲ  
ϰϳ͘ϲ ϰϵ͘ϲ-ϰϳ͘ϲсϮ 
ϰϵ͘ϵ ϰϵ͘ϵ-ϰϳ͘ϲсϮ͘ϯ 
ϱϭ͘ϯ ϭ͘ϰ 
ϰϳ͘ϴ ϯ͘ϱ 
ϱϭ͘Ϯ ϯ͘ϰ 
ϱϮ͘ϲ ϭ͘ϰ 
ϱϮ͘ϰ ͘Ϯ 
ϱϯ͘ϲ ϭ͘Ϯ 
ϱϮ͘ϭ ϭ͘ϱ 

ͺͳ�ǡ �ɐෝ ൌ� �ଶ ൌ
ʹ ൅ ʹǤ͵ ൅ ൅ڮ ͳǤͷ

ͻ
ͳǤͳʹͺ ൌ ͳǤ͸͹ 

Then the control limits are given by: 

ሺͳǤ͸͹ሻ ൌ ͷͷǤͺͲ� 
ሺͳǤ͸͹ሻ ൌ ͶͷǤͺʹ��� 

 
  Control chart for Example 7.5 using moving range 

898/handbook/pmc/section3/pmc322.htm) 

ϱ�ƐŚŽǁƐ� ƚŚĞ� ĐŽŶƚƌŽů� ĐŚĂƌƚ͘�  Since none of the plotted points fall 
and  no special pattern is observed. The chart 

indicates the process is stable and the flow rate is  in control, It is worth  
nother way to construct the individuals chart is by using the 

MR
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sample  standard deviation to estimate the process ɐ  . Then, if the process 
is normally distributed, we can obtain the control limits of the chart from 

௑ܮܥܷ ൌ തܺ ൅ ͵ ��ସ�� ܮܥ ൌ തܺ��� 
௑ܮܥܷ ൌ തܺ െ ͵ ��ସ�� 
where  

����������������������������������  
cϰ   a factor  obtainable from Table U given the size of the sample 
(individual measurements). 
For example the standard deviation of the above individual 
measurements of flowrates  i.e.  xϭсϰϵ͘ϲ͕͙͕�ǆϭϬсϱϮ͘ϭ is SсϮ͘Ϭϯϯϵ�ĂŶĚ�
ĨƌŽŵ�dĂďůĞ�h�ĨŽƌ�ƐŝǌĞ�ϭϬ͕���ସ ൌ ͲǤͻ͹ʹ͹Ǣ 
then 

���ଡ଼ ൌ ͷͲǤͺͳ ൅ ͵ ൈ ʹǤͲ͵ͻͻͲǤͻ͹ʹ͹ ൌ ͷ͹Ǥͳͳ�� 
�� ൌ ͷͲǤͺͳ��� 
���ଡ଼ ൌ ͷͲǤͺͳ െ ͵ ൈ ʹǤͲ͵ͻͻͲǤͻ͹ʹ͹ ൌ ͶͶǤͷʹ 

The plot of the individual chart with these limits is left as an exercise 
to the students. 
 
͹ǤʹǤ ͺMoving Range Chart 
  The moving range (MR) chart is used to monitor  the  variability of a 
process  for which samples are of siǌĞ� ϭ� ŝƐ� ĂǀĂŝůĂďůĞ͘   For this purpose  
moving ranges are calculated and the lower and upper control limits for 
chart are calculated using: 
 

���୑ୖ ൌ �ସ ൈ��തതതതത, 
CL=����തതതതത, 
���୑ୖ ൌ �ଷ ൈ��തതതതത; 
 
 �ϰΘ�ϯ��are  factors  obtainable from Table U, given the size of 
moving subgroups i.e. n. 
Of course if the aimed-at  or standard process standard 
deviation(ɐଶሻ� is given then 
  ���୑ୖ ൌ �ଶ ൈ ɐ, 
CL       ൌ���ଶɐ, 
���୑ୖ ൌ �ଵ ൈ ɐ; 
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DϮ&Dϭ  are factors  obtainable from Table U, given the size of moving 
subgroups i.e. n. 
Then the MR's are inserted into the chart and ordinary interpretation  
takes place. 
 
͹Ǥʹ. ͻ ࢄഥ  chart with a Linear Trend 
 ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴ�ƉĂŐĞ�ϯϮϯ͖��ĞƐƚĞƌĮĞůĚ͕�ϭϵϵϬ�ƉĂŐĞ�ϭϭϮ) 

��
     When the plotted points of a chart have an upward or downward trend, 
it can be attributed to an unnatural pattern of variation or to a normal 
pattern of variation such as tool wear.  In some machining operations tool 
wear occurs at a  uniform rate over the period of use of a tool .  This wear,  
considered to be normal, may be one of the factors influencing the average 
value of some dimension of the product manufactured and may be 
responsible for a trend in this average.  Where subgroups are selected in a 
way that spaces them uniformly with respect to this wear, control charts 
for തܺ often look something like Fig. ϳ-ϰ� which reflect die wear.  As the die 
wears, the measurement gradually increases until it reaches the upper 
reject limit (URL).  The die is then replaced or reworked.   
  The R[ or s ]chart , however , is likely  to remain in control yielding 
constant estimate of process  ɐ (based on Grant and Leavenworth, 
ϭϵϴϴ͕ƉĂŐĞ�ϯϮϰͿ͖�ŚŽǁĞǀĞƌ�ƚŚĞ�ĚŝƐƉĞƌƐŝŽŶ�ŵĂǇ�ĂůƐŽ�ďĞ�ŝŶĐƌĞĂƐŝŶŐ͘� 
  The central line and control limits for തܺ chart in  such a case  should 
be sloping rather than horizontal.   The equation for central line is, 

bhaX  , 
where 

X    subgroup average and represents the vertical axis 
h     subgroup number;ŚсϬ͕͕͘͘ŬͿ  and represents the horizontal axis 
a&b   are calculated as follows: 

0 0 0 0 0

2 2

0 0

( )

k k k k k

h h h
h h h h h

k k

h h

k X h X X b h
b a

k
k h h

    

 

 
 



    

 
 . 

�ഥ௞��is the mean of sample number h.  
The control limits are sloping lines parallel to the central line; �ଶ�ഥ� 
above and െ�ଶ�ഥ below it. 
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Exampleϳ͘ϳ 
  On certain operations in a machine shop it was a common experience for a 
definite steady trend in the average value of a dimension of the parts to be 
caused by rapid tool wear. Subgroup oĨ�ƐŝǌĞ�Ϯ�ǁĞƌĞ�ƵƐĞĚ�ŝŶ�ƐĂŵƉůŝŶŐ��ǁŚŝĐŚ�
resulted in the following ��ഥ  &  R for the dimension.   Construct the trended 
�ഥ  chart ǁŝƚŚ�hZ>сϲϬ�ĂŶĚ�>Z>сϭϬ 

Sample � (h) Ϭ ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ ϭϬ ϭϭ ϭϮ 
�ഥ ϭϳ ϭϴ Ϯϰ ϯϭ ϯϯ ϯϳ ϯϯ ϯϲ ϰϭ ϰϰ ϱϲ ϱϳ ϱϰ 
R Ϯ ϯ ϭ ϱ ϰ Ϯ ϰ Ϭ ϱ ϭϬ ϯ ϰ Ϯ 

 
Solution 
dŚĞ�ĨŽůůŽǁŝŶŐ�ĐŽŵŵĂŶĚƐ�ŝŶ�D�d>���ǁĞƌĞ�ƵƐĞĚ�ƚŽ�ĚƌĂǁ�&ŝŐ͘�ϳ͘ϰ 
ххyďĂƌс΀�ϭϳ��ϭϴ�Ϯϰ�ϯϭ�ϯϯ�ϯϳ�ϯϯ�ϯϲ�ϰϭ�ϰϰ�ϱϲ�ϱϳ�ϱϰ΁'; 
ххZс΀Ϯ�����ϯ����ϭ����ϱ�����ϰ��    Ϯ�����ϰ����Ϭ����ϱ����ϭϬ���ϯ����ϰ���Ϯ΁Ζ͖ 
ххŚс;Ϭ͗ϭ͗ϭϮͿΖ͖ 
>>H=[ones(size(h)) h];regress(Xbar, H) 
ϭϳ͘Ϯϱϯϳ���ϯ͘ϮϵϭϮ 
Then the central line has the equation���ഥ ൌ ͳ͹Ǥʹͷʹ͹ ൅ ͵Ǥʹͻ݄; 
 
>>plot(h, Xbar,'+'); 
^ŝŶĐĞ�ĨŽƌ�ŶсϮ�ĨƌŽŵ�dĂďůĞ�h�ŝƐ��ଶ ൌ ͳǤͺͺ; the following commands 

were used to plot 2,X XUCL LCL CL A R  . 
хх�>сϭϳ͘Ϯϱнϯ͘ϮϵΎŚ͖�h�>с�>нϭ͘ϴϴΎ;ŵĞĂŶ;ZͿͿ͖�>�>с�>-
ϭ͘ϴϴΎ;ŵĞĂŶ;ZͿͿ͖ 
>>hold on;plot(h,CL);plot(h,UCL);plot(h,LCL) 
ххǇсϬΎŚнϲϬ͖ŚŽůĚ�ŽŶ͖�ƉůŽƚ;Ś͕ǇͿ͖% plots upper rejection limit 
ххǇсϬΎŚнϭϮ͖ŚŽůĚ�ŽŶ͖�ƉůŽƚ;Ś͕ǇͿ; %plots lower rejection limit 
>>hold on; plot(h,Xbar,'+') 
&ŝŐ͘ϳ-ϰ shows the trended chart. 
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Fig. 7-4 Illustration of an  ࢄഥ chart with trend. 
 

               the correlation coefficient between  �ഥ�and sample number is 
96.57%hXr  as obtained from MATLAB: 

ххĐŽƌƌсĐŽƌƌĐŽĞĨ;yďĂƌ͕�ŚͿ͖ƌсĐŽƌƌ;ϭ͕ϮͿ 
ƌсϬ͘ϵϲϱϳ 
Those readers engaged in these type of charts, for  a full discussion on the 
charts including interpreting the points falling outside the control limits 
;h�>�Θ>�>Ϳ��ĐŽƵůĚ�ƌĞĨĞƌ�ƚŽ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ�;ϭϵϴϴͿ�ƉĂŐĞ�ϯϮϲ͘ 
    There�  are other  control charts  for process mean including EWMA; 
Modified  Shewhart � EWMA;<ůĞŝŶ� ͕ϭϵϵϳͿ and  CUSUM   for�ഥ.  EWMA 
control chart is  more sensitive to some pattern of variations and less 
sensitive to some others with respect to  �ഥ chart . EWMA chart is dealt with 
ŝŶ�ŵĂŶǇ�ƌĞĨĞƌĞŶĐĞƐ�ŝŶĐůƵĚŝŶŐ�DŽŶƚŐŽŵĞƌŝ�ĂŶĚ�ZƵŶŐĞƌƐ;ϭϵϵϬͿ�ĂŶĚ�D�TLAB 
Help. 
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Exercises 
ϳ͘ ϭ  (ϵ-ϭ'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϯϲͿ 
A certain company manufactures electronic components for television sets. 
KŶĞ�ƉĂƌƟĐƵůĂƌ�ĐŽŵƉŽŶĞŶƚ�ŝƐ�ŵĂĚĞ�ƚŽ�Ă�ĐƌŝƟĐĂů�ůĞŶŐƚŚ�ŽĨ�Ϭ͘ϰϱϬ�ŝŶch. On the 
basis of past production experiences, the standard deviation of this 
ĚŝŵĞŶƐŝŽŶ�ŝƐ�Ϭ͘ϬϭϬ�ŝŶ͘��ĞĐĂƵƐĞ�ŽĨ�ƚŚĞ�ĐƌŝƟĐĂů�ŶĂƚƵƌĞ�ŽĨ�ƚŚĞ�ĚŝŵĞŶƐŝŽŶ͕�ƚŚĞ�
quality control group maintains warning limits on�ഥ  control chart as well as 
ƚŚĞ�ŶŽƌŵĂů�ϯ-sigma control limits. The   �ഥ   chart is based on subgroups of 
size four, and warning limits are maintained at two standard deviations 
from the mean. Compute the warning limits and the control limits for the  
�ഥ  chart. 
�ŶƐǁĞƌ͗�Ϭ͘ϰϲϬ͕�Ϭ͘ϰϰϬ͕Ϭ͘ϰϲϱ͕Ϭ͘ϰϯϱ 
ϳ͘Ϯ  Problemϳ͘ϭ�ĂƐŬĞĚ�ĨŽƌ�ƚŚĞ�ĐĂůĐƵůĂƟŽŶ�ŽĨ�ďŽƚŚ�ǁĂrning limits and control 

limits for an X    chart. Using those data 
 (a) What is the probability that a subgroup average will exceed the UWL 
but not exceed the UCL when the process is correctly centered? 
 
 (b) Supervisor should be notified  
(i)  if Ϯ�ƐƵĐĐĞƐƐŝǀĞ�ƐƵďŐƌŽƵƉ�ĂǀĞƌĂŐĞƐ�ĞǆĐĞĞĚ�ŽŶĞ�ŽĨ�ƚŚĞ�ǁĂƌŶŝŶŐ�ůŝŵŝƚƐ�Žƌ 
 (ii) if one subgroup average exceeds either of the control limits. What is 
the probability that, when there has been no change in the process, the 
supervisor will have to be notified because of (i) or (ii)? 
 
;ĐͿ� /Ĩ� ƚŚĞ�ƉƌŽĐĞƐƐ�ƐƵĚĚĞŶůǇ�ƐŚŝŌƐ�ƚŽ�Ϭ͘ϰϲϬ�ǁŝƚŚ�ŶŽ�ĐŚĂŶŐĞ� ŝŶ�ƚŚĞ�ƐƚĂŶĚĂƌĚ�
ĚĞǀŝĂƟŽŶ͕�ǁŚĂƚ� ŝƐ� ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ� ƚŚĂƚ�Ϯ�ƐƵĐĐĞƐƐŝǀĞ�ƉŽŝŶƚƐ�ǁŝůů�ĞǆĐĞĞĚ�ƚŚĞ�
upper warning limit but not exceed the upper control limit? 
 
Answer: ĂͿ�Ϭ͘ϬϮϭϰ���ďͿ�Ϭ͘ϬϬϬϱ��Ϭ͘ϬϬϭϰ����ĐͿϬ͘ϭϭϲϱ 
 
ϳ͘ϯ-(ϵ͘ϳ'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϯϴͿ 
�ŽƚŚ�ϯ-ƐŝŐŵĂ�ĐŽŶƚƌŽů�ůŝŵŝƚƐ�ĂŶĚ�Ϯ-sigma  warning limits are maintained on 
an �ഥ chart  for the internal diameter of a shock tube assembly.   The aimed-

Ăƚ�ǀĂůƵĞ�ŝƐ�ϯϱ͘ϱ�ŵŵ�ĂŶĚ�  ŝƐ�Ϭ͘Ϯϱ�ŵŵ͘ dŚĞ�ƐƵďŐƌŽƵƉ�ƐŝǌĞ�ŝƐ�ϰ͘ 
 
a)calculate UCL,LCL,UWL,LWL� for an �ഥchart on this process. 
 
b) Calculate UCL,LCL for an R chart to control dispersion 
ĐͿ� ŝĨ� ƚŚĞ�ĂĐƚƵĂů�ŵĞĂŶ�ŽĨ�ƚŚĞ�ƉƌŽĐĞƐƐ� ŝƐ�ϯϱ͘ϳϱ, find the probability that any 
given point would fall above the UCL and the probability that two points in 
succession would fall between UWL  and LWL� 
�  
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ϳ͘ϰ-(ϵ-ϮϬ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϰϬͿ 

Control charts for  �ഥand s are maintained on the weight in ounces of the 
ĐŽŶƚĞŶƚƐ�ŽĨ�Ă�ĐĞƌĞĂů�ĐŽŶƚĂŝŶĞƌ͘���dŚĞ�ƐƵďŐƌŽƵƉ�ƐŝǌĞ�ŝƐ�ϴ͘���ŌĞƌ�ϭϴ�ƐƵďŐƌŽƵƉƐ͕�

595.8X   and 8.24s   

ĂͿ�ŽŵƉƵƚĞ�ϯ-sigma limits for the �ഥ chart and estimate the value of ߪ. 
b)��ĚĞĐŝƐŝŽŶ�ŝƐ�ŵĂĚĞ�ƚŽ�ƵƐĞ�ϵϱй�ƉƌŽďĂďŝůŝƚǇ�ůŝŵŝƚƐ�ŽŶ�ƚŚĞ��ഥ chart rather 
ƚŚĂŶ�ϯ- sigma limits  what would be the location of these limits ? 
c)/Ĩ�ƚŚĞ�ŵĞĂŶ�ƐŚŝŌƐ�ƚŽ�ϯϯ͘ϰ�ǁŚĂƚ�ŝƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĚĞƚĞĐting this shifts 
on the first subgroup after the shift occurs, ŝĨ�ƚŚĞ�ϯ-sigma limits are used? 
d)What is the probability of detecting the shift described in ( c) ŝĨ�ϵϱй�
probability limits are used? 
ϳ͘ϱ-;ϵ-Ϯϭ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϰϬͿ 
A critical dimension in the production of a certain  part specifies a length of 
͸ͲǤͲͲ േ ͲǤͲ͹�mm.  It is proposed to use �ഥ��aŶĚ�Z�ĐŚĂƌƚƐ�ĞŵƉůŽǇŝŶŐ�ϵϵй�
ƉƌŽďĂďŝůŝƚǇ�ůŝŵŝƚƐ�ƚŽ�ĐŽŶƚƌŽů�ƚŚŝƐ�ĚŝŵĞŶƐŝŽŶ͘���ŌĞƌ�ϯϬ�ƐƵďŐƌŽƵƉƐ�ŽĨ�ϰ�
measurements each have been taken 1799.40X   and 2.24R  . 

a)Calculate trial limits for this process. 
b)Calculate ߪ and estimate the proportion of product which does not meet 
specifications.  Assume that the distribution of unit dimensions is 
approximately normal.  
ϳ͘ϲ-(Based on ϵ-Ϯϰ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϰϬͿ 
Summarized below are daily anaůǇƐĞƐ�ŽĨ��KϮ�ĂƐ��ĂK�Ăƚ�the intermediate 
stage of a ĐŚĞŵŝĐĂů�ŵĂŶƵĨĂĐƚƵƌŝŶŐ�ƉƌŽĐĞƐƐ͘���ŽŵƉƵƚĞ�ϯ-day moving ranges  
for these data  and establish a chart for individual X with limits ߤ േ  ���and aߪ͵
chart for moving ranges to monitor this process basing the control limits on 

Ă�ƐƚĂŶĚĂƌĚ�ƉƌŽĐĞƐƐ�ĂǀĞƌĂŐĞ�ŽĨ�Ϭ͘ϲϲϬ�ĂŶĚ�R ŽĨ�Ϭ͘Ϭϳϱ͘ 
 

Date Per cent 
COϮ as  CaO 

Date Per cent 
COϮ�as  CaO 

Date Per cent 
COϮ as  CaO 

5/ 1�� 0.53 14 0.65 27 0.71 
2 0.62 15 0.59 28 0.68 
3�� 0.63 16 0.60 29 0.74 
4 0.54 17 0.69 30 0.66 
5 0.50 18 0.65 31 0.67 

6 0.50 19 0.65 6 /1�� 0.67 

7 0.51 20 0.67 2 0.68 
8�� 0.53 21 0.71 3 0.72 
9�� 0.56 22 0.78 4 0.70 
10�� 0.64 23 0.82 5 0.67 
11 0.57 24 0.82 6 0.69��
12�� 0.56 25 0.88 7 0.68 
13�� 0.55 26 0.82   

Thinking revives the alert heart and 
is a key to the doors of wisdom 
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Chapter   ͺ CUSUM  Control Chart  
 

Aims 
 
  Cumulative sum (CuSuM)  control chart which could identify slight 
shifts in a process and are applicable to both variables and 
attributes.  As a sample CUSUM chart for monitoring the process 
mean is introduced In this chapter.   
 
Cumulative sum  control chart 
  A  shortcoming of Shewhart's control charts is their low sensitivity  
to slight shifts of process parameter.   An alternative to the charts is 
the cumulative sum control chart frequently called CuSum chart and 
sometimes abbreviated as CSCC.  The capability of detecting slight 
shifts by this chart is more than that of  Shewhart's.   
    A CuSum control  chart plots the cumulative sum of " the deviation 
of sample value(ܺǡഥ �ܴǡ ǡݏ ǡǥ݌ ሻ from a standard or aimed-at value".  
This kind of control chart has been used for monitoring process 
mean, standard deviation, percent defectives,�. 
 
ͺǤͳ܆�ഥ��CuSum  chart   
  �ഥ� cumulative sum control chart used for monitoring  the process meanǤ�  
To illustrate how the chart is constructed suppose �ഥ௜ is the mean of ith 

sample of size n( 1n ) and  0 is the aimed-at process mean.  This chart  

plots the values of  cumulative sums �Si)
ϭ i.e.     

     
1

0 0 0
1 1

i i

i j j i
j j

S X X X  


 

        

 
or calculated as follows: 

                                                           
ϭ�Do not confuse Si with  the standard deviation of ith sample; it is the cumulative 

sum of തܺ െ 0  from the first to the  ith sample. 
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௜ܵ ൌ ௜ܵିଵ ൅ �ത�௜ െ ଴ǡ����������������ܵ଴ߤ ൌ Ͳ.         
Since the values of Si are plotted on the CuSum charts and these values are  
gained from more than one sample, these charts are more sensitive to 
slight shifts in the process.  An application of  this control  chart is to 
chemical industries where samples are usually  of size one.   
  The values of Si could be positive, negative or zero.  If the production  

process  is in-control about 0 , the values fluctuate around zero.  Then if 

the actual mean of the process has shifted to a higher value,  the CuSum 
chart shows an increasing trend; and if the actual process mean has shifted 
to a lower value,  a decreasing trend on the chart will be expected.  The 
actual mean is the value whose estimate is �ഥഥ i.e. the mean of the sample 
means.  Therefore a trend on the CuSum  chart indicates  a shift in the 
process mean.  The cause of the shift has to be detected and the  
corrective action taken to eliminate or fix the causes of non-conformities 
or other undesirable situations. 

sample size 
  The sample size for the subgroups required to construct this control 
chart has been recommended as(Ewan,ϭϵϲϯ�ƌĞĨĞƌĞŶĐĞĚ�ďǇ�:ƵƌĂŶ�Ğƚ�
al, ϭϵϳϰ ƉĂŐĞ�Ϯϯ-ϮϲͿ: 
 

݊ ൌ ʹǤʹͷߪଶ
ܦ ǡ 

where  
 óϮ    is the process variance  
 D     the actual value of shift magnitude, either plus or minus, that 
must be detected with virtual certainty (Grant and Leavenwoth, 
ϭϵϴϴ�ƉĂŐĞ�ϯϴϬͿ͘ 
If  óϮ is not known, it can be replaced by the variance of  a tentative 
sample (SϮ) drawn from the process. 
 
Control limits of  CuSum chart for sample average ࢄഥ 
  There are two basic ways to present CUSUM control chart: tabularϭ or 
algorithmic CUMSUM and V-mask; the latter  which will be described in 
this book.  Remember that in Schewart's  control chart : 
 

ϭ-The value of the shift (shift of  the process mean from a standard value) 
to be detected is not given; instead a desired  probability for detecting the 
shift is considered.  This probability is increased by ƌĞƉůĂĐŝŶŐ� ƚŚĞ�ϯ-sigma 

                                                           
ϭ�^ĞĞ�ƌĞĨĞƌĞŶĐĞƐ�ƐƵĐŚ�ĂƐ�DŽŶƚŐŽŵĞƌŝ�ΘZƵŶŐĞƌƐ;ϭϵϵϬͿ�ƉĂŐĞ�ϴϳϵ�� 



�ŚĂƉƚĞƌ�ϴ�����ƵŵƵůĂƟǀĞ�^Ƶŵ��ŽŶƚƌŽů��ŚĂƌƚƐ 
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ĐŽŶƚƌŽů� ůŝŵŝƚƐ�ǁŝƚŚ� ƐĂǇ� Ϯ͘ϱ-ƐŝŐŵĂ�Žƌ�Ϯ-sigma limits; or  by  increasing the 

sample size(n) ; because the more the sample sze(n ), the less 2 3, , ,...A A A  

and the more tightened the control  limits. 
 
Ϯ- There is no rationƐŚŝƉ� ďĞƚǁĞĞŶ� ƚŚĞ� ƐĐĂůĞƐ� ŽĨ� ƚŚĞ� Ϯ� ĂǆĞƐ� ŽĨ� ƚŚĞ�
Schewart's chart but in CuSum  control chart: 
 
-The amount of the shift ,D, is necessary for constructing the chart and 
 
- A scaling  factor, denoted by y, related to the geometry of the control 
chart and V-mask dimension needs to be given.  y satisfies the following 
relationship: 

a=yൈb,��
where 
a  ŝƐ�ƚŚĞ�ĚŝƐƚĂŶĐĞ�ďĞƚǁĞĞŶ��Ϯ�ƐƵĐcessive subgroups no. on the horizontal 
    axis in mm, 
 
b   ŝƐ�ƚŚĞ�ĚŝƐƚĂŶĐĞ�ďĞƚǁĞĞŶ��Ϯ�ƐƵĐĐĞƐƐŝǀĞ��ƵŶŝƚƐ��Žn the vertical axis in mm.   
          
y     is  a scaling factor selected for the geometry of the chart.  
Usually it is a value from the interval  ( 2 .5 )to

n n

   

  As an illustration, let Ǉ� ŝƐ� ƐĞůĞĐƚĞĚ� ƚŽ� ďĞ� Ǉсϰ� ĂŶĚ� ƐƵƉƉŽƐĞ� ƌĞĐƚĂŶŐƵůĂƌ�
coordinate paper on which equal spacing between lines in both direction is 
ƉƌŽǀŝĚĞĚ�ĂŶĚ�ĞĂĐŚ�ϱ�ŵŵ�ƌĞƉƌĞƐĞŶƚ�ŽŶĞ�ƐĂŵƉůĞ�ŶŽ͖�ŝ͘Ğ͘�ƚŚĞ�length  between 
Ϯ� ƐƵĐĐĞƐƐŝǀĞ� ƐĂŵƉůĞ� ŶŽ͘ ŝƐ� ϱ ŵŵ͘� � dŚĞŶ� ĞĂĐŚ� ϱ�ŵŵ� ŽŶ� ƚŚĞ� ǀĞƌƟĐĂů� ĂǆŝƐ�
ƌĞƉƌĞƐĞŶƚ� ϰ� ƵŶŝƚƐ� ŽĨ� ƚŚĞ� Ăǆis; in other words the length ďĞƚǁĞĞŶ� Ϯ�
ƐƵĐĐĞƐƐŝǀĞ�ƵŶŝƚƐ�ŽŶ�ƚŚĞ�ǀĞƌƟĐĂů�ĂǆŝƐ�ϭ͘Ϯϱ�ŵŵ͘���  
   As the second  illustration, if ǇсϬ͘ϱ� ĂŶĚ� the sample numbers on the 
horizontal axis are separated by five-mm intervals;  units on the vertical 

axis have to be separated by��� ൌ ହ
଴Ǥହ ൌ ͳͲ��� intervals. 

  The magnitude of scaling factor i.e. y affects the power of the control 
chart for detecting shifts. 
 
8.1.1   V-Mask procedure  for  constructing  ܆ഥ  CuSum chart1 
      After plotting the Si points, indicate the location of the last Si by P. 

Draw the line PO parallel to the horizontal axis, right hand side. 
   The distance of OP in units of horizontal axis(one unit=the distance  

                                                           
ϭ�From Grant & LeavenwoƌƚŚ;ϭϵϴϴͿ�ƉĂŐĞϯϱϬ 
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ďĞƚǁĞĞŶ�Ϯ�ƐƵĐĐĞƐƐŝǀe sample numbers)    is given by:                                                                                                     

   2 2

2 2 2

( ) X
E EE

d
nD D

   


   , 

 
where   
D       is the required shift to be detected, a positive or negative 

          value or sometimes obtained from XD    ;   

           The unit of D is the same as that of standard or aimed-at  
           process mean, 

X    is the standard deviation of  samples' means;  

       is a negative or positive number.    
      is the probability of Type I error accepted for the problem 

ሻ ൌߙሺܧ ʹ���ሺଶ஑ሻ�  ϭ;for some values of ߙ given in Table ϴ-ϭ: 

 
dĂďůĞ�ϴ-ϭ�Some values of function ۳ሺહሻ 
�� Ϭ͘ϬϬϮϳ Ϭ͘ϬϬϮ Ϭ͘ϬϬϱ Ϭ͘Ϭϭ�� Ϭ͘ϬϮ Ϭ͘ϬϮϱ Ϭ͘Ϭϱ Ϭ͘ϭ 

)(E
��

ϭϯ͘Ϯϭϱϯ ϭϯ͘ϴϭϱϱ ϭϭ͘ϵϴϮϵ ϭϬ͘ϱϵϲϲ ϵ͘ϮϭϬϯ ϴ͘ϳϲϰϭ ϳ͘ϯϳϳϴ ϱ͘ϵϵϭϱ 

 
  The process  variance  is estimated by sample variance.  If the process is 
normally distributed, its standard deviation could be estimated from 4S/c . 

If the process variance is not available or cannot be estimated , 2�X ൌ
ටσ ௑ത೔మೖ೔సభ ି௞௑തതమ

௞ିଵ ��could be replaced in  
2

2

( ) XE
d

D

 
   

where  ܺపഥ  is the mean of ith ƐĂŵƉůĞ�ŝсϭ͕Ϯ͕͕͘͘Ŭ 
EŽƚĞ�ƚŚĂƚ�ŝĨ�ƐĂǇ��Ěсϱ��ƚŚĞ�ůĞŶŐƚŚ�ŽĨ�WK�ŝƐ�ϱ�ƟŵĞƐ�ƚŚĞ�ĚŝƐƚĂŶĐĞ�ďĞƚǁĞĞŶ�Ϯ�
successive sample numbers on the horŝǌŽŶƚĂů�ĂǆŝƐ�ŶŽƚ�ϱ mm. Calculate the 

angle in degree using 
2

( )
D

y
arctg   or 

ny
arctg

2

  .  If  the unit is in radiant, multiply it by 180


 

to convert into degree. 

                                                           
ϭ�Ifߚ�݀݊ܽ��ߙ i.e. the type I & II errors probabilities of the CuSum chart is given then

 1
/ 2( , ) 2 lnonesidedE 

  
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Ϯϭϰ 

 

From  point O draw the  upper and lower control limits with 
angle  (see Fig. ϴ-ϭ as an illustration) . 
 

 
Fig.  8-1  A typical V-Mask 

(ǁǁǁϮ͘ĮƵ͘ĞĚƵͬΕŬŝďƌŝĂŐͬ^ƚĂƚϱϲϲϲͬ,ĂŶĚŽƵƚͬ�ŚĂƉƚĞƌϵϵ͘ƉĚĨ) 

&ŝŐƵƌĞ� ϴ-Ϯ shows a typical CUSUM control chart for  
monitoring  process mean.   The mean is said to be in control 
if the points on the chart are distributed randomly about  
zero and no points fall outside the limits. 

 

 
Fig. 8-2 A typical CUSUM chart for ܆ഥ  

 ( Grant &Leavenworth,1988 page353) 
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CuSum control chart is useful especially for the cases where a 
sudden and sustained change(shift) is expected to occur in the 
process.  As far as samples are distributed randomly around zero and 
none of fall outside the control chart,  the chart shows the 
parameter is in control. 
 
�ǆĂŵƉůĞ�ϴ͘ϭ 

  Twenty ƐĂŵƉůĞƐ�ŽĨ�ƐŝǌĞ�ϭ ( iX ) in the following table shows the 

concentration of a special chemical solution;  
 

Table 8-2  Calculations of Example 8.1 

��������������������������I��

�.�� �����.����.�� �.�� �.��� �.�� �.�� �.
�� 

�����X
i��

-0.9 1 -1.3 0 -0.5 3 -0.6 -0.7 -4.2 3 X
i
-�� 

-1.2 -0.3 -1.3 0. 0 0. 0 0.5 -2.5 -1.9 
-

1.2 
0.3 S

i=
S

i-1 
+X

i
-��

 

����������������������������������I�

��� �.����.��� �.��� �.�� �� �.�� �.��� �.
�� 

�.��� X
i��

�.� ����  �.� �.� �� .� �� .� -�.� �.� 
��

.� �.� X
i
-�� 

1.9 -0.1 1.7 -0.7 -�.� �.� �.� �.� �.� �.� 
S

i=
S

i-1
+ 

X
i
-��

 

ZŽǁƐ�ϰ�ĂŶĚ�ϴ�ŽĨ�ƚŚĞ�ĂďŽǀĞ�ƚĂďůĞ�ƐŚŽǁƐ�ƚŚĞ�^i values,   computed from   
Si=Si-1 +  Xi-ϵϵ assuming 0 99  , ,...,1 20iS i   

 where 00 S .  

If  2.5, 2D y   then 
2.5 180

=arctan( ) 0.5586 . 0.5586 32 deg.
4

rad


   
 

For computing � ൌ ୉ሺ஑ሻൈ஢మ
୬ୈమ , ɐ has to be estimated.  dŽ� ĚŽ� ƚŚŝƐ� ƚŚĞ� ϮϬ�

observations are considered as one sample, and its standard deviation is 

obtained as  Ɛсϭ͘ϵϳϲ.  Since in this example ii XX  , XX  � .  If the 

formula  ටσ ௑ത೔మೖ೔సభ ି௞௑തതమ
௞ିଵ , is used the same value will be obtained for s. 

  Note that ƚĂŬŝŶŐ� ƚŚĞ� ϮϬ� ŽďƐĞƌǀĂƟŽŶƐ� ĂƐ� Ă sample of size twenty  and 
ĐŽŶƐƚƌƵĐƟŶŐ� ƚŚĞ� ŚŝƐƚŽŐƌĂŵ� ĂƐ� ƐŚŽǁŶ� ŝŶ� &ŝŐ� ϴ-ϯ  does not indicate the 
observation are from a symmetric population.   Therefore the estimates 
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2 4

� �MR sϭ
d c

    could not be used.   Instead   the process variance    

ଶ Is estimated with 3.91976.1ߪ 22 s . Then  

� ൌ ୉ሺǤଵሻൈ஢మ
୬ୈమ ൌ ହǤଽଽଵହൈଷǤଽଵ

ଵൈଶǤହమ ൌ ͵Ǥ͹Ͷ   in terms of the horizontal axis units. 

��
Fig 8-3 The histogram of ܑ܆ values  in Table 8-2 

 
Let the units of  horizontal aǆŝƐ�ďĞ�ϯ�ŵŵ�ĨĂƌ�ĨƌŽŵ�ĞĂĐŚ�ŽƚŚĞƌ, then 
Ěсϯ×ϯ͘ϳϰсϭϭ͘Ϯŵŵ.   

Locate point P on the  last Si i.e.  on 20S , 

Draw the line PO on the chart  from point P to the right-hand side with the 
ůĞŶŐƚŚ��ϭϭ͘Ϯ�ŵŵ͘���WŽŝŶƚ�K�ŝƐ�ŽďƚĂŝŶĞĚ͘ 
Draw limits from point O as lines of  angle ߠ ൌ  with respect to the   לʹ͵
horizon. 
&ŝŐƵƌĞ� ϴ-ϰ shows the܆�ഥ   CuSuM control chĂƌƚ� � ĨŽƌ� ƚŚĞ� ĚĂƚĂ� ŽĨ� dĂďůĞ�ϴ-Ϯ 
using Minitabϭ .  dŚĞ�ƉŽŝŶƚƐ�ĂƌĞ�ĚŝƐƚƌŝďƵƚĞĚ�ƌĂŶĚŽŵůǇ�ĂďŽƵƚ�ǌĞƌŽ�ŝŶ�&ŝŐ�ϴ-ϯ�
and no points has fallen outside the chart ;  therefore the process mean is 
in control. 
    It is worth knowing that there are  other control charts such as 
multivariate control charts.  Hotelling's (TϮ)  control chart  is a well-known 
multivariate control chart. Multivariate control charts allow to monitor 
more than one quality characteristic simultaneously 
 

                                                           
ϭ�Path :     Stat-control charts-time weighted charts �cusum-cusum options-type of 
cusum-two sided  
 in widow h give D value; in window k give y value 

94 102
0
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2
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4
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eq
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��
Fig. 8-4 The ܆ഥ  CUSUM chart of the data in Table 8-2 
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Exercises 
ϴ͘ϭ. (Based on 'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞ�ϯϱϵͿ 
Prepare a cumulative  sum control chart for �ഥ� using the following 
data: 
 

Sample 
No. 

Data 

ϭ ϮϬϬ͘ϱϱϳϱ ϮϬϬ͘ϱϲϱϱ ϮϬϬ͘ϵϯϲϲ ϮϬϬ͘ϰϴϬϵ 
Ϯ ϮϬϬ͘ϱϮϱϭ ϮϬϬ͘ϰϵϮϱ ϮϬϬ͘ϯϴϮϯ ϮϬϬ͘ϱϭϭϵ 
ϯ ϮϬϬ͘ϱϱϳϱ ϮϬϬ͘ϱϲϱϱ ϮϬϬ͘ϵϯϲϲ ϮϬϬ͘ϰϴϬϵ 
ϰ ϮϬϬ͘ϮϳϬϳ ϮϬϬ͘ϱϯϰϵ ϮϬϬ͘ϰϳϮϳ ϮϬϬ͘ϯϯϯϱ 
ϱ ϮϬϬ͘ϳϯϴϮ ϮϬϬ͘ϰϲϮϳ ϮϬϬ͘ϱϮϮϴ ϮϬϬ͘ϱϱϴϵ 

 
Upper and lower specifications ĂƌĞ͗ϮϬϭ͘ϱ�ĂŶĚϭϵϵ͘ϱ�ŝŶ�ŵŝĐroseconds 
;ŵƐͿ͘�hƐĞ�ŶŽŵŝŶĂů�ǀĂůƵĞ�ϮϬϬ͘ϱ�ĂŶĚ�Ă�ƌŝƐŬ�ůĞǀĞůߙ��  ŽĨ�Ϭ͘ϬϬϮϳ 
(corresponding to ϯ-sigma limits on a Shewhart control charts).  
Taking �сϳ͘ϴ�ŵƐ�ĂŶĚ�Ǉсϱ, plot the CuSum control chart.  Is the 
process mean in  control?  Plot the �ഥ� Shewhart control chart  for the 
data and compare its results with those obtained from the CuSum 
chart for��ത�. 
 
ϴ͘Ϯ.  
Find the procedure  of plotting CuSum for R from internet or 
references  such as Grant & Leanvenworth ;ϭϵϴϴͿ�ƉĂŐĞ�ϯϱϱ͕ and plot 

the Cu^Ƶŵ�ĨŽƌ�Z�ĨŽƌ�ƚŚĞ�ĚĂƚĂ�ŽĨ�dĂďůĞ�ϴ-Ϯ͘��hƐĞ�
ഥୖ
ௗమas the standard 

value for process standard deviation( 0 ).  Shift of   to 01.6 has to 

be detected.  Draw the Shewhart Z�ĐŚĂƌƚ�ƚŽŽ͕�ĂŶĚ�ĐŽŵƉĂƌĞ�ƚŚĞ�Ϯ�
charts results. 
 ϴ͘ϯ͘ 
Learn the tabular CuSuM chart procedure and  construct an �ഥ CuSuM 
tabular chart for the data ŐŝǀĞŶ�ŝŶ�dĂďůĞ��ϴ-Ϯ above. 
 

Planning with prudence  
safeguards you against regret 
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Chapter   ͻ Some Aspects of  
Tolerance; Precision, Accuracy &  
Measurement  Errors 
  
Aims 
 
  This chapter deals with the concepts  of precision, accuracy and  errors in 
measuring systems.  Some aspects of tolerance  interrelationship  are also 
briefly discussed. 
 
ͻǤͳ�Relationship  of assembled product tolerance &  
components  tolerance    
 
   Suppose, using series configuration, n independent  components with 
higher& lower specification limits ,i iU L and mean i  and standard 

deviation i have been assembled into one product with higher& lower 

specification limits ,sum sumU L  , mean sum  and standard deviation sum : 

sum i  , 
2 2 2 2

1 2 ...sum n       . 

Now if iiiisumsum kLULUkLU   )(,)(  

and k is the same for all n components, then 
2 2
1 ...sum n       

         
2

2 2
21

2
1

...
n

sum n
sum i

i

U L U L U L
U L U L

k k k 

  
      . 

Let 
 

2
sum

U L
   and 

 
2

i
i

U L
t


  then: 

2

1

n

i
i

t


   . 

Suppose the higher & lower specification limits  of a dimension of a 
product are U &L and the dimension  is normally distributed with mean  
௎ା௅
ଶ and the standard deviation   ߪ. is  .  It could be shown  that if  is the 

proportion of the distribution  falling outside ,U L  and kLU  )( , then 

k is given by
2

2k Z   . 

 



    Statistical   methods in Quality Control 

ϮϮϭ 

 

Example ϵ͘ϭ   
  n similar independent components with specification ߤ േ  are to be ݐ
assembled in series configuration�.  The assembled product must have the 
specification 

Sum
   .  What is the relationship between   and� t, 

௦௨௠ߤ �ǫߤ��௦௨௠ܽ݊݀ߤ ൌ ݊ ൈ  ߤ
 
Assume ߪ௣௔௥௧ ൌ ሺ௎ି௅ሻ೛ೌೝ೟

௞ ௦௨௠ߪ��������� ൌ ሺ௎ି௅ሻೞೠ೘
௞ ǡฺ 

2

1

n

i
i

t


    or 

οൌ ඥ݊ݐଶ ֜ ��������������������������ȟ ൌ �ξ� 
Example ϵ͘Ϯ 
  Three  components with the specifications 
ͳǤͶͷ േ ͲǤͲͲͶͲǡ        ͲǤͺ͸ͷ േ ͲǤͲͲ͵ʹǡ��         ͳǤͳ͹ േ ͲǤͲͲʹͺ              
 are to be assembled into one product in series configuration, what is the 
specification of the assembled product? 
 It is assumed iiiisumsum kLULUkLU   )(,)( . 

 
Solution  

οൌ 0060.00028.00032.00040.0 222      

௦௨௠ୀ ͳǤͶͷߤ ൅ ͲǤͺ͸ͷ ൅ ͳǤͳ͹ ൌ ͵ǤͶͺͷͲ 
Then  the specification of assembled product is  :���������͵ǤͶͺͷͲ േ ͲǤͲͲ͸ͲǤ 
 
Example ϵ͘ϯ 
   Twenty five  similar components, having specification ʹͲ േ ͲǤͳ , have 
been assembled in series configuration, find  the specification of the 
assembled product. 
Solution: 
௦௨௠ߤ  ൌ ݊ ൈ ߤ ൌ ʹͷ ൈ ʹͲ ൌ ͷͲͲ  ƚсϬ͘ϭ���� 
 

t n       
 

20 25 500 0.1 500 0.5
U

n
L


      


. 

Example ϵ͘ϰ 
   Suppose a part is ĐŽŵƉŽƐĞĚ�ŽĨ�ϯ�ĐŽŵƉŽŶĞŶƚƐ͘����dŚĞ�ƉĂƌƚ�ŝƐ��ƌĞƋƵŝƌĞĚ�ƚŽ�
have specification ͻͲǤͲͲͲ േ ͲǤʹͷͲ.  What should be the specification of 
each component? 
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Solution: 
  Assuming the same standard deviation ĨŽƌ�ƚŚĞ�ϯ�components: 

For each component: since,ݐ ൌ ୼
ξ௡ ൌ

଴Ǥଶହ଴
ξଷ ͲǤͳͶͶ 

the specification would be ͵Ͳ േ ͲǤͳͶͶ. 
 
ͻǤʹ��n the difference between independent variables 
  Suppose a shaft with  a cross section normally distributed (ߤଶǡǡ  ଶǡሻ isߪ
fitted into a bearing with internal diameter normally distributed(ߤଵǡߪଵǡሻ.  
The difference between the two is enlarged  in &ŝŐ͘�ϵ-ϭ͘ 

 
Fig. 9-1 the enlarged difference between a shaft and a bearing 

diameters. 
  The cross section of the  space between the shaft and the bearing   is a 
random variable  normally distributed with mean ߤଵିଶ ൌ ଵെߤ  ଶ  andߤ

standard deviation of 2 2
1 2 1 2     . 

 
ͻǤ͵��rror, precision and accuracy in measurement  
    When a measurement is made, the goal is to determine the true value of 
a quantity such as length, mass,  time  etc.  In this regard the concepts of 
measurement error and  precision &accuracy  of measurement are dealt 
briefly here. 
 
9.3.1 Measurement Error 
   To determine the size of a characteristic, we have to measure.  
Measurement is subject to error such that:  
 
            Measured value= true value+ measurement error. 
 
Suppose a dimension of a unit of part, say, its internal diameter, is 
measured several times with the same(changeless) measuring procedure 
(consisting of changeless person or team, changeless device and changeless method).  
It is obvious that the true value of this unit is constant, therefore the 
standard deviation of  the values  obtained from the measuring method is 
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equal to the standard deviation of the method �s error.   Therefore when 
several repeated measurements of a  dimension of one unit of part is 
available, one could calculate the standard deviation of the measured 
values.  The standard deviation of the measurement error  is equal to 
standard deviation the measurements. 
  
ͿǤ͹ǤͷǤͷ�Error Components 
   The error of measurement has  Ϯ�important  components:  repeatability 
and reproducibility. 
  
Repeatability 
   Repeatability refers to the variability of measurements of the same part 
by the same  operator with the same equipment and the same method 
across all trials; thus, repeatability refers to the variation (measurement 
errors) in the measurement equipment.  This component of the 
measurement variability is also referred to as equipment or gage  variation.  
The less the variance of these measurements, the less the variance of the 
repeatability and the error.  
       If the operator has come up with a sample of n measurements which 
are normally distributed, then 

ɐ୰ୣ୮ୣୟ୲ୟୠ୧୪୧୲୷ ൌ �
�ସ ��������

�
�ଶ 

where 
R   is the range  of  the sample 
S   is the standard deviation of the sample  
Cϰ� and dϮ, which depend on n, are coefficients available from Table U. 
 
Reproducibility  
    Suppose there are several operators and each operator measures the 
same part with the same equipment and the same method several times.    
Reproducibility refers to the variability of the averages of measurements of 
the same part with the same equipment and the same method across 
different operators; thus, reproducibility is also sometimes referred to as 
appraiser variation.  The less the variance of these averages, the less the 
variance of the reproducibility and the error.  
 
   It is worth knowing: 
 ϭͿ'etting more training by operators makes the measurements more 
smooth and reduces the error of reproducibility; but using exact measuring 
devices  reduces the error of repeatability. 
ϮͿWhen the same method (including the same operator with the same 
device and the same procedure) measures a product item( not only one 
unit of it), the observed variations in the measurements are of two kinds: 
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Variations due to one unit to another,Variations due to the method; such 
that 

୫୴ߪ ൌ ටߪ௧௩ଶ ൅  ௘ଶߪ

Where 
 ,୫୴ is the standard deviation of the measured valueߪ
௧௩ଶߪ  
is the  variance of the measured values of one characteristic of different 
units of one product ; the variance of the product process or population,    
ɐଶୣ 
is the variance of measurement error. 
 
ͿǤ͹ǤͷǤ͸  Estimating the variance and the standard deviation of 
measurement error 
  To estimate the variance of  a measuring system error (ɐ��ଶୣ ), the following 
relationship could be used: 
 

௘ଶߪ �ൌ ��௥௘௣௘௔௧௔௕௜௟௜௧௬�ଶߪ ൅ ��௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬Ǥଶߪ  
 
What follows describes how to  estimate each of the two components. 
Suppose m operator, and a sample of k products are at hand.  Each 
operator measures the ith  product( 1, 2,...,i k )  n times as indicated in 
dĂďůĞ�ϵ-ϭ. The number of such tables are as much as the number of the  
operators i.e. m; in the table 
௜ܺ௝௟: l th measured value by  jth operator of the ith unit of the product. 

 
dĂďůĞ�ϵ-ϭ�ŵĞĂƐƵƌĞŵĞŶƚƐ�ďǇ�ŽƉĞƌĂƚŽƌ�EŽ͘�:�ĨƌŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�Ŭ 

Product 
No.(i) 

k measurements obtained by  
jth operator 

from product No i 

Variance 
( ௜ܵ௝ଶ ) 
 

mean 
( തܺ௜௝) 

Range 
(ܴ௜௝ሻ 

1 ଵܺ௝ଵ � ଵܺ௝௞ ܵଵ௝ଶ  

.  �     

i ௜ܺ௝ଵ � ௜ܺ௝௞ ௜ܵ௝ଶ  

.  �     

n ܺ௞௝ଵ � ܺ௞௝௞ ܵ௡௝ଶ  തܺ௡௝ ܴ௡௝ 
 

  The variances of repeatability and reproducibility could be estimated as 
follows using the m tables. 
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Estimating ࣌��௥௘௣௘௔௧௔௕௜௟௜௧௬૛  
 
 To estimate the variance of repeatability,  for each table calculate the 
mean of ௜ܵ௝ଶ ǡ ݅ ൌ ͳǡǥǡn  and denote it by ఫܵଶതതതǤ  Therefore we have as much as  

m ఫܵଶതതത calculated from 

ఫܵଶതതത ൌ σ ௌ೔ೕమ
௡

௡௜ୀଵ . 

Then ࣌��௥௘௣௘௔௧௔௕௜௟௜௧௬૛  is estimated as follows: 

ɐෝଶ௥௘௣௘௔௧௖௜௕௜௟௜௧௬ σ �ௌണమതതതത
௠

௠௝ୀଵ . 

Estimating ࣌��௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬૛  
 

 To estimate the variance of reproducibility, for each of the m table, 
calculate   the mean of yതŝũǡ ݅ ൌ ͳǡǥ ǡ ݊  �and denote it by �yതത୨ǣ 

�ഥഥ୨ ൌ σ �ଡ଼ഥ౟ౠ
௡

௡௜ୀଵ . 

ɐ��୰ୣ୮୰୭ୢ୳ୡ୧ୠ୧୪୧୲୷ଶ  is estimated as follows: 

ɐෝଶ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬ σ �ሺଡ଼ഥഥౠିଡ଼ഥഥ�ሻమ
୫ିଵ

୫୨ୀଵ  

where 
�ഥഥ� is the  mean of �ഥഥ୨ǡ � ൌ ͳǡ Ǥ Ǥ ǡ �  i.e. 

 yതത ൌ σ �ଡ଼ഥഥౠ
୫

୫୨ୀଵ ൌ σ σ σ ୶ത ŝũ
୫୬୩୨୧ .    

    It is worth mentioning yതത  is an estimate for the true value of the 
characteristic being measured.  
 
Estimating ોܡܜܑܔܑ܊ܑ܋ܝ܌ܗܚܘ܍ܚ�����Ƭ������ોܡܜܑܔܑ܊܉ܜ܉܍ܘ܍ܚ��� 
for  normally distributed measurements 
 
  If the measurements are normally distributed, to estimate  
 
ɐ୰ୣ୮୰୭ୢ୳ୡ୧ୠ୧୪୧୲୷ ,ɐ୰ୣ୮ୣୟ୲ୟୠ୧୪୧୲୷ proceed as follows: 
 
Suppose we have m operators and a sample of  n products; each operator  
measures each of the products k ƟŵĞƐ�͕�ĂƐ�ƐŚŽǁŶ�ŝŶ�dĂďůĞ�ϵ-ϭ͘ 
For each operator there are n ranges(  �୧୨ǡ ݅ ൌ ͳǡ Ǥ Ǥ ǡ ݊ሻ and n standard 
deviations(  �୧୨ǡ ݅ ൌ ͳǡǥ ǡ ݊ሻ;   
calculate  the mean of ranges and standard deviations for each operator as 
follows: 
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�ഥ୨ ൌ෍ܴ௜௝�
݊

௡

௜ୀଵ
�ǡ��������������������������������ത୨ ൌ෍ ௜ܵ௝�

݊
௡

௜ୀଵ
 

����������� 
If the measurements are normally distributed, then 

ɐෝ୰ୣ୮ୣୟ୲ୟୠ୧୪୧୲୷�� �ൌ ഥୖഥ
ୢమሺ୩ሻ     or  

ୗതത
େరሺ୩ሻ 

where   

�ഥഥ ൌ෍�ഥ୨
݉

௠

௝ୀଵ
�ǡ��������������������������തത ൌ෍ �ത୨

݉
௠

௝ୀଵ
Ǥ 

 
�ଶሺ��Ƭ�ସሺ݇ሻ  are coefficients available from Table U at the end of the 

book; the coefficients depend on k, the   number of trials each operator 
make to measure each unit of the sample.  
If the measurements(all �y

ŝũ ) are normally distributed, then 

ɐෝ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬�� �ൌ �ଡ଼ഥഥ
�ଶሺ݉ሻ 

where 
ܴଡ଼ഥഥ ൌ ���൫�ഥഥ୨ǡ � ൌ ͳǡ Ǥ Ǥ ǡ �൯ െ���൫�ഥഥ୨ǡ � ൌ ͳǡ Ǥ Ǥ ǡ �൯ 
�ഥഥ୨ ൌ෍ ��ഥ୧୨

݊
௡

௜ୀଵ
 

�ଶሺ�ሻ is a coefficient available from Table U. 
If the measurements are normally distributed The estimate could also be 
calculated from: 

ɐෝ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬ �ൌ
ඨσ �ሺ�ഥഥ୨ െ �ഥഥ�ሻଶ

݉ െ ͳ௠௝ୀଵ

�ସሺ݉ሻ Ǥ 
 
�ସሺ�ሻ is a coefficient available from Table U. 

 
�ǆĂŵƉůĞ�ϵ͘ϱ 
  A  sample of size n=ϭϬ�ŚĂƐ�ďĞĞŶ�ƚĂŬĞŶ�ĨƌŽŵ�Ă�production process.  Three 
operators measure each of the units of the sample two times.  The results 
are shown below: 
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P

ro
d

u
ct

 
N

o
. (

i)
 Measured by operator 1 

(j=1) 
Measured by operator 2��

(j=2) 
Measured by operator 3 

(j=3) 
1 2 mean 

�ഥ୧୨ 
var 
�୧୨ଶ 

range 
�୧୨ 

1 2 �ഥ୧୨ �୧୨ଶ �୧୨  2 �ഥ୧୨ �୧୨ଶ �୧୨ 

ϭ ϭϱ ϭϰ ϭϰ͘ϱ Ϭ͘ϱ ϭ ϭϲ ϭϲ ϭϲ͘Ϭ Ϭ Ϭ ϭϱ ϭϲ ϭϱ͘ϱ Ϭ͘ϱ ϭ 

Ϯ ϭϳ ϭϵ ϭϴ͘Ϭ Ϯ͘Ϭ Ϯ ϭϴ ϭϳ ϭϳ͘ϱ ͘ϱ ϭ ϭϴ ϭϴ ϭϴ͘Ϭ Ϭ Ϭ 
ϯ ϭϲ ϭϲ ϭϲ͘Ϭ Ϭ Ϭ ϭϳ ϭϱ ϭϲ͘Ϭ Ϯ͘ Ϯ ϭϱ ϭϰ ϭϰ͘ϱ Ϭ͘ϱ ϭ 
ϰ ϭϴ ϭϱ ϭϲ͘ϱ ϰ͘ϱ ϯ ϭϵ ϭϲ ϭϳ͘ϱ ϰ͘ϱ ϯ ϮϬ ϭϳ ϭϴ͘ϱ ϰ͘ϱ ϯ 

ϱ ϮϬ ϮϮ Ϯϭ͘Ϭ Ϯ͘Ϭ Ϯ ϮϬ Ϯϯ Ϯϭ͘ϱ ϰ͘ϱ ϯ Ϯϭ ϮϬ ϮϬ͘ϱ Ϯ͘Ϭ ϭ 

ϲ ϭϰ ϭϳ ϭϱ͘ϱ ϰ͘ϱ ϯ ϭϱ ϭϴ ϭϲ͘ϱ ϰ͘ϱ ϯ ϭϲ ϭϴ ϭϳ͘Ϭ Ϯ͘Ϭ Ϯ 

ϳ ϭϳ ϭϴ ϭϲ͘Ϭ ͘ϱ ϭ ϭϳ ϭϴ ϭϳ͘ϱ ͘ϱ ϭ ϭϵ ϭϵ ϭϵ͘Ϭ Ϭ ϭ 

ϴ Ϯϯ Ϯϰ Ϯϯ͘ϱ ͘ϱ ϭ Ϯϭ Ϯϰ ϮϮ͘ϱ ϰ͘ϱ ϯ ϮϮ Ϯϯ ϮϮ͘ϱ ͘ϱ ϭ 

ϵ ϮϮ ϮϮ ϮϮ͘Ϭ Ϭ Ϭ Ϯϰ Ϯϭ ϮϮ͘ϱ ϰ͘ϱ ϯ Ϯϯ Ϯϯ Ϯϯ͘Ϭ Ϭ Ϭ 

ϭϬсn Ϯϰ Ϯϲ Ϯϱ Ϯ͘Ϭ Ϯ Ϯϯ Ϯϱ Ϯϰ Ϯ͘Ϭ Ϯ Ϯϱ Ϯϰ Ϯϰ͘ϱ Ϭ͘ϱ ϭ 
Mean 

�ഥ୨ ൌ 
18.8 

�఩ଶതതത= 
1.65 

�ഥ ୨= 
1. 5 

 
Mean �ഥ୨ ൌ 

19.15 
�఩ଶതതത= 
2.75 

�ഥ ୨
= 
2.1 

 
Mean �ഥ୨ ൌ 

19.25 

�఩ଶതതത 
= 
0.9 

�ഥ ୨
= 
1.1 

 
To calculate error variance , first its components are calculated: 
 

ɐෝଶ௥௘௣௘௔௧௖௜௕௜௟௜௧௬=σ �ௌണమതതതത
௠

௠௝ୀଵ ൌ �ଵǤ଺ହାଶǤ଻ହା଴Ǥଽ
ଷ ൌ ͳǤ͹͸͸͹ǡ 

 

ɐෝଶ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬ ൌ෍ �൫�ഥ୨ െ �ഥഥ�൯ଶ
͵ െ ͳ

ଷ

௝ୀଵ
�ǡ 

 

���ഥഥ ൌ σ ଡ଼ഥഥౠ
௠

௠௝ୀଵ  = 
�ଵ଼Ǥ଼ାଵଽǤଵହାଵଽǤଶହ

ଷ ൌ ϭϵ͘Ϭϲϲϳ 

 

ɐ�௥௘௣௥௢ௗ௨௖ప௕ప௟ప௧௬ଶ ෣ ൌ�� ൫ଵ଼Ǥ଼మାଵଽǤଵହమାଵଽǤଶହమ൯ିଷכଵଽǤ଴଺଺଻మଶ ൌ �ͲǤͲͷ͵ͻ   

  
௘௥௥௢௥ř�ଶߪ ൌ ��௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬ଶߪ ൅ߪ��௥௘௣௘௔௧௕௜௟௜௧௬ଶ  

 

௘௥௥௢௥ř�ଶ෣ߪ ൌ ͲǤͲͷ͵ͻ� ൅ ͳǤ͹͸͸͹ ൌ ͳǤͺʹ. 

 
If the measurements are normally distributed,  the  following formulae 
could be  used to estimate the standard deviations ; 

ɐෝ௥௘௣௘௔௧௔௕௜௟௜௧௬� �ൌ ഥୖഥ
ୢమሺ୩ሻ �ݎ݋

ୗതത
େరሺ୩ሻ  ,      �������ɐෝ௥௘௣௥௢ௗ௨௖௜௕௜௟௜௧௬� �ൌ

ୖ౔ഥഥ
ୢమሺ୫ሻ�� 
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where  

�ഥഥ ൌ෍�ഥ ୧
݉

௠

௝ୀଵ
 

�ଡ଼ഥഥ=max(�ഥഥ௝)- min(�ഥഥ௝)   ũсϭ͕Ϯ͕ϯсŵ͘ 
 
kсϮ͕�ŝŶ�ŽƵƌ�ĐĂƐĞ͘ 
As a quick check of normality͕�ƚŚĞ�ŚŝƐƚŽŐƌĂŵ�ŽĨ�ƚŚĞ�ϲϬ�ŵĞĂƐƵƌĞŵĞŶƚƐ�was 
built.  The histogram, as shown below, is not symmetric, therefore the 
measurement  are not normally distributed and we cannot use the above 
formulae for estimation.  dŚĞ�ŚŝƐƚŽŐƌĂŵ�ŽĨ�ƚŚĞ�ϲϬ�ŵĞĂƐƵƌĞŵĞŶƚƐ�ŝƐ�ƐŚŽǁŶ�
below. 
 

 
 
9.3.2 Precision and Accuracy of Methods of Measurement 
  Precision and accuracy are two  important  different measures regarding 
the ability of  measurement methods  in determining the value of any 
quality characteristic such as weight, dimensions, hardness, tensile 
strength, etc.  A description of these two concepts follows. 
 

Precision  
    In measuring a characteristic  of a  product, precision is the agreement of 
the individual values obtained in different measuring trials, with each 
other.  The closer the values to each other, the   the more precise  the 
measuring method.  In other words, since when measuring with a method 
the best value as the true value of the characteristic is the expected value  
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0

2

4

6

8

10

Xijl

F
re

qu
en

cy



    Statistical   methods in Quality Control 

ϮϮϵ 

 

of the different  measured values obtainable by the method, the closer the 
values to their mean, the more precise the method.  Therefore precision is 
concerned with the amount of variability inherent in the data set of 
measurement;  the less the variability, the more the precision of the 
method.  Precision is sometimes defined as the reciprocal of the standard 

deviation of error �� ଵ஢೐�� i.e. 

precision of measurement method =
ଵ
஢೐ �� . 

 Sometimes തܺ േ ܵ  is given as the measure of precision, where � X �and S 
are the mean and standard deviation of the different measured values 
given  by the method from the same characteristic.  The more the precision 
of the method, the closer the measured values and the less S  and the 
width of തܺ േ ܵ  .   If the measured values are normally distributed, "we are 
ƌĞĂƐŽŶĂďůǇ� ƐƵƌĞ� ;ĂďŽƵƚ� ϳϬй� ƐƵƌĞͿ� ƚŚĂƚ� ŝĨ� � ƚŚĞ� ƐĂŵĞ� ŵĞĂƐƵƌĞŵĞŶƚ  is 
repeated once more, that next measurement will be less than one 
standard deviation away from the average"( ǁǁǁϮ͘ƐŽƵƚŚĞĂƐƚĞƌŶ͘ĞĚƵͿ. 

     sometimes തܺ േ ௌ
ξ௡  is also computed in this subject.   Suppose you have 

taken multiple measurements  (n trials) with the mean ��ഥand standard 
deviation s.   If you do the entire experiment again with the same number 
of repetitions, ďĞ��ƌĞĂƐŽŶĂďůǇ�ƐƵƌĞ�;ĂďŽƵƚ�ϳϬй�͕ŝŶ�ŶŽƌŵĂů�ĚŝƐƚƌŝďƵƟŽŶͿ  the 

average value of the new experiment will be less than  
ୗ
ξ୬  away from the 

average ܺ�ഥ  ( extracted from ǁǁǁϮ͘ƐŽƵƚŚĞĂƐƚĞƌŶ͘ĞĚƵͿϭ. 
 
Accuracy 
  The accuracy of a measuring method is concerned with the 
agreement  of the individual measured values by the method with 
the reference (true) value.   Complete accuracy of a measuring 
method denotes the absence of  bias, a deviation from the true 
value.  The bias of a measurement method is defined as the 
difference between the expected value of the measurements 
obtainable from the method and the true value.   If the mean of the 
measured values  equals the true value or  
 

E(measured value) = the true value, 
 

there is no bias in the method, and the method is completely 
accurate.  The less the difference, the more accurate the method.  

                                                           
ϭ
ŚƩƉƐ͗ͬͬǁǁǁϮ͘ƐŽƵƚŚĞĂƐƚĞƌŶ͘ĞĚƵͬ�ĐĂĚĞŵŝĐƐͬ&ĂĐƵůƚǇͬƌĂůůĂŝŶͬƉůĂďϭϵϯͬůĂďŝŶĨŽͬ�ƌƌŽƌͺ�ŶĂůǇƐŝƐͬϬϴͺDƵůƟ

ple_Measurements.html 
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"In an accurate method, the average of value obtained from a set of  
measurements  should differ from the true value by not more than 
would be expected a chance variation�"( 'ƌĂŶƚ� ĂŶĚ� >ĞĂǀĞŶǁŽƌƚŚ͕� ϭϵϴϴ�
ƉĂŐĞ�ϯϳϳ).   Figures ϵ-Ϯ�ĂŶĚ�ϵ-ϯ�illustrate the concept of bias and help 
to the better understanding of precision and accuracy. 
  The problem here is how to find the true value in order to talk 
about the method accuracy .   One way of knowing the true value is 
using an available highly precise method of measurement "that is 
believed to be without bias or using a part, in say a metrology 
laboratory, whose dimension is known. 
 

 
Fig.9-2 Illustration of accuracy and precision 

(http://www.dspguide.com/ch2/7.htm) 

 
Fig. 9-3.  Precision and accuracy of a method with normally  
                distributed  measured  values  

(https://en.wikipedia.org/wiki/Accuracy_and_precision) 
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       For more details about this subject and the application of control 
charts to it, see ƌĞĨĞƌĞŶĐĞƐ�ƐƵĐŚ�ĂƐ�dĂǇůŽƌ;ϭϵϵϳͿ͕��DŽŶƚŐŽŵĞƌŝ;ϮϬϬϱͿ, 
MĞƌƌŝŶ;ϮϬϭϳͿ. 
 

 

Exercises 
ϵ͘ϭ 
  ϭϬ�ďĞŐŝŶŶĞƌ�ƐƚƵĚĞŶƚƐ�ŚĂǀĞ�ŵĞĂƐƵƌĞĚ� a characteristic of a part.  The 
results have been shown below. Trained students, using a better 
device and�  ŵĞƚŚŽĚ͕� ŚĂǀĞ� ŽďƚĂŝŶĞĚ� ϰϮϭ͘ϱϴ� ĂƐ� ƚŚĞ� ŵĞĂŶ� ŽĨ� ƚŚĞŝƌ�
measurements for the same part. Can you conclude anything about 
the precision and accuracy  of the beginner measurers? 
 

Student�� Measurements 
��

Discrepancy 
Range)���

Average value��
�X
���

A ϰϮϭ͘ϱϵ ϰϮϭ͘ϯϳ Ϭ͘ϮϮ ϰϮϭ͘ϰϴ 

B ϰϮϭ͘ϳϯ ϰϮϭ͘ϲϱ Ϭ͘Ϭϴ ϰϮϭ͘ϲϵ 

C�� ϰϮϭ͘ϳϬ ϰϮϮ͘Ϯϴ Ϭ͘ϱϴ ϰϮϭ͘ϵϵ 

D�� ϰϮϭ͘ϳϵ ϰϮϭ͘ϳϮ Ϭ͘Ϭϳ�� ϰϮϭ͘ϳϲ 

E�� ϰϮϭ͘ϲϰ ϰϮϭ͘ϲϳ Ϭ͘Ϭϯ ϰϮϭ͘ϲϲ 

F ϰϮϭ͘ϱϴ ϰϮϭ͘ϱϲ Ϭ͘ϬϮ ϰϮϭ͘ϱϳ 

G ϰϮϭ͘ϱϯ ϰϮϭ͘ϲϵ Ϭ͘ϭϲ ϰϮϭ͘ϲϭ 

H�� ϰϮϭ͘ϱϮ ϰϮϭ͘ϲϲ Ϭ͘ϭϰ ϰϮϭ͘ϱϵ 

I ϰϮϭ͘ϲϵ ϰϮϭ͘ϲϴ Ϭ͘Ϭϭ ϰϮϭ͘ϲϴ 

J�� ϰϮϭ͘ϳϲ ϰϮϭ͘ϲϵ Ϭ͘Ϭϳ ϰϮϭ͘ϳϮ 

 
ϵ͘Ϯ 
  dŚĞ� ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶ�ŽĨ� ƚŚĞ�ŵĞĂƐƵƌĞĚ�ǀĂůƵĞƐ�ŽĨ�Ă� ĐŚĂƌĂĐƚĞƌŝƐƟĐ� ŝƐ�ϰϬ͘�
But the standard deviation of the measurement error of the characteristic 
ŝƐ�ϭϱ͘ 
a)Find the standard deviation of the true value of this characteristic. 
b)What amount of improvement in the standard deviation of the measured 
values  of  this technique is required to reduce the standard deviation of  
ĞƌƌŽƌ�ƚŽ�Ϯй�ŽĨ��ƚŚĞ�ƐƚĂŶĚĂƌĚ�ĚĞǀŝĂƟŽŶ�ŽĨ�ƚŚĞ�ƚƌƵĞ�ǀĂůƵĞ͍ 
ϵ͘ϯ 
The weight of one specified  part has been measured twenty times 
with one device and one method as recorded in the following table 
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��
 

iX  i ��
 

iX
 

i 

0.0002 0.8150 11 0.0002 0.8150 1 

0.0002 0.8150 12 0.0002 0.8150 2 

0.0002 0.8150 13 0.0012 0.8160 3��

0.0002 0.8150 14 0.0002 0.8150 4 

0.0002 0.8160 15 0.0002 0.8150 5 

-0.0008 0.8140 16 0.0002 0.8150 6 

-0.0008 0.8140 17 -0.0008 0.8140 7��

0.0002 0.8150 18 -0.0008 0.8140 8 

0.0002 0.8150 19 0.0002 0.8150 9 

-0.0008 0.8140 20 -0.0008 0.8140 10 

 
What value do you recommend as an estimate for the true weight? 
 
What is the standard deviation of the measurement error? 
 
Specify the precision interval i.e. തܺ േ ܵ  for this device  
Answer  തܺ േ ܵ  сϬ͘ϴϭϰϴേͲǤͲͲͲ͸Ǥ 
If the entire measurement trials are repeated and the mean of the 
measured values is calculated, give an interval which  you are ϳϬй�
confident  the mean will fall in it.   

ϵ͘ϰ 
   In ĮŐƵƌĞ�ϵ-ϭ͕� ƚŚĞ� ŝnner part diameter is normally distributed with mean 
Ϭ͘ϱϬϬϱ� Θ� ƐƚĂŶĚĂƌĚ� ĚĞǀŝĂƟŽŶ� Ϭ͘ϬϬϭϱ� ĂŶĚ� ƚŚĞ� ŽƵƚĞƌ� ƉĂƌƚ� ŚĂƐ� Ă� ŶŽƌŵĂůůǇ�
distributed internal diameter with mean Ϭ͘ϱϭϮϬ� Θ� ƐƚĂŶĚĂƌĚ� ĚĞǀŝĂƟŽŶ�
Ϭ͘ϬϬϭϬ͘� � � tŚĂƚ� is the probability that the inner part have a diameter 
greater than that of the internal part? 
Ans.�ͺǤ͵ͷͶͺ ൈ ͳͲିଵଵ . 

ϵ͘ϱ� 
  Suppose a shaft with  a cross section normally distributed (ߤଶǡǡ  ଶǡሻ isߪ
fitted into a bearing with internal diameter normally distributed(ߤଵǡߪଵǡሻ.   
What percent of the shafts cannot enter the bearings at all? Find the 
answer in terms of the parameters. 

 
 

Your best friend is your good mannerism 

XX i  XX i 
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Chapter   ͳͲ Acceptance Sampling: Fundamental 
                          Concepts& Dodge-Romig  Tables           
Aims 
 
   At  the beginning of  this chapter control methods used  to accept or 
reject  production  lots are briefly introduced .  Then  the chapter deals 
with one of  these  control methods i.e. acceptance sampling in detail.  The 
chapter also defines double and multiple sampling  and introduces  
operating  characteristic (OC)& AOQ curves which shows the extent of the 
ability  of a sampling procedure for distinguishing between  good  and bad 
lots.   Important points of the OC curve and AOQ  curves  such as AQL and 
AOQL  which help designing  sampling plans, are also introduced here.    
Finally this chapter  introduces Dodge-Romig tables to  design  sampling 
plans  for accepting/rejecting  a lot given  (LTPD) LQL�or AOQL.  
 
ͳͲǤͳ�   Inspection Techniques for Accepting or Rejecting 

Production lots  
  To  know the degree of  the agreement of the quality of the input  
materials or  produced  goods with the given specifications or standards,  
several procedures  and tests are used depending on the customer wants 
and needs and the possibility of implementing the procedure.   Spot 
ĐŚĞĐŬŝŶŐ͕�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�͕�ĐĞƌƟĮĐĂƟŽŶ�ĂŶĚ�ĂĐĐĞƉƚĂŶĐĞ�ƐĂŵƉůŝŶŐ�ĂƌĞ�ϰ� 
ways  of  checking product quality which  are described below. 
 
ͳͲǤͳǤͳ   Spot checking 
     Spot checking is a  quality control system, in which often the quality of  
ϭϬй�ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ�ůŽƚ��ŝƐ�ĐŚĞĐŬĞĚ�;ďĂƐĞĚ�ŽŶ�ǇĞƐ�Žƌ�ŶŽͿ͖�  the lot is accepted 
if  the  ϭϬй�-sample  contains no  defectives.   No special arrangement is 
specified for taking the sample.     
    In a different  method of  ƐƉŽƚ�ĐŚĞĐŬŝŶŐ�͕�ĞǀĞƌǇ�ƐĂǇ�ϱϬth or ϮϬth� unit of 
the product  is checked for acĐĞƉƚĂŶĐĞ͘��&Žƌ�ĞǆĂŵƉůĞ�ŝŶ�Ă�ůŽƚ�ŽĨ�ϭϬϬϬ�ƵŶŝƚƐ͕�
ĞǀĞƌǇ�ϱϬth is  checked. i.e.  ϱϬth ͕�ϭϬϬth͕�ϭϱϬth ,�ƚŽƚĂůůǇ�ϮϬ�ƵŶŝƚƐ�ĂƌĞ�ĐŚĞĐŬĞĚ͘   
If one defective was found, all units between this defective  and the 
ƉƌĞǀŝŽƵƐ�ŽďƐĞƌǀĞĚ�ƵŶŝƚ� ŝƐ�ϭϬϬй inspected; all defectives must be replaced 
with  new ones.  As an  example if , say ƚŚĞ�ϯrd one ŝ͘Ğ͘�ϭϱϬth unit is found 
defective,  it is necessary to inspect all unitƐ� � ĨƌŽŵ� ϭϬϭth ƚŽ� ϭϰϵth 
individually.  If none of these units is defective, only  ϭϱϬth unit will be  
replaced with a non-ĚĞĨĞĐƟǀĞ� ĂŶĚ� ƚŚĞ� ƉƌŽĐĞĚƵƌĞ� ŽĨ� ĐŚĞĐŬŝŶŐ� ĞǀĞƌǇ� ϱϬth 
unit will continue;  all the defectives ďĞƚǁĞĞŶ�ϭϬϭth ĂŶĚ�ϭϰϵth  units, if any, 
would be replaced by non-defectives.  
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Spot checking is costly and  does not obey probability rules and has no 
scientific justification.    Statistical sampling is preferred to spot checking. 
 
ͷͶǤͷǤ͸  ͷͶͶά������������   
   ϭϬϬй� ŝŶƐƉĞĐƟŽŶ  at first glance  might seem to be the best and most 
certain  procedure to meet quality targets;  however in practice this 
procedure has proved to be not  that precise as it is expected. The 
monotony and repetitiveness of  the work content  might produce  fatigue, 
dizziness and boredom.  As a result all defectives are not  detected.  
Another negative point  of this procedure is the cost, which may cause 
ĞǆĐůƵĚŝŶŐ� � ƚŚĞ� ŝŶƐƉĞĐƟŽŶ�ŽĨ� ƐŽŵĞ� ƉƌŽƉĞƌƟĞƐ� ƚŽ� ƌĞĚƵĐĞ� ƚŚĞ� ĐŽƐƚ͘� � � ϭϬϬй�
inspection  by automated means is likely but often costly. 
 
ͷͶǤͷ.͹  Certification   
    Supplier / vendor certification assures that a product is produced, 
packaged, and shipped under a controlled process resulting in consistent 
conformance to our requirements. The primary objective of the 
certification process is to assure consistent high quality and conformance 
to our requirements. If the supplier/vendor has good reputation for the 
quality of its product, certification eliminates or substantially reduce  the 
need for final quality inspections by its customers. 
 
ͳͲǤͳǤͶ��Acceptance Sampling  
     In this procedure, for accepting or rejecting lots  random samples are 
taken from the lots and are inspected.  The decision for accepting the lot 
will be made after inspecting the products of the sample based  on a  an 
attribute characteristic or a variable characteristic. Accepting or rejecting 
lots on a variable  basis will be discussed in ĐŚĂƉƚĞƌ� ϭϯ͘ The rest of this 
ĐŚĂƉƚĞƌ�ĂŶĚ�ĐŚĂƉƚĞƌ�ϭϮ�ĚĞĂů�ǁŝƚŚ� acceptance sampling by attributes. 
 
ͳͲǤʹ�Acceptance Sampling by Attributes 
   In this procedure, for accepting or rejecting lots  random samples are 
taken from the lots and are inspected on an attribute basis.   This 
procedure is called acceptance sampling by attributes.  Sampling may be 
single, double and multiple.  
   
Some examples of attribute inspection are: 

-Checking whether  a product is defective or not,    
- Checking whether there is a special sign is on the part or not,  
- Testing a diameter of product by a go/no-go  gauge to see if it is sized 
correctly. 
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List of symbols 
AS Acceptance Sampling 

Ac=c Acceptance number, allowable number of defectives in sample 
cϭ  Acceptance number for first sample  in double sampling    ��
cϮ allowable number of defectives in  combined  first and second samples 
D The number of defectives in the lot 
n Sample size 

1n  ^ŝǌĞ�ŽĨ�ϭst sample in double sampling��

2n  ^ŝǌĞ�ŽĨ�Ϯnd  sample in double sampling 
N Lot size 
ܦ
ܰ 

lot Proportion defectives   

݌ Proportion defective in sample ݌ ൌ ௥
௡Ǥ 

'p  Proportion defective of  production process 

aP  The probability of lot acceptance in a sampling plan  

0.10

0.95

0.99

,

,

,...

p

p

p

 
Proportion defectives having aP ŽĨ�͘ϬϭϬ͕�Ϭ͘ϵϱ ĂŶĚ�Ϭ͘ϵϵ�ĞƚĐ�ƵŶĚĞƌ�ĂŶǇ�

given acceptance criteria   

r Number  of defectives in  a sample of size n 
  WƌŽĚƵĐĞƌ�ZŝƐŬ͕�ƚǇƉĞ�ϭ�ĞƌƌŽƌ͕�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ƌĞũĞĐƟŶŐ�ƉƌŽĚƵĐƚ�ŽĨ�ƐŽŵĞ�

stated desirable quality,
 1 Pa   . Common ߙ ͚Ɛ�ĂƌĞ�Ϭ͘Ϭϭ͕�Ϭ͘Ϭϱ͕ Ϭ͘ϭϬ.  

 �ŽŶƐƵŵĞƌ�ZŝƐŬ͕�dǇƉĞ�Ϯ�ĞƌƌŽƌ͕�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĂĐĐĞƉƟŶŐ a product of ߚ
some stated desirable quality.   Common ߚ ͚Ɛ�ĂƌĞ�Ϭ͘Ϭϭ͕�Ϭ͘Ϭϱ͕Ϭ͘ϭϬ. 

                             
   Acceptance sampling is a statistical technique in quality control.  In this 
technique a random sample is taken from the lot, then using some well-
known tables it is decided to accept or reject the lot. Acceptance Sampling 
is used not only in the final stage of a product,   but also for the quality 
control of raw materials and semi-finished products. 
  Since no sampling plan ŐŝǀĞƐ� ϭϬϬй confidence, to determine an 
acceptance sampling plan the amount of  risksߚ��݀݊ܽ��ߙ� which are 
acceptable to the concerned user have to be specified. 
  
Types of Acceptance Sampling Plans 
   Acceptance sampling plans can be single, double or multiple: 
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   In acceptance sampling, not that costly and time-consuming 
ĐŽŵƉĂƌĞĚ�ƚŽ�ϭϬϬй�ŝŶspection,  a product lot is accepted or rejected 
based on simple random samples taken from it .   A simple random 
sample is one taken from a population in such a way that the 
members of the population have an equal chance of being chosen. 
 
 
10.2.1 Single Acceptance Sampling  
  In this sampling procedure, one random sample of size n is taken from the 
lot;  if the number of defectives in the sample exceeds a number called 
acceptance number and denoted by �c or Ac�, the lot would be rejected.  
Let us  assume that when a lot is rejected, ŝƚ�ŝƐ�ϭϬϬй�ŝŶƐƉĞĐƚĞĚ�ĂŶĚ�Ăůů�the 
defectives are replaced by good items at the expense of the vendor or 
supplier before the lot is released.  Rejection or acceptance number(c ), 

Type Parameter symbol Parameter Description 
 

Single Sampling n , c��
n:sample size, 
c: allowable number of 
defectives in sample 

 
 

Double Sampling 

2211 ,,, cncn��

,1 2n n : ĮƌƐƚ�ĂŶĚ�Ϯnd 

samples  sizes, 
1c : allowable number of 

defectives in ϭst sample 

2c : allowable number 

of defectives in  
combined  first and 
second samples  

 
 

Multiple Sampling 

kk cncn ,,...,, 11��

,...,1 kn n : sample sizes, 
1c : allowable number of 

defectives in ϭst sample, 

2c : allowable number 

of defectives in  
combined  first and 
second samples, 

kc : allowable number 

of defectives in  
combined  ƐĂŵƉůĞƐ�ϭ�
through k  
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sample size( n ) and population size (N) play key roles in single sampling 
plans.  Let X denote the number of defectives in the sample, then the 
probability of accepting the lot with a single acceptance sampling plan 
would be: 

     Pr( ) Pr 0 Pr 1 PrPa X c X X ... X c        
. 

Example ϭϬ͘ϭ 
  A lot of size NсϭϬϬϬ is inspected using the single sampling plan Ŷсϱ�& ĐсϬ͖�
what is the probability of accepting the lot by this plan for  

' '0.02% & 0.02.p p   
 
Solution 
EсϭϬϬ͕Ŷсϱ͕ĐсϬ͘ 
Since  

௡
ே ൌ ͲǤͲͷ ൏ ͲǤͳͲ� the distribution  of X is considered binomial. 

Let X denotes the number of defectives in the sample; 
0 5

0 5

5
' 0.02 : Pr( 0) (0.02) (0.98) 0.904

0

5
' 0.0002 : (0.0002) (0.9998) 0.999

0

a

a

p P X c

p P

 
      

 
 

   
 

 

 
ͳͲǤʹǤͳǤͳ  Operating Characteristic Curve  (OC Curve) 
 

  In quality control an operating  characteristic (OC) curve plots  acceptance  
probability of a lot of items versus a quality level which is most commonly  
p'( lot fraction defective) or R(product reliability).  The former is discussed 
ŝŶ�ƚŚŝƐ�ĐŚĂƉƚĞƌ�ĂŶĚ�ƚŚĞ�ůĂƩĞƌ�ǁŝůů�ďĞ�ĚĞĂůƚ�ŝŶ�ĐŚĂƉƚĞƌ�ϭϰ͘� The graph shows 
how well the acceptance sampling plan discriminates between good and 
bad lots.   The OC curve with its discriminatory power could be used to 
compare various sampling plans in order to choose an appropriate one.   
  The OC curve of an acceptance sampling plan described in this chapter 
depicts  Pa, the probability of accepting a lot, versus its  quality p' .  p' is the 
process ĨƌĂĐƟŽŶ�ĚĞĨĞĐƟǀĞ�ǁŝƚŚ�ŵŝŶŝŵƵŵ�ǌĞƌŽ�ĂŶĚ�ŵĂǆŝŵƵŵ�ϭ͘���tŚĞŶ�ĨŽƌ�
various p', the corresponding Pa's are calculated  and plotted against each 
other on an X-Y plot, the resulted curve is the OC curve.  On the horizontal 
axis, ϭϬϬƉΖ�ĐŽƵůĚ�ďĞ shown instead of p'.  In this chapter the emphasis  will 
be  on the OC curves for single sampling plans.� �What follows is a brief 
description of so-called called type A and B OC curves. 
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ͳͲǤʹǤͳǤͳǤͳ  Type A and Type B     OC  curves 
  The fundamental tool for the analysis of sampling plans is the OC curve.  
K��ĐƵƌǀĞƐ�ĂƌĞ�ĐůĂƐƐŝĮĞĚ�ŝŶƚŽ�Ϯ�ƚǇƉĞƐ: 
 
 ϭͿƚǇƉĞ����K��ĐƵƌǀĞƐ�ĂŶĚ     ϮͿ�ƚǇƉĞ���K��ĐƵƌǀĞƐ͘� 
      
Type  A is for  sampling from an individual (or isolated); it plots  the 
probability that the lot will be accepted against lot proportion defective.  
  
Type B is for sampling from a large lot or a  process (such as the producer�s 
process, which produced the lot).  In this type shows proportion of lots 
which will be accepted(Pa) is plotted against the process proportion 
defective.   
  Naturally, the probability distributions utilized in plotting these types of 
OC curves are inherently different(Schilling,NeubĂƵĞƌ͕ϮϬϬϴ���ĐŚĂƉƚĞƌϰͿ  
  In Type A  OC curves  sampling is done from an individual finite lot, and 
Pa's are   computed and plotted versus  lot qualities i.e. lot fraction 
defectives. 
   In Type B  OC curves  sampling is done from a process or lots of  largish 
size as if the lot size were infinite.  Pa is   computed and plotted versus 
product or process quality i.e. process fraction defectives. 
The statistical distributions utilized  for plotting each type are naturally 
different . 
      "In principle, Type A curves should be computed using hyper-geometric 
distribution for which  the binomial or Poisson distribution often give satisfactory 
approximations.   Such curves are discontinuous; e.g. ŝŶ�Ă� � ůŽƚ�ŽĨ�ϮϬϬ� ŝƚĞŵƐ�ƚŚĞƌĞ�
ŵĂǇ�ďĞ�Ϭ͘ϱ�Žƌ�ϭй�ĚĞĨĞĐƟǀĞ�ďƵƚ�ŶŽƚ��Ϭ͘ϴй�ĚĞĨĞĐƟǀĞ͖�ŚŽǁĞǀĞƌ�ŝƚƐ�ĐŽŵŵŽŶ�ƚŽ�ĚƌĂǁ�
this type as continuous" ;ĞǆƚƌĂĐƚĞĚ�ĨƌŽŵ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞϰϬϲͿ.  
  
  In type B, probabilities are calculated as if the lot size is infinite and  in 
principle , binomial distribution has to be utilized for this calculation; 
however Poisson distribution gives good results.  Such curves are 
ĐŽŶƟŶƵŽƵƐ͘� � &ŝŐƵƌĞ� ϭϬ-ϭ� ƐŚŽǁƐ� K�� ĐƵƌǀĞ� ĨŽƌ� ďŽƚŚ� ŝŶĮŶŝƚĞ� ĂŶĚ� ĮŶŝƚĞ�
populations.  
  For the same sampling plan, type A OC curve is always below the type B 
OC curve  i.e. type A curve always gives less probability of acceptance than 
type B curve.  As the lot size increases, type A curve approaches type B 
curve. 
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��
Fig. ϭϬ-ϭ� OC curve for a finite population(A)  & an infinite population(B). 

        
   In practice, if the population is infinite or 

௡
ே ൏ ͲǤͳ, the probabilities of 

single sampling plan is calculated using binomial distribution.   The 
following MATLAB commands could be used to plot  type B OC curve: 
 
      хх�ƉƉƌŝŵĞс�Ϭ͗͘Ϭϭ͗ϭ͖WĂ�с�ďŝŶŽĐĚĨ;Đ͕Ŷ͕�ƉƉƌŝŵĞͿ͖��ƉůŽƚ;ƉƉƌŝŵĞ͕WĂͿ 
 
  &ŝŐƵƌĞ�ϭϬ-Ϯ�ƐŚŽǁƐ�ƚŚĞ�K��ĐƵƌǀĞƐ��ŽĨ�ϯ�ƉůĂŶƐ͕�ǁŚŝĐŚ�ŚĂǀĞ�ďĞĞŶ�
plotted using the following commands assuming  

୬
୒ ൏ ͲǤͳ, 

      >>�ƉƉƌŝŵĞсϬ͗Ϭ͘Ϭϭ͗ϭ͖ƉĂсďŝŶŽĐĚĨ;Ϭ͕ϱ͕�ƉƉƌŝŵĞͿ͖ƉůŽƚ;ƉƉƌŝŵĞ͕ƉĂͿ ; 
hold on;  
      >>�ƉƉƌŝŵĞсϬ͗Ϭ͘Ϭϭ͗ϭ͖ƉĂсďŝŶŽĐĚĨ;ϭ͕ϱ͕�ƉƉƌŝŵĞͿ͖ƉůŽƚ;ƉƉƌŝŵĞ͕ƉĂͿ͖ 
hold on; 
     >>�ƉƉƌŝŵĞсϬ͗Ϭ͘Ϭϭ͗ϭ͖ƉĂсďŝŶŽĐĚĨ;ϰ͕ϮϬ͕�ƉƉƌŝŵĞͿ͖ƉůŽƚ;ƉƉƌŝŵĞ͕ƉĂͿ͖ 
 
   Also, in practice if 

௡
ே ൒ ͲǤͳ, Pa (the probability of defectives in the sample  

not exceeding the specific number c) is calculated using hyper-geometric 
distribution.  The command for Pa=Pr(X c)  in MATLAB is as follows: 

Pa=hygecdf(c,N,D,n)   
where 
C Acceptance  number 
N Lot size 
D Number of defectives in the lot 
N Sample size 
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&ŝŐ͘�ϭϬ-Ϯ��ŽŵƉĂƌŝƐŽŶ�ŽĨ�ϯ�ƉůĂŶƐ�ƵƐŝŶŐ�K���ƵƌǀĞ�dǇƉĞ��1 

 
 

Example ϭϬ͘Ϯ��
��Plot the OC curves for the following plans.  The samples are taken from a 
production process. 
Plan I:Ŷсϱ�͕ĐсϬ              PlanII:Ŷсϱ�͕�Đсϭ                  plan III:ŶсϮϬ͕Đсϰ  
 
Solution 
  Since  the sampling is taken from the process, the population size is 
considered infinite and  

௡
ே   assumed small,  therefore the OC curve is of 

type B and the  binomial distribution is utilized to plot the OC curve. 

 
0

Pa=Pr(X c)= ' 1 '
C

n rr

r

n
p p

r






 

 
 

  

&Žƌ�WůĂŶ�ϭ͗� 

   np
n

pp
n

Pa 


 







1

0
1

0
'

0  
Therefore for constructing ƚŚĞ�K��ĐƵƌǀĞ�ŽĨ�ƉůĂŶ�ϭ�͕�compute  Pa= 1 '

n
p

ĨŽƌ�ƐĞǀĞƌĂů�ƉΖ�ďĞƚǁĞĞŶ�Ϭ�ĂŶĚ�ϭ, and plot the pairs  in an X-Y coordinates.  
The following table shows the  values of Pa calculated with binocdf 

                                                           
ϭ�With thanks to Mr Amir Hossein Ghassemi, a graduate of Shahid Bahonar 
University of Kerman,Iran  
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command in MATLAB  and Fig. ϭϬ-ϯ� ƐŚŽǁƐ� ƚŚĞ� K�� ĐƵƌǀĞ� ĨŽƌ� WůĂŶ� I 
;Ŷсϱ,ĐсϬͿ. 
 

Ϭ͘ϵϱ Ϭ͘ϵ Ϭ͘ϴ Ϭ͘ϲ Ϭ͘ϰ Ϭ͘Ϯ Ϭ͘ϭ Ϭ͘Ϭϱ Ϭ͘ϬϮ Ϭ P' 
ϰ͘ϳϱ ϰ͘ϱ ϰ ϯ Ϯ ϭ Ϭ͘ϱ Ϭ͘Ϯϱ Ϭ͘ϭ Ϭ np' 

Ϭ͘ϬϬϬ Ϭ͘ϬϬϬ Ϭ͘ϬϬϬ Ϭ͘ϬϭϬ Ϭ.Ϭϳϳϴ Ϭ͘ϯϯ Ϭ͘ϱϵϭ Ϭ͘ϳϳϰ Ϭ͘ϵϬϰ ϭ Pa= Pr(X
c) 

 
Fig. 10-3 The OC curve for plan 1 (n=5 &c=0) 

&Žƌ�WůĂŶ�Ϯ͗� 

 
0

Pa=Pr(X c)= ' 1 '
C
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p p

r





 

 
 

  

    Ŷсϱ����   Đсϭ 
  &Žƌ�ƉůŽƫŶŐ�ƚŚĞ�K��ĐƵƌǀĞ�ŽĨ�ƉůĂŶ�Ϯ�͕Pa is computed for several p' between 
Ϭ�ĂŶĚ�ϭ͕�ĂŶĚ�ƚŚĞ�ƉŽŝŶƚƐ�ĂƌĞ�ƐŚŽǁŶ�ŝŶ�ĂŶ�y-Y coordinates.  In a  similar way 
ƚŚĞ�K��ĐƵƌǀĞ�ĨŽƌ�ƉůĂŶ�ϯ�ŝƐ�ƉůŽƩĞĚ͘��dŚĞ�ĨŽůůŽǁŝŶŐ�ƚĂďůĞ  ĂŶĚ�&ŝŐ�ϭϬ-ϰ shows  
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��
Fig. 10-4 The OC curves for Plans (n=5,c=1) and 

(n=20,c=4). 
 

the acceptance probabilities and the OC curves for Plan II&III.  For example  
ŝĨ� ƚŚĞ� ĨƌĂĐƟŽŶ�ĚĞĨĞĐƟǀĞƐ�ŽĨ�Ă�ƉƌŽĚƵĐƟŽŶ�ƉƌŽĐĞƐƐ� ŝƐ�Ϭ͘ϬϮϯ͕� ƚŚĞ�ƉĞƌĐĞŶƚ�ŽĨ�
the lots accepted using plans II &III are calculated as follows: 

1
r 5-r

a
r=0

5
P =Pr(X 1)= (0.023) (1-0.023)

r

 
  

 


 
Plan II      (1,5,0.023) 0.9949 99.49%aP binocdf    

Plan III      (4,2,0.023) 0.9999 99.99%aP binocdf   . 

 
As the table shows the percent of accepted lots (Pa) is high for low fraction 
defectives. 
 
 
Example ϭϬ͘ϯ 
  Plot the OC curve for ƚŚĞ� ƐŝŶŐůĞ� ƐĂŵƉůŝŶŐ�ƉůĂŶ�ŶсϭϬϬ͕Đсϭ. The lot size is 
largish.  
Solution  
  Since  the sampling is taken from a large population and 

௡
ே  is assumed 

small,  the  binomial distribution is used for calculating the acceptance 
probabilities:  

 aP P X c 
 

 
1

100

0

100
Pr( 1) ( ) 1

xx
a

x

P x p p
x





       
 


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 however, as the following table shows the Poisson distribution 
approximates it well. 
 

�ŽŵƉĂƌŝƐŽŶ�ŽĨ�WĂ�ĨŽƌ�WůĂŶ��ŶсϭϬ͕�Đсϭ computed with exact and approximate methods 

p' ݊݌ᇱ ൌ  ࣅ
Pa 

Binomial(exact method) Poisson (approximate method) 
Ϭ Ϭ ϭ ϭ 
Ϭ͘Ϭϭ ϭ Ϭ͘ϳϯϱ Ϭ͘ϳϯϲ 
Ϭ͘ϬϮ Ϯ Ϭ͘ϰϬϯ Ϭ͘ϰϬϲ 
Ϭ͘Ϭϯ ϯ Ϭ͘ϭϵϰ Ϭ͘ϭϵϵ 
Ϭ͘Ϭϰ ϰ Ϭ͘Ϭϴϳ Ϭ͘ϬϵϮ 
Ϭ͘Ϭϱ ϱ Ϭ͘Ϭϯϳϭ Ϭ͘Ϭϰ 
Ϭ͘ϭ ϭϬ ͵Ǥʹʹ ൈ ͳͲିସ ͶǤͻͻ ൈ ͳͲିସ 
Ϭ͘Ϯ ϮϬ ͷǤ͵ ൈ ͳͲିଽ ͶǤ͵ʹ ൈ ͳͲି଼ 

 
Figure ϭϬ-ϱ�ĐŽŵƉĂƌĞƐ�ƚŚĞ�ƚǁŽ�ƐĞƚ�ŽĨ�ƉƌŽďĂďŝůŝƟĞƐ͘���Ɛ�ƚŚĞ�ĮŐƵƌĞ�ƐŚŽǁƐ, the 
two sets  of probability cannot be distinguished.    

 
&ŝŐ͘�ϭϬ-ϱ�Pa versus lot proportion defectives for Plan ŶсϭϬϬ�͕Đсϭ͘��

��
In quality control, OC curve could be used to  select the plans that are 
effective in reducing risks.   �ŽŶƐŝĚĞƌ�WůĂŶƐ��͕��ĂŶĚ���ŝŶ�&ŝŐ͘�ϭϬ-ϲ͘���dŚĞ�K���
curve of each plan has been plotted using the following MATLAB 
command, given n and c: 
 
 ƉůŽƚ;Ϭ͗͘Ϭϭ͗ϭ͕ďŝŶŽĐĚĨ;Đ͕Ŷ͕Ϭ͗͘Ϭϭ͗ϭͿͿ͘ 
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��
Fig. 10-6 OC curves of 3 plans with the same c and 

different n. 
 

    For a particular proportion defective p', the acceptance probability in 
Plan C is greater than the corresponding values in Plan B  and that of Plan B 
is greater than that in Plan C.  The choice of right  procedure ĨƌŽŵ�ƚŚĞƐĞ�ϯ�
different  plans depends on the lot  or batch proportion defective.  When 
the proportion is  high, Plan A is appropriate;  when the proportion is low 
Plan C is appropriate (why?).  &ŝŐƵƌĞƐ� ϭϬ-ϳ ĂŶĚ� ϭϬ-ϴ compare two  OC 
curves;  the interpretations are left to the readers. 
 

Fig. 10-7   OC curves for 2 plans�� Fig. 10-8  OC curves for 2 
other plans 

 
ͷͶǤ͸ǤͷǤͷ.ʹ   Ideal  OC curve 
   An ideal OC curve deals with the  inspection procedure in which one 
might want to accept all lots whose proportion defectives are not greater 
than a desired proportion ݌଴ᇱ  and rejects all lots with proportion defectives 
greater than ݌଴ᇱ . The only way to have the ideal OC curve is one hundred 
percent  inspection.  When the acceptance criterion (e.g.  number c in 
single sampling plans "where c is the maximum number of defective items 
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that can be found in the sample and the lot still be accepted", Encyclopedia 
Britannica) is kept unchanged;  the larger the sample size of the plan used 
for inspection, the nearer the OC curve approaches the ideal.� 
 

Fig.10-9 An Ideal OC curve. Fig.10-10 Effect of n on slope, 
c constant 

�  
ͳͲǤʹǤͳǤͳǤ͵  Effect of sample size on OC curve  
 If n is kept constant, when the acceptance criterion c reduces, the  
OC curve tends to ideal and the discriminatory power of the plan in 
distinguishing between good and bad lots increases.  See &ŝŐ͘�ϭϬ-ϲ.   
 
ͷͶǤ͸ǤͷǤͷǤͺ  Effect of acceptance number (c )on OC curve 
   If the acceptance number( c) is kept constant, as we increase the sample 
size, the slope of the OC curve and the discriminatory power of the plan in 
distinguishing between good and bad lots increases and the curve tends to 
ŝĚĞĂů͘���^ĞĞ�&ŝŐϭϬ-ϭϬ͘ 
 

ͳͲǤʹǤͳǤͳǤͶ Effect of  constant ratio  ࡺ࢔ on OC curve 
  Before the widespread  use of modern acceptance sampling systems, a 
common practice in industry was to specify that the sample inspected 
should be some fixed percentagĞ�ŽĨ�ƚŚĞ�ůŽƚ�ƐƵĐŚ�ĂƐ�ϱ͕�ϭϬ͕�ϮϬй.   &ŝŐƵƌĞ�ϭϬ-
ϭϭ�ƐŚŽǁƐ�ŚŽǁ�ǁƌŽŶŐ�ƚhis idea ƌĞĂůůǇ�ŝƐ;'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�
ϯϵϴ-ϵͿ͘� The absolute size of random sample is much more important than 
its relative size compared to the size of the lot; i.e. fixed  sample size tends 
ĐŽŶƐƚĂŶƚ� ƋƵĂůŝƚǇ� ƉƌŽƚĞĐƟŽŶ;'ƌĂŶƚ� ĂŶĚ� >ĞĂǀĞŶǁŽƌƚŚ� ͕� ϭϵϴϴ� ƉĂŐĞ� ϰϬϭͿ͘��
Instead, fixed n and c for different lot size(N) is much better than fixed �୬୒ 

;&ŝŐ͘�ϭϬ-ϭϮͿ͘ 
 
��
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FiŐ͘�ϭϬ-ϭϭ��ŽŵƉĂƌŝƐŽŶ�ŽĨ�K��ĐƵƌǀĞƐ��

   having the same��
 

��
&ŝŐ�ϭϬ-ϭϮ͕�&ŝǆĞĚ�Ŷ�ΘĐ�͕�ǀĂƌŝĂďůĞ�E��

;'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�ϰϬϭ�������������������� 

Definitions 
  Associated with  each  sampling plan there is an OC curve on which two or 
three important points denoted by 
to the users of the plan.  These points are defined as follows:

Control 

Ϯϰϳ 

 

ϭϭ��ŽŵƉĂƌŝƐŽŶ�ŽĨ�K��ĐƵƌǀĞƐ for ϰ��plans
having the same܌ܖ܉�܋��� . ۼܖ

ϭϮ͕�&ŝǆĞĚ�Ŷ�ΘĐ�͕�ǀĂƌŝĂďůĞ�E
;'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ�͕�ϭϵϴϴ�ƉĂŐĞ�ϰϬϭ, re-plotted).

 

Associated with  each  sampling plan there is an OC curve on which two or 
denoted by  AQL, LQL(LTPD) and IP are of interest 

These points are defined as follows: 
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ͷͶǤ͸ǤͷǤ͸  Acceptable Quality Level (AQL)  
   �E^/�ͬ�^Y��^ƚĂŶĚĂƌĚ��Ϯ�;ϭϵϴϳͿ�ĚĞĮŶĞƐ��Y>�ĂƐ� 
    �The maximum percentage or proportion of variant units in a lot or batch 
that, for the purposes of acceptance sampling, can be considered 
satisfactory as process average�.  AQL has a high probability of acceptance. 
 
ͷͶǤ͸ǤͷǤ͹  Limiting Quality Level (LQL)  
    ANSI /�^Y��^ƚĂŶĚĂƌĚ��Ϯ�;ϭϵϴϳͿ�ĚĞĮŶĞƐ�>Y>�ĂƐ� 
    �the percentage or proportion of variant units in a batch or lot for 
which, for the purposes of a acceptance sampling, the consumer 
wishes the probability of acceptance to be restricted to a specific low 
value�.   LQL is a proportion defective with a low probability of 
acceptance. 
 
ͷͶǤ͸ǤͷǤͺ  Indifference Quality Level (IQL) 
    Indifference  quality level (IQL) or control point for a sampling plan is 
defined as the proportions defective(quality level) having the acceptance 

probability of 
ଵ
ଶǤ This point (IQL, Ϭ͘ϱϬͿ� ŽŶ� ƚŚĞ� K�� ĐƵƌǀĞ� ŝƐ� ĂůƐŽ� ĐĂůůĞĚ� ĂƐ�

�point of control'.  The lots with this quality level will acceptĞĚ��ϱϬй�ŽĨ�ƚŚĞ�
time using  the particular sampling plan.  
 
ͷͶǤ͸ǤͷǤͻ  Type I and Type II error; Consumer and producer risks 
      Type I and Type II error of an acceptance sampling plan which are  
useful in  sample size determination are respectively false rejection and 
false acceptance of a lot by the plan.  Type I error probability which in 
quality control  is  also called producer's risk  is denoted by Į and  type II 
error probability ,called consumer's risk, is denoted by ȕ. 
  
For a given sampling plan producer�s riskሺȽ ) may be defined as follows: 
 
The probability of not accepting a lot the quality of which fall within an 
acceptable range of values  and is often desired to accept.  
 
For a given sampling plan consumer�s riskሺȾ )may be defined as follows: 
 
The probability of acceptance of a lot the quality of which is rarely desired 
to accept and falls within a range of unacceptable values. 
 
&ŝŐ͘ϭϬ-ϭϯ�ŝůlustrates ���ǡ ���ǡ ���ǡȽ������ȾǤ 
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��
Fig.10-13 ۺۿۯǡۺۿۺǡ ۺۿ۷ ൌ �઺െ܌ܖ܉��ǡહ۾۷ ��ܖܗܑܜ܉ܚܜܛܝܔܔܑ�ܖ܉�

��
Common values for ߚ�݀݊ܽ��ߙ are ϭй͕ϱй�ĂŶĚϭϬй�in statistics. 
The OC curve and the above ƉŽŝŶƚƐ͕�ǁŚŝĐŚ� ĂƌĞ� ϯ� ŝŶĐŽŵŝŶŐ� ƋƵĂůŝƚǇ� ůĞǀĞůƐ͕� 
are not necessarily the unique indexes for  the evaluation of sampling plans 
.  Another such technique uses  the AOQ curve and AOQL , defined below. 
 
ͷͶǤ͸ǤͷǤͽ Average Outgoing Quality curve  (AOQ curve) 
  Suppose a lot  is inspected with  a single sampling plan n & c; if the 
number of non- conforming  products in the sample,  denoted by r,  is not 
greater than c ሺݎ ൑ ܿ)ƚŚĞ� ůŽƚ� ŝƐ� ĂĐĐĞƉƚĞĚ͘� � KƚŚĞƌǁŝƐĞ� ƚŚĞ� ůŽƚ� ŝƐ� � ϭϬϬй�
inspected and  all nonconforming products are replaced by good ones.  In 
any case the nonconforming products of the sample are removed and 
replaced by good products. Now let 
 
N = Lot size 
n  = Sample size 
p' = Proportion nonconforming  of the process 
Pa= Lot acceptance probability by the plan 
 
Then  
The average number of nonconforming in the lot before sampling 
and  inspection =Np', 
The average number of nonconforming in the sample=np', 
The average number of nonconforming in the lot after sampling 
=Np'-np'=(N-n)p', 
The lot proportion of nonconforming  after sampling = 

ேି௡ሻ௣ᇲ
ே ൌ ቀͳ െ ௡

ேቁ  ,ᇱ݌
 (Notice: after removing and replacing the defective items of the 
sample with good ones the sample returns to the lot). 

0   
0

0.5

1

P
a

                0.9   =1-alpha

beta=0.1

AQL
p'

LQLIP

alpha=0.1
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The lot is accepted with the probability of ௔ܲ and is screened with 
probability  ͳ െ ௔ܲ Ǥ  AsƐƵŵŝŶŐ� � ϭϬϬй� ŝŶƐƉĞĐƟŽŶ� ;ƐĐƌĞĞŶŝŶŐ) finds all the 
nonconforming  products and they are replaced by good ones,  on the 
average the quality of  the outgoing lot  (AOQ) with this single sampling 
plan  would be: 

ܱܳܣ ൌ ௔ܲ ቀͳ െ ݊
ܰቁ ݌

ᇱ ൅ ሺͳ െ ௔ܲሻሺͲሻ ฺ 

ܱܳܣ ൌ Ԣ݌ ௔ܲ ቀͳ െ ௡
ேቁ. 

When  
௡
ே  is very small or N is very large, then   ܱܳܣ ൌ  ;௔݌Ԣ݌

A plot of AOQ against p' is called AOQ  curve, which, like OC curve, shows 
the ability of the plan to distinguish between good and bad lots. 
 
�ǆĂŵƉůĞ�ϭϬ͘ϰ 
   A single sampling plan n,c is used for  inspecting coming lots of size N, the 
probability of accepting a lot with p� as its proportion of non conforming is 
௔ܲ.  What is 

 
a)the expected number of k lots with this plan.  
 
b)AOQ for an incoming lot�inspected with a sample of size n. 
 
c) AOQ for all k lots with a sample of size kn. 
 
Solution 
Let 
k =Total number of lots 
k ௔ܲ =Number of lots expected to be accepted 
Np' =Expected  number of defective in a  lot 
k ௔ܲ  (N-n)p' =Expected number of defectives in all accepted lots 

 
The expected number of nonconforming products( defectives) per 

each accepted lot =
௞௉ೌ ሺேି௡ሻ௣ᇱ

௞ே  

Average outgoing quality for each lot equals:ܱܳܣ� ൌ Ԣ݌ ௔ܲ ቀͳ െ ௡
ேቁ, 

If a sample of size kn is taken from the population of all lots which 
the size KN, on the average, AOQ  would be the same: 

( ) '' '
0(1 ) ' 1a

a a a

kP N n pkNp knp n
AOQ P P p P

kN kN N

        
 

. 

 
 



    Statistical   methods in Quality Control 

Ϯϱϭ 

 

Example ϭϬ͘ϱ 
  Find AOQ for the following plans  used for inspecting a lot of size 
EсϱϬϬ with ϯй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ͗ 
 
WůĂŶ�ϭ͗ Ŷсϰϵ͕Đсϭ͖ 
WůĂŶ�Ϯ͗ŶсϭϬϬ͕�ĐсϮ͘ 
 
Solution 
  Let   X denotes  number of non-conforming in the sample, then:  

Pr( ) ( , , ')Pa X c binocdf c n p    

( )( ')(1 )

1 49 1

0.1 Pr( 1) (1,49,.03) 0.56

0.57*0.03(1 0.01) 0.015

n
AOQ Pa p

N
Plan n c

n
Binomial Pa X binocdf

N
AOQ

 

 

     

  

 

 
WůĂŶϮ͗ŶсϭϬϬ��сϮ 

0.1 .
n

hypergeomet
N

   

395.0)100,500*03.0,500,2(2,100  hygePacn  

00949.0)1(395.003.0 500
100 AOQ . 

 
Example ϭϬ͘ϲ 
Draw the AOQ curve for the plans of Example ϭϬ͘ϱ: 
Solution 
Plan I n=49 c=1  

P' Ϭ Ϭ͘Ϭϭ ͘ϬϮ ͘Ϭϯ Ϭ͘Ϭϰ Ϭ͘Ϭϱ Ϭ͘Ϭϲ Ϭ͘Ϭϳ Ϭ͘Ϭϴ Ϭ͘Ϭϵ ͘ϭ 

np' Ϭ Ϭ͘ϱ ϭ ϭ͘ϱ Ϯ Ϯ͘ϱ ϯ ϯ͘ϱ ϰ ϰ͘ϱ ϱ 

 PraP r c 
 

ϭ Ϭ͘ϵϭϬϲ Ϭ͘ϳϯϲ Ϭ͘ϱϱϱ Ϭ͘ϰϬϬ Ϭ͘Ϯϴ Ϭ͘ϭϵϬ Ϭ͘ϭϮϲ Ϭ͘ϴϮϳ Ϭ͘Ϭϱϯ Ϭ͘Ϭϯϵ 

A.O.Q (%) Ϭ Ϭ͘ϴϮ ϭ͘ϯϮ ϭ͘ϱ ϭ͘ϰϰ ϭ͘Ϯϲ ϭ͘Ϭϯ Ϭ͘ϴϬ Ϭ͘ϲϬ Ϭ͘ϰϯ Ϭ͘ϯϬ 
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Plan II n=100 c=2 N=500 

ᇱ݌ ൌ ܦ
ܰ Ϭ Ϭ͘Ϭϭ ͘ϬϮ ͘Ϭϯ Ϭ͘Ϭϰ Ϭ͘Ϭϱ Ϭ͘Ϭϲ Ϭ͘Ϭϳ Ϭ͘Ϭϴ Ϭ͘Ϭϵ Ϭ͘ϭ 

D�� Ϭ ϱ ϭϬ ϭϱ ϮϬ Ϯϱ ϯϬ ϯϱ ϰϬ ϰϱ ϱϬ 

 crPP ra   ϭ Ϭ͘ϵϰϯ Ϭ͘ϲϳϴ Ϭ͘ϯϵϱ Ϭ͘ϮϬϬ Ϭ͘Ϭϵϯ Ϭ͘ϬϰϬ Ϭ͘Ϭϭϲ Ϭ͘ϬϬϲ Ϭ͘ϬϬϮ Ϭ͘ϬϬϬ 

A.O.Q (%) Ϭ Ϭ͘ϳϱϰ ϭ͘Ϭϵ Ϭ͘ϵϰϵ Ϭ͘ϲϰϭ Ϭ͘ϯϳϬ Ϭ͘ϭϵϭ Ϭ͘ϬϵϬ Ϭ͘Ϭ͘ϰϬ Ϭ͘Ϭ͘ϭϳ Ϭ͘ϬϬϳ 

 

If the values of AOQ is plotted against p', AOQ curve is obtained.  
&ŝŐƵƌĞ�ϭϬ-ϭϰ�ƐŚŽǁƐ�ƚŚĞ��KY�ĐƵƌǀĞƐ�ŽĨ��ƚŚĞ�ƚǁŽ�ƉůĂŶƐ͘��dŚĞƐĞ��ĐƵƌǀĞƐ�were 
plotted by the following MATLAB commands: 
>>ƉсϬ͗Ϭ͘Ϭϭ͗Ϭ͘ϭ͖ 
 WĂсďŝŶŽĐĚĨ;ϭ͕ϰϵ͕ƉͿ͖�KYсWĂ͘ΎƉΎ;ϭ-ϰϵͬϱϬϬͿ͖ƉůŽƚ;Ɖ͕ϭϬϬΎ�KYͿ͖�ŚŽůĚ�ŽŶ͖ 
�сϬ͗ϱ͗ϱϬ͖WĂсŚǇŐĞĐĚĨ;Ϯ͕ϱϬϬ͕�͕ϭϬϬͿ͖�KYсWĂ͘ΎƉΎ;ϭ-ϭϬϬͬϱϬϬͿ͖ƉůŽƚ;Ɖ͕ϭϬϬΎ�KYͿ͖ 
 
&ŝŐƵƌĞ�ϭϬ-ϭϰ�ĐŽŵƉĂƌĞƐ�ƚŚĞ�Ϯ�ƉůĂŶƐ�ƵƐŝŶŐ�ƚŚĞŝƌ��KY�ĐƵƌǀĞƐ͘���WůĂŶ�//͕�ŽŶ�
average, results in better quality of outgoing lots (why?). 

 
Fig. 10-14  AOQ curves for 2  single sampling plans. 

 
ͷͶǤ͸ǤͷǤͽǤͷ   The Average Outgoing Quality Limit(AOQL) 
     When average outgoing quality (AOQ) is computed for all assumed per 
cent nonconforming products in a lot submitted  for inspection by a 
sampling plan; the maximum possible AOQ value in the outgoing  lot is 
referred to as average outgoing quality limit (AOQL). 
 
ͷͶǤ͸ǤͷǤ;   The Average Total Inspection(ATI) 
  To describe ATI, consider a single acceptance sampling plan.  If the lot is 
accepted immediately after inspecting the sample, only the products  of  
the sample will be inspected and the defective ones will be replaced by 
good ones; with the probability of �ୟ. If it is not accepted immediately 
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(with probability of ͳ െ �ୟ), the lot will be screened i.e. all of the  N 
products  of the lot will be inspected and the defective units will be 
replaced by good ones.   Therefore  on average, as much as the following 
amount will be inspected :           

 1a aA TI np N p   )1)(( aPnNn  . 

ATI could be plotted against p'.  It could ďĞ�ǀĞƌŝĮĞĚ�ƚŚĂƚ�WůĂŶ�//�ŝŶ�&ŝŐ͘��ϭϬ-ϭϰ� 
has a greater ATI, which leads to greater inspection cost.   
 
ͷͶǤ͸ǤͷǤͿ  The Average Fraction Inspected(AFI) 
   As well as ATI i.e. the absolute measure of the amount of 
inspection in acceptance sampling, AFI is another measure which 
stands for the average fraction inspected.  AFI denotes the long run 
fraction of items that are inspected.  For a lot of size N being 
inspected by an acceptance sampling plan .   AFI is defined as 
follows:  

A TIA FI
N

 . 

ͳͲǤʹǤͳǤͻǤͳ The Relationship between AFI and AOQ 
   Between AOQ and AFI  of a lot with proportion nonconforming p' 
inspected  by an acceptance sampling plan whether single, double 
and multiple, the following relationship holds: 

)1( AFIpAOQ     or   1
'

AOQ
AFI

p
  . 

   In a single  sampling plan, it could be shown that AFI varies 
between 

௡
୒  ƚŽ�ϭ͘ 

 
Example ϭϬ͘ϳ 
  A sample of size n=ϮϬ�ŝƐ�ƚĂŬĞŶ�ĨƌŽŵ�Ă�ůŽƚ�ŽĨ�ƐŝǌĞ�EсϱϬϬ͘��/Ĩ�ƚŚĞ�
proportion nonconforming of the production  ƉƌŽĐĞƐƐ��ŝƐ�ϱй�ĂŶĚ�ĐсϮ͕�
how many products  on the average is inspected with this single 
sampling plan? What percent of N is this amount? Find average 
outgoing quality.  ^ŽůǀĞ�ƚŚĞ�ƉƌŽďůĞŵ�ǁŝƚŚ�ŶсϭϬϬ�ĂŐĂŝŶ͘� 
Solution: 
The number of nonconforming products in the sample ,X, has a 
binomial distribution.  The probability of accepting the lot would 

9196.0)'1(
2

0
















C

r

rnr

a pp
r

n
P directly from the binomial 

distribution.  Or by Poisson approximation &ƌŽŵ�dĂďůĞ�ϰ� 
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&Žƌ�ŶсϮϬ�, 

 20 .05 1np         Pr) 2) 0.92Pa X    
ATI=nPa+N(1-Pa)=(500)(0.08)+2)(0.92)=58.4 

��%68.111168.0
500

4.58
orAFI ��

04416.0)1168.01(05/0)1()'(  AFIpAOQ  
 
&Žƌ�ŶсϭϬϬ�� 

505.0100  �� 125.0)2Pr(  XPa ����  
100 0.125 500 0.875 450

450
0.9 %90

500

ATI

ATI
AFI

N

    

   
 

005.0)
500

100
1)(125.0(

100

5
)1(' 

N

n
PpAOQ a сϬ͘ϱй �Śƿ��

%5.0)9.01(05.0)1('  AFIpAOQ . 
As it is evident with  ŶсϭϬϬ͕ AOQ would be much  better.  
 
10.2.2 Double sampling plan 
  The flow-chart shown in Fig͘�ϭϬ-ϭϱ   shows how a double sampling 
plan͕�ǁŚŝĐŚ�ŝƐ�ĂƐƐŽĐŝĂƚĞĚ�ǁŝƚŚ�ϰ�ŶƵŵďĞƌƐ 1 1 2 2, ,n c n and c , works.  

 ଶ  are number of nonconforming products in the first andݎଵƬݎ
second samples respectively. 
 
Example ϭϬ͘ϴ 

  The double sampling 1 1 2 2n = 50,c = 0,n = 100 & c = 2 is to used to 

ŝŶƐƉĞĐƚ�Ă�ůŽƚ�ŽĨ�ƐŝǌĞ�ϭϬϬϬ͖�ƐƵƉƉŽƐĞ�ŽŶĞ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚƐ�ŽŶĞ�ĨŽƵŶĚ�
the first sample  i.e.  rϭсϭ͘���ĐĐŽƌĚŝŶŐ�ƚŽ�ƚŚĞ�ĂďŽǀĞ��ŇŽǁĐŚĂƌƚ��ƚŚĞ�ůŽƚ�ĐŽƵůĚ�
neither be accepted nor rejected. The second sample was taken.  After 
ŝŶƐƉĞĐƟŶŐ�ƚŚĞ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϭϬϬ͕�ƐƵƉƉŽƐĞ�Ϯ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚƐ�ǁĞƌĞ�

found in the second sample i.e. rϮсϮ͘� � dŚĞƌĞĨŽƌĞ� 1 2 23 2r r c    ; the 

lot is rejected but all noncomform ing products in the lot have to be 
replaced with good products. 
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Fig. 10-15 The flow chart of a double sampling plan 

 
 
ͷͶǤ͸Ǥ͸Ǥͷ   A relationship for Plotting the OC curve of Double Sampling 
Plans  
   The relationship between lot proportion nonconforming (p') and the 
probability of accepting the lot  using a double sampling plan is as follows 
(after �ŽǁŬĞƌ�Θ�>ŝĞďĞƌŵĂŶ͕�ϭϵϳϮ͕ƉĂŐĞ�ϱϬϵͿ͗  

   Pr Pr & '1 1 1 2 2 1 1 2P r c p r r c c r c given pa        =

     
1 2 2 1

1 11

1 1 1 2

1 1 1
1

21 1 2

1 1 20 1 0

2 2
1 1 ' 1

c c c d
dd dn n n

d d d
d d c d

n dn d n dp p p p p p
 

   

                     
       

  

The details could be studied in references such as Bowker&Lieberman ;�ϭϵϳϮͿ.  
The OC curve of a double sampling plan could be plotted using this 
relationship. 
 
10.2.3 Multiple sampling plan 
   A multiple sampling plan is similar to the double sampling plan in that 
successive trials are made, if required, Associated with each of  the trials 
there is a sample size, and acceptance number(lower limit) and a rejection 
one(upper limit) denoted by Ac and Re.  
   As successive samples are taken, the number of defectives in the samples 
are added to get cumulative number of defects.  



�ŚĂƉƚĞƌ�ϭϬ�Acceptance Sampling Fundamentals;  Dodge-Romig  Tables 

Ϯϱϲ 

 

 The plan acts as followsϭ  : 
 
    If, for any sample, the cumulative number of nonconforming products 
(defectives)  found exceeds the upper limit specified, the lot is rejected. 
 If, for any sample the cumulative number of nonconforming  found is less   
than or equal to the lower limit, the lot is accepted. 
     If the number of defectives found is between the two limits, another 
sample is taken. 
     The process continues until the lot is accepted or rejected.  Example 
ϭϬ͘ϵ��ŝůůƵƐƚƌĂƚĞƐ�  multiple acceptance sampling. 
 
Example ϭϬ͘ϵ 

   A multiple sample plan is given in the following table: 
SampleNo. ϭ Ϯ ϯ ϰ ϱ ϲ ϳ 

n ϮϬ ϮϬ ϮϬ ϮϬ ϮϬ ϮϬ ϮϬ 
Ac Ϭ ϭ ϯ ϱ ϴ ϵ ϭϬ 
Re ϰ ϱ ϲ ϴ ϭϬ ϭϭ ϭϭ 

  According to thŝƐ�ƉůĂŶ�Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϮϬ�ŝƐ�ƚĂŬĞŶ�ĨƌŽŵ�ƚŚĞ�ůŽƚ͖� 
Let rϭ=the number of  nonconforming products(defectives) in the first 
sample 
 
if rϭ is zero the lot is accepted  
if rϭ is ϰ�Žƌ�ŵŽƌĞ it is rejected,  
if rϭ ŝƐ�ďĞƚǁĞĞŶ�Ϭ�ĂŶĚ�ĨŽƵƌ�ƚŚĞ�ƐĞĐŽŶĚ�ƐĂŵƉůĞ�ŝƐ�ƚĂŬĞŶ͘ 
Let  rϮ=the number of defectives in the second sample 
if rϭ +rϮ  ϭ͕�ƚŚĞ�ůŽƚ�ŝƐ�ĂĐĐĞƉƚĞĚ; 
if rϭ +rϮŝƐ�ϱ�Žƌ�ŵŽƌĞ�ƚŚĞ�ůŽƚ�ŝƐ�ƌĞũĞĐƚĞĚ͖ 
 
otherwise, i.e. if rϭ +rϮ is between ϭ and ϱ͕� ƚŚĞ� ƚŚŝƌĚ� ƐĂŵƉůĞ� ŝƐ� ƚĂŬĞŶ͕� Ă�
similar decision is taken based on the cumulative number of defectives in 
the successive samples. 
Note that  
the Ac and Re numbers increase as we enter a new phase. 
      One advantage of double and multiple sampling  over single sampling is 
giving a second chance to doubtful lots, and the other is having less ATI. 
From a psychical point of view ,the producer whose lot  has not been 
accepted yet in the first phase, expects the lot be accepted in the next 
phase(s).  A disadvantage of  double or multiple plans over single one 
is  their need for more time and expenditure. 

                                                           
ϭ�from web.nchu.edu.tw/pweb/userƐͬĂƌďŽƌĮƐŚͬůĞƐƐŽŶͬϭϮϱϭϬ͘ƉƉƚ  
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Exercises 
ϭϬ͘ϭ-A single sampling plan uses ĂŶ�ĂĐĐĞƉƚĂŶĐĞ�ŶƵŵďĞƌ�ŽĨ�ϭ�ĂŶĚ� samples 
ŽĨ� ƐŝǌĞ�ϭϱ ƚŽ� ŝŶƐƉĞĐƚ� ůŽƚƐ�ŽĨ� ƐŝǌĞ�ϱϬ͘� �hƐĞ�ŚǇƉĞƌ� ŐĞŽŵĞƚƌŝĐ�ĚŝƐƚƌŝďƵƟŽŶ� ƚŽ�
calculate Pa, the ƉƌŽďĂďŝůŝƚǇ� ŽĨ� ĂĐĐĞƉƟŶŐ� ƚŚĞ� ůŽƚ� � ŽĨ� Ϯ͕ϲ͕ϭϬ͕ϮϬ� ƉĞƌĐĞŶƚ�
defectives. 
Answer : 
 ϭ͕�Ϭ͘ϳϴϵ͕  Ϭ͘ϱϮϰ͕   Ϭ͘ϭϮϭ  ;�ŽǁŬĞƌ�Θ>ŝďĞƌŵĂŶ�ϭϵϴϴ͕�ƉϰϮϭͿ͘ 
ϭϬ͘Ϯ- ;�ŽǁŬĞƌ�Θ>ŝďĞƌŵĂŶ�ϭϵϴϴ͕�ƉĂŐĞ�ϰϮϭͿ͘ 
A single sampling plan has Đсϯ��͕�ŶсϭϭϬ͘��hƐĞ�WŽŝƐƐŽŶ�ĚŝƐƚƌŝďƵƟŽŶ�ƚŽ�
approximate ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĂĐĐĞƉƚĂŶĐĞ�ůŽƚ�Ϭ͘ϱ͕ϭ͕͘Ϯ͕͕ϯ͕ϰ͕ϱ͕ϲ͕ϴй�ĚĞĨĞĐƟǀĞ͘ 
Answer : Ϭ͘ϵϵϴ͕�Ϭ͘ϵϳϰ͕Ϭ͘ϴϭϵ͕Ϭ͘ϱϴϬ͕Ϭ͘ϯϱϵ͕Ϭ͘ϮϬϮ͕Ϭ͘ϭϬϱ͕Ϭ͘ϬϮϱ 
��
ϭϬ͘ϯ-;�ŽǁŬĞƌ�Θ>ŝďĞƌŵĂŶ�ϭϵϴϴ͕�ƉĂŐĞ�ϰϮϭͿ͘ 
  Plot the OC curve for the sampling plan in Problem ϭϬ͘Ϯ using MATLAB 
Software.  What are the approximate values of lot percent defective for 
ǁŚŝĐŚ�ƉƌŽďĂďŝůŝƟĞƐ�ŽĨ�ĂĐĐĞƉƚĂŶĐĞ�ĂƌĞϬ͘ϵϱ͕Ϭ͘ϱϬ�ĂŶĚ�Ϭ͘ϭϬ�ƌĞƐƉĞĐƟǀĞůǇ͍ 
�ŶƐǁĞƌ�͗�ϭ͘Ϯ͕����ϯ͘ϯ͕�����ϲ͘ϭ� 
ϭϬ͘ϰ-;�ŽǁŬĞƌ�Θ>ŝďĞƌŵĂŶ�ϭϵϴϴ͕�ƉĂŐĞ�ϰϮϭͿ͘ 
A double sampling plan as follows: 
    ĂͿ� ^ĞůĞĐƚ� Ă� ƐĂŵƉůĞ�ŽĨ� Ϯ� ĨƌŽŵ�Ă� ůŽƚ�ŽĨ�ϮϬ͘�  If both articles inspected are 
ŐŽŽĚ͕�ĂĐĐĞƉƚ�ƚŚĞ�ůŽƚ͘�/Ĩ�ďŽƚŚ�ĂƌĞ�ĚĞĨĞĐƟǀĞ͕�ƌĞũĞĐƚ�ƚŚĞ�ůŽƚ͘�/Ĩ�ϭ�ŝƐ�ŐŽŽĚ�ĂŶĚ�ϭ�
defective, take a second sample of one article. 
    b) If the article in the second sample is good, accept the lot. If it is 
ĚĞĨĞĐƟǀĞ͕� ƌĞũĞĐƚ� ƚŚĞ� ůŽƚ͘� /Ĩ� Ă� ůŽƚ� Ϯϱй� Ěefective is submitted, what is the 
probability of acceptance? Compute this by the method that is 
theoretically correct rather than by an approximate method.  
Answer͘�Ϭ͘ϴϱϵ� 
ϭϬ͘ϱ-For single ƉůĂŶ�Ŷсϳϱ͕Đсϭ͕�ǁŚĂƚ�ĂƌĞ�ƉϬ͘ϵϱ͕ pϬ͘ϱ͕ pϬ͘ϭϬ ?i.e. what are 
proportioŶ�ĚĞĨĞĐƟǀĞƐ�ǁŝƚŚ�WĂс͘ϵϱ͕�͘ϱ͕͘ϭ͍ 
Ans: Ϭ͘ ϰϴ% , Ϯ͘Ϯϯй�͕���ϱ͘Ϭϵй 
 Hint: Use MATLAB  command fzero; for example� 
ƉϵϱсĨǌĞƌŽ;Λ;ƉͿ�ďŝŶŽĐĚĨ;ϭ͕ϳϱ͕ƉͿ-͘ϵϱ͕�͘Ϭϱ) 
Ɖϵϱ= Ϭ͘ϬϬϰϴ 
ϭϬ͘ϲ-;ϭϯ-ϵ͕��ŽǁŬĞƌ�Θ>ŝĞďĞƌŵĂŶ�ϭϵϴϴ͕�ƉĂŐĞ�ϰϰϱͿ͘ 
Prepare an AOQ curve for single plan n=ϭϬϬ͕ĐсϬ from  a largish lot.  
What is AOQL? 
�ŶƐ͘�Ϭ͘ϯϳй ��
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ϭϬ͘ϳ-A multiple sampling plan is as follows:��
 

Sample 
No.��

Individual 
sample size 

Combined 
sample size 

Acceptance 
number 

Rejection 
number��

1 5 5 * Ϯ 
2 5 10�� 0 Ϯ 
3 5 15 0 ϯ 
4 5 20 1 ϯ 
5�� 5�� 25 2 ϯ 

*Acceptance not permitted on first sample. 
  

Assuming that lot size is large enough for Poisson distribution to be 
ĂƉƉůŝĐĂďůĞ͕�ĐŽŵƉƵƚĞ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĂĐĐĞƉƚĂŶĐĞ�ŽĨ�Ă�ϭϬй�ĚĞĨĞĐƟǀĞ�ůŽƚ�ŝŶ�
ĞĂĐŚ�ŽĨ�ƚŚĞ�ϱ�ƉŚĂƐĞƐ͘� 
Answer͘�;dŚĞ�ƐƵŵ�ŽĨ�ƉƌŽďĂďŝůŝƟĞƐ�ŝƐ�ͿϬ͘ϱϴϲ͘� 
 
ϭϬ͘ϴ- /Ŷ� �ǆĂŵƉůĞ� ϭϬ͘Ϯ� � tŚĂƚ� ƉƌŽƉŽƌƟŽŶ� ŽĨ� ĚĞĨĞĐƟǀĞƐ� ǁŝůů� ƌĞƐƵůƚ� ŝŶ�
ĂĐĐĞƉƟŶŐ�ϵϱй��ŽĨ�ƚŚĞ�ůŽƚƐ��ƵƐŝŶŐ�WůĂŶ�//Θ///͍ 
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ͳͲǤ͵Design of plans in Acceptance Sampling 
  Given n and c, it is easy to plot the OC curve; now We would like to act 
vice versa; suppose one or two points from the OC curve are known and 
we would like to determine the specification of the single sampling plan i.e. 
n and c. It is conventional to design an acceptance sampling plan for the 
following cases: 
 

ϭ-Given an AQL  
/^KϮϴϱϵ-ϭdĂďůĞƐ�ŝŶƚƌŽĚƵĐĞĚ�ŝŶ�ĐŚĂƉƚĞƌ�ϭϭ�͕�Žƌ�equivalent  standard 

tables,  could be used to develop  the appropriate plan   
 
Ϯ-Given LTPD, ߚ and AQL or any ŽƚŚĞƌ�ϮƉŽŝŶƚƐ�ŽĨ�ƚŚĞ�K��ĐƵƌǀĞ 

      �ŚĂƉƚĞƌ�ϭϭ�ĚĞĂůƐ�ǁŝƚŚ�ƚŚŝƐ�ĐĂƐĞ͘ 
 

ϯ-Given indifference point(control point) 
       When the control point of the OC curve, which is the  quality level 

ŚĂǀŝŶŐ�Ă�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĂĐĐĞƉƚĂŶĐĞ�ŽĨ͘�Ϭ͘ϱϬ͕�WŚŝůůŝps Tables 
ŝŶƚƌŽĚƵĐĞĚ�ŝŶ�ĐŚĂƉƚĞƌ�ϭϭ�ĐŽƵůĚ�ďĞ�ƵƐĞĚ�ƚŽ�ĚĞƚĞƌŵŝŶe the plan 

 
ϰ-Given LTPD=LQL and Ⱦ ൌ ͲǤͳ and process average non conforming 
Dodge-Romig LTPD Tables are used for this case 
ϱ-Given AOQL and process average non conforming 
At the end of this chapter, Dodge-ZŽŵŝŐ�dĂďůĞƐ�ĨŽƌ�ĐĂƐĞƐ�ϰ�ĂŶĚ�ϱ�
ĂƌĞ�ŝŶƚƌŽĚƵĐĞĚ͖�ƚŚĞ�ĮƌƐƚ�ϯ�caseƐ�ĂƌĞ�ĚĞĂůƚ�ŝŶ�ĐŚĂƉƚĞƌ�ϭϭ͘ 

 
10.3.1  Dodge-Romig LTPD=LQL Tables  
             (Tables A,B, C, C.1) 
   Dodge and Romig have developed an extensive and valuable set of 
tables, the plans of which have been designed to minimize the total 
inspection, including screening.  Dodge-Romig LQL tables based on stated 
values of LQL are designed so that the probability of  lot acceptance at the 
LTPD(=LQL) ŝƐ�Ϭ͘ϭ for all plans i.eߚ ൌ ͲǤͳ; the tables have been provided for 
>dW��ǀĂůƵĞƐ�Ϭ͘ϱй͕�  ϭй͕    Ϯй͕    ϯй͕     ϰй͕    ϱй͕     ϳй� and ϭϬй.  Tables A 
Θ��Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ďŽŽŬ�ĂƌĞ�Ϯ�ĞǆĂŵƉůĞƐ�ŽĨ�ƚŚĞƐĞ�ŬŝŶĚ�ŽĨ�ƚĂďůĞƐ�ƉƌĞƉĂƌĞĚ�
for single sampling having  >Y>сϱй�ĂŶĚ�>Y>сϭй; and  Table C ĂŶĚ��ϭ�ĂƌĞ�
for double sampling having   LQL=ϭ% and LQL=ϱ%. 
The plan is read from the table, given the lot size and the process mean 
defective percent( p');  if the process mean ( p')  is not known, the worst 
should be assumed. 
   It is worth knowing in determining  the  parameters ( sample sizes and 
acceptance numbers) for this tables, optimization has been utilized   in 
such a way that given n and an estimate of the process average non-



�ŚĂƉƚĞƌ�ϭϬ�Acceptance Sampling Fundamentals;  Dodge-Romig  Tables 

ϮϲϬ 

 

conforming, the solution that minimizes ܫܨܣ ൌ ஺்ூ
ே  was selected.  It is 

reminded that for single sampling (1 )ATI nPa N Pa   .  
 
Example ϭϬ͘ϭϬ  
Determine a single "acceptance sampling plan " for inspecting lots of 
ƐŝǌĞ�ϱϬϬ. 
a) 

if >Y>сϭй�͕�Ⱦ ൌ ͲǤͳ  and the process average non-conforming ƉΖсϬ͘Ϯй͘ 

b) 
 ŝĨ� >Y>сϱй� ͕�Ⱦ ൌ ͲǤͳ  and the process average non-conforming is not 
known. 
c) 
Find AOQL for both cases 
  
Solution  
a) 

0180  cnBTable  
b)&Žƌ�>Y>сϱй�ƌĞĨĞƌ�ƚŽ�dĂďůĞ��͘��tŚĞn process mean defectives( p') is not 
known it is advised  
to use that column of the  table which contains the largest p'. Therefore 
ĨƌŽŵ�dĂďůĞ��͕�ŶсϭϱϬ͕Đсϰ��ŝ͘Ğ͘�ƚĂŬĞ�Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϭϱϬ͕�ŝĨ�ƚŚĞ�ŶƵŵďĞƌ�ŽĨ�
ŶŽŶĐŽŶĨŽƌŵŝŶŐ��ŝƐ�Ăƚ�ŵŽƐƚ�ϰ͕�ĂĐĐĞƉƚ�ƚŚĞ�ůŽƚ͘ 
c) 
For case a    AOQL=�Ϭ͘ϭϯ�ĨƌŽŵ�dĂďůĞ��͕� 
For case b    AOQL=�ϭ͘Ϯ   from  Table A.   
 
10.3.2   Dodge-Romig AOQL Tables  
             (Tables I, J,K) 
  Another set of Dodge�Romig Tables are AOQL Tables, the plans of which 
have found  wide acceptance are used to develop single, double or 
multiple plans given AOQL and the process average non conforming.  
Tables I & J are examples of such tables for single sampling having 
�KY>сϮй� ĂŶĚ� �KY>сϯй͘�   Table K is a Dodge-Romig Table for double 
ƐĂŵƉůŝŶŐ�ǁŝƚŚ��KY>сϯй͘�The plan is read from the table, given the lot size 
and the process non-conforming average in percent; if the process average 
is  not known, use the worst average (last column of the table on the right 
side )to read the plan. 
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�ǆĂŵƉůĞ�ϭϬ͘ϭϭ 
   �ĞƚĞƌŵŝŶĞ�Ă�ƐŝŶŐůĞ�ƐĂŵƉůŝŶŐ�ƉůĂŶ�ǁŝƚŚ��KY>сϮй�ƵƐĞĚ�ƚŽ�ŝŶƐƉĞĐƚ�Ă�ůŽƚ�ŽĨ�
ƐŝǌĞ�ϭϬϬϬ�ĨƌŽŵ�Ă�ƉƌŽĚƵĐƟŽŶ�ƉƌŽĐĞƐƐ�ǁŝƚŚ�ĂǀĞƌĂŐĞ�ŶŽŶ�ĐŽŶĨŽƌŵŝŶŐ�Ϭ͘Ϭϯ%. 
 
Solution 
  From Table  I  Ŷсϭϴ͕ĐсϬ͘�� 
LQL for this plan with  ȕ с�Ϭ͘ϭ�ŝƐ�LQL =ϭϮйс Ϭ͘ϭϮ�read from the same table 
under ϭϬϬWϬ͘ϭϬ.  
 
Example ϭϬ͘ϭϮ 
  Determine the double sampling plan for an AOY>сϯй�ƵƐĞĚ�ĨŽƌ�inspecting 
Ă�ůŽƚ�ŽĨ�ƐŝǌĞ�ϭϬϬϬ͘ 
 
Solution 
The process average is  not known; the worst is assumed. 

-Table K:Under the largest process average  
-nϭсϳϬ������ĐϭсϮ����������ŶϮсϭϮϬ    cϮсϭϬ 
->Y>сϴ͘ϰй 
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Exercises 
ϭϬ͘ϴ- ;ϭϯ-ϭϬ�'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴƉĂŐĞ�ϰϰϱͿ 
     dŚĞ� ůŽƚ� � ƐŝǌĞ� E� ŝƐ� ϮϬϬϬ� ŝŶ� Ă� ĐĞƌƚĂŝŶ� �KY>� ŝŶƐƉĞĐƟŽŶ� ƉƌŽĐĞĚƵƌĞ͘� � dŚĞ�
ĚĞƐŝƌĞĚ� �KY>� ŽĨ� Ϯ͘Ϭ� й� ĐĂŶ� ďĞ� ŽďƚĂŝŶĞĚ� ǁŝƚŚ� ĂŶǇ� ŽŶĞ� ŽĨ� ƚŚƌĞĞ� ƐŝŶŐůĞ�
sampling plans. These ĂƌĞ�Ŷ�с�ϲϱ͕Đ�с�Ϯ͖Ŷ�с�ϰϭ͕Đ�сϭ&Ŷ�с�ϭϴ͕Đ�с�Ϭ͘�/Ĩ�Ă�ůĂƌŐĞ�
number ŽĨ� ůŽƚƐ�Ϭ͘ϯй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ� �ĂƌĞ� ƐƵďŵŝƩĞĚ�ĨŽƌ�ĂĐĐĞƉƚĂŶĐĞ͕�ǁŚĂƚ�
will be the average number of units inspected per lot(ATI) under each of 
these three sampling plans?  
�ŶƐ͘�ϲϳ͖�ϱϱ͖�ϭϮϯ.  
ϭϬ͘ϵ- ;ϭϯ-ϯϯ 'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴƉĂŐĞ�ϰϰϴ) 
The following  I , II and III Dodge-Romig single sampling plans are specified 
ĨŽƌ�Ă�ůŽƚ�ŽĨ�ϭϱϬϬ�ŝƚĞŵƐ ĂŶĚ�Ă�Ϯй��KY> . 
I    ;Ŷ�с�ϭϴ͕�Đ�с�ϬͿ� 
II    ;�Ŷ�с�ϲϱ͕�Đ�с�ϮͿ�����ĂŶĚ  
III  ;Ŷ�с�ϭϮϬ͕�Đ�с�ϰͿ 
Assume the lots of product  contain  ϭй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ��ƵŶŝƚƐ�ŝŶ�ĂŶƐǁĞƌŝŶŐ�
the following questions. 
a)what is the probability of acceptance under each plan using Poisson 
distribution?  
b) What is the AFI under each of the ϯ plans? 
c)What is AOQ for each plan? 
ϭϬ͘ϭϬ- ;ϭϯ-ϭ Θϭϯ-ϮGrant and  >ĞĂǀĞŶǁŽƌƚŚ�͕ϭϵϴϴƉĂŐĞ�ϰϰϱ) 
a) What single sampling plĂŶ�ƐŚŽƵůĚ�ďĞ�ƵƐĞĚ�ĨŽƌ�Ă�ůŽƚ�ƐŝǌĞ�ŽĨ�ϭ͕ϱϬϬ�ĂŶĚ�ĂŶ 
LQL( LTPD) ŽĨ� ϱ�й�ǁŝƚŚ� consumer's rŝƐŬ� ŽĨ� Ϭ͘ϭϬ� ŝĨ� ƚŚĞ� ƉƌŽĐĞƐƐ� ĂǀĞƌĂŐĞ� ŝƐ�
ĞƐƟŵĂƚĞĚ�ĂƐ�Ϭ͘ϲ�й�ĚĞĨĞĐƟǀĞ͍� 
�ŶƐǁĞƌ����ŶсϭϯϬ�Đсϯ� 
b)What double sampling plan should be used for the condition 
described in the previous part?        
 Answer nϭсϱϱ������ĐϭсϬ,     nϮсϭϮϬ����ĐϮсϰ. 
ϭϬ͘ϭϭ-  Solve part a of problem ϭϬ͘ϭϬ ŝĨ�>Y>сϭй͘   
ϭϬ͘ϭϮ-  What Dodge-ZŽŵŝŐ�Ϯй��KY>�ƐŝŶŐůĞ�ƐĂŵƉůŝŶŐ�ƉůĂŶ should be used 
for lots of size ϮϬϬ͕�ϭϬϬϬ͕�ϱϬϬϬ͘� � dŚĞ�ĂǀĞƌĂŐĞ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚƐ� ŝƐ�
ϭй͘���ŽŵƉƵƚĞ�ƚŚĞ���ǀĞƌĂŐĞ�&ƌĂĐƟŽŶ�/ŶƐƉĞĐƚĞĚ� of each case. 
ϭϬ͘ϭϯ-  Compute Pa, AFI and AOQ of  the plan in Problem ϭϬ͘ϭϮ specified 
for a lot of size ϭϬϬϬ͕�ŝĨ�ƚŚĞ�ƉΖсϮй. 
 
 

The value of a man is what he does expertly 
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Chapter   ͳͳ Design of  Acceptance Sampling Plans 

using ���ʹͺͷͻ, Cameron & Phillips Tables 
 
Aims 
 
  This chapter introduces  a series of standard tables titled /^K�Ϯϴϱϵ, which 
are used to set up acceptance sampling plans  based on attributes with 
reference to an acceptable quality limit(AQL).   �ĞƚĞƌŵŝŶŝŶŐ�ƉůĂŶƐ�ŐŝǀĞŶ�Ϯ�
points of the OC curve is also dealt here; in this regard Cameron Tables are 
introduced.   The chapter also introduces Philips Tables used to determine 
sampling plans given the indifference point (IQL).   
   
ͳͳ-ͳ  ����ʹͺͻͷ  Standard 
 
Introduction  
   International organization for standardization( ISO) is a non-
ŐŽǀĞƌŶŵĞŶƚĂů� ŝŶƚĞƌŶĂƟŽŶĂů� ŽƌŐĂŶŝǌĂƟŽŶ� ǁŝƚŚ� Ă� ŵĞŵďĞƌƐŚŝƉ� ŽĨ� ϭϲϭ�
national standards bodiesϭ. Through its members, it brings together 
experts to share knowledge and develop international standards.   ISO  has 
developed  many standards, several of which are in the field of quality 
ĐŽŶƚƌŽů�ƐƵĐŚ�ĂƐ�/^K�ϵϬϬϬ�ƐĞƌŝĞƐ͕�/^K�Ϯϴϱϵ͕�/^Kϯϵϱϭ͘ 
       /^K�Ϯϴϱϵ  is one of a class of  sampling systems,  consisting of sampling 
procedures for inspection by attributes together with rules for their 
operations. This standard originated from  MIL STD -ϭϬϱ� � ŝŶ� ϭϵϳϰ͘� � EĞǁ�
versions have been  released after then. It is worth mentioning that (Luko�
�	EĞƵďĂƵĞƌ͕ϮϬϭϮͿ͗ 
MIL-STD-ϭϬϱ�  or ABC-STD-ϭϬϱ� came from a need for a sampling system 
that did not require ϭϬϬй� ŝŶƐƉĞĐƟŽŶ� ĨŽƌ�ƵƐĞ� ŝŶ� ƚĞƐƟŶŐ�ŵƵŶŝƟŽŶƐ�ĂŶĚ� ĨŽƌ�
other destructive tests.  The result was  the Army Service  Forces inspection 
tables, which came out in ϭϵϰϮ�ĂŶĚ�ϭϵϰϯ͘� /ŵƉƌŽǀĞŵĞŶƚ  led to MIL-STD-
ϭϬϱ�͕��͕��͕��͕�ĂŶĚ��� in subsequent years ;ϭϵϱϬ͕ ϭϵϱϴ͕�ϭϵϲϭ͕�ϭϵϲϯ͕�ϭϵϴϵ).  
      MIL-STD-ϭϬϱ� � ĨŽĐƵƐĞĚ� on plans indexed by AQL to protect 
manufacturers against rejecting appropriate lots; however  the standard 
offered some plans indexed by >dW�� ǁŝƚŚ� WĂсϬ͘ϭΘϬ͘Ϭϱ� ƚŽ� ƉƌŽƚĞĐƚ�
consumers against accepting bad lots.  
    The  Army  discontinued support for military statistical standards 
ŽŶ�&ĞďƌƵĂƌǇ�Ϯϳ͕� ϭϵϵϱ͕� ƉƌŽƉŽƐŝŶŐ�  instead to use civilian standards. 
Meanwhile, other standards writing bodies, such  as the American 
National Standards Institute (ANSI), the International Organization 
                                                           
ϭ�See https://www.iso.org/members.html 

https://www.iso.org/members.html
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for Standardization (ISO), and the International Electro-technical 
Commission, developed their own deƌŝǀĂƟǀĞƐ�ŽĨ�ϭϬϱ�ĂƐ� ĐŝǀŝůŝĂŶ standards  
like �E^/ͬ�^Y�ϭ͘ϰ��& /^KϮϴϱϵ . An  expert  in acceptance sampling advises  
ƚŽ� ƵƐĞ� � �E^/ͬ�^Y�ϭ͘ϰ� � ŝŶƐƚĞĂĚ� ŽĨ� D/>^d�-ϭϬϱ� ŝŶƐŝĚĞ� h^�� ĂŶĚ� /^KϮϴϱϵ�
elsewhere. 
        /^K�Ϯϴϱϵ standard is  a sampling system.  The purpose of a sampling 
system is three-ĨŽůĚ�;�ĞƌŵĂŶ�ΘZŽƐƐ͕�ϭϵϵϳ�ƉĂŐĞ�ϭϲϬͿ͗ 
i) 
to protect the customer from accepting bad lots, 
ii) 
to protect the producer from having good lots rejected, 
iii) 
to encourage the producer to make the necessary modifications 
 needed to improve the quality of its items. 
   ^ĂŵƉůŝŶŐ� ƐĐŚĞŵĞƐ� ĂŶĚ� ƉůĂŶƐ� ĚĞƐŝŐŶĂƚĞĚ� ŝŶ� ƚŚĞ� /^K� Ϯϴϱϵ� ƐĞƌŝĞƐ� ĂƌĞ�
applicable, but not limited, to inspection of :;/^K�ϮϴϱϵϬ͗ϮϬϭϳ�ŵĂŶƵĂůͿ 
� end items, 
� components and raw materials, 
� operations, 
� materials in process, 
� supplies in storage, 
� maintenance operations, 
� data or records, and 
� administrative procedures 
 
dŚĞ� ƐĂŵƉůŝŶŐ� ƐǇƐƚĞŵ�ŽĨ� /^K� Ϯϴϱϵ� ƐĞƌŝĞƐ� ŽĨ� ƐƚĂŶĚĂƌĚƐ, which  is used for 
inspection by attributes under the  general title "Sampling procedures for 
inspection by attributes",  consists of the following five parts (From ISO 
Ϯϴϱϵ-ϯ͗ϮϬϬϱ�ŵĂŶƵĂů�ƉĂŐĞ�/sͿ͗ 
 
WĂƌƚ�ϭ͗�ISO Ϯϴϱϵ-ϭ,  
Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot 
inspection 
 
WĂƌƚ�Ϯ͗�/^K�Ϯϴϱϵ-Ϯ͕ 
 Sampling plans indexed by limiting quality (LQ) for isolated lot inspection 
 
WĂƌƚ�ϯ: /^K�Ϯϴϱϵ-ϯ͕ 
WĂƌƚ�ϯ͗�^ŬŝƉ-lot sampling procedures 
 
WĂƌƚ�ϰ͗ /^K�Ϯϴϱϵ-ϰ͕� 
Procedures for assessment of declared quality levels 
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WĂƌƚ�ϱ͗I^K�Ϯϴϱϵ-ϱ͕� 
WĂƌƚ�ϱ͗�^ǇƐƚĞŵ�ŽĨ�ƐĞƋƵĞŶƟĂů�ƐĂŵƉůŝŶŐ�ƉůĂŶƐ� ŝŶĚĞǆĞĚ�ďǇ��Y>� ĨŽƌ� ůŽƚ-by-lot 
inspection. 
    It should be added that tŚĞƌĞ�ŝƐ�ĂŶ��ŝŶƚƌŽĚƵĐƚŽƌǇ�ƉĂƌƚ��ŝ͘Ğ͘��/^KϮϴϱϵϬ͗ϮϬϭϳ� 
manual. This manual provides a general introduction to acceptance 
sampling by attributes and provides a brief summary of the attribute 
ƐĂŵƉůŝŶŐ� ƐĐŚĞŵĞƐ�ĂŶĚ�ƉůĂŶƐ�ƵƐĞĚ� ŝŶ� /^K�Ϯϴϱϵ-ϭ͕� /^K�Ϯϴϱϵ-Ϯ͕� /^K�Ϯϴϱϵ-ϯ͕�
/^K� Ϯϴϱϵ-ϰ� ĂŶĚ� /^K� Ϯϴϱϵ-ϱ͕� ǁŚŝĐŚ� ĚĞƐĐƌŝďĞ� ƐƉĞĐŝĮĐ� ƚǇƉĞƐ� ŽĨ� ĂƩƌŝďƵƚĞ�
sampling systems.  It also provides guidance on the selection of the 
appropriate inspection system for use in a particular situation.  
    According to this manual, tŚĞ�ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�ƐĐŚĞŵĞƐ�ŽĨ�/^K�Ϯϴϱϵ-
ϭ͕�/^K�Ϯϴϱϵ-Ϯ͕�/^K�Ϯϴϱϵ-ϯ�ĂŶĚ�/^K�Ϯϴϱϵ-ϱ�ƉƌŽǀŝĚĞ�ĨŽƌ quantification of the 
risk of accepting unsatisfactory product (known as the consumer�s risk) and 
the risk of not accepting satisfactory product (known as the producer�s risk) 
and for choosing a plan that allows no more risk than is acceptable.  
   In this chapter it is not intended  tŽ�ĚĞĂů�ǁŝƚŚ�/^K�Ϯϴϱϵ�in details;  but this 
acceptance sampling system for inspection by  attributes  will be briefly 
introduced.  
 
11.1.1   ISO 2859-1   Standard1 
   /^K� Ϯϴϱϵ-ϭ� deals with determining acceptance sampling plans  and 
procedures for inspection by attributes of discrete item.     Sampling 
ƐĐŚĞŵĞƐ� ĚĞƐŝŐŶĂƚĞĚ� ŝŶ� ƚŚŝƐ� ƉĂƌƚ� ŽĨ� /^K� Ϯϴϱϵ, are used for lot-by-lot 
inspection.  The schemes are applicable, but not limited, to the inspection 
of finished products ,components and raw materials, materials in process 
and supplies in storage.   The plans  and procedures   of /^K�Ϯϴϱϵ-ϭ�ĂƌĞ�
indexed in terms of the Acceptable Quality Limit (AQL).  The manual of the 
standard contains some definitions, some of which  are motioned below. 
 
 Definitions  
   ��ƐĞĐƟŽŶ�ŽĨ�ƚŚĞ�ŵĂŶƵĂů�ŽĨ�/^K�Ϯϴϱϵ-ϭ�ŚĂƐ�ďĞĞŶ�ĚĞǀŽƚĞĚ�ƚŽ�ĚĞĮŶŝƟŽŶƐ�
and terminology.  Let us  define  sampling plan/ scheme , AQL and LQ: 
 
ͷͷǤͷǤͷǤͷ  Sampling plan 
(from ISO 2859 manual):  
   A specific plan which indicates the number of units of product from each 
lot which are to be inspected (sample size or series of sample sizes) and the 
associated criteria for determining the acceptability of the lot (acceptance 
and rejection numbers). 

                                                           
ϭ�/ŶƚĞƌŶĂƟŽŶĂů�KƌŐĂŶŝǌĂƟŽŶ�ĨŽƌ�^ƚĂŶĚĂƌĚŝǌĂƟŽŶ͘�ϭϵϵϵ͘ 
               /^K�Ϯϴϱϵ-ϭ͗�^ĂŵƉůŝŶŐ�WƌŽĐĞĚƵƌĞƐ�ĨŽƌ�/ŶƐƉĞĐƟŽŶ�ďǇ��ƩƌŝďƵƚĞƐ 
               WĂƌƚϭ͗�^ĂŵƉůŝŶŐ�^ĐŚĞŵĞƐ�/ŶĚĞǆĞĚ�ďǇ��Y>�for Lot-by-lot Inspe.  
               International Organization for Standardization, Geneva   
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ͷͷǤͷǤͷǤ͸  Sampling scheme 
(from ISO 2859 manual): 
      A combination of sampling plans with switching rules. 
 
ͷͷǤͷǤͷǤ͹  Limiting Quality (LQ)  
(from ISO 2859 manual): 
   When a lot is considered in isolation, a quality level which, for the 
purposes of sampling inspection,  is limited to a low probability of 
acceptance;ĨƌŽŵ� /^K� Ϯϴϱϵ-ϭͿ͘   LQ, which was formerly called lot 
tolerance percent defective( LTPD), is the worst level of quality that 
the consumer may tolerate. Plans indexed by LQ are dealt  in ISO 
Ϯϴϱϵ-Ϯ 
 
11.1.1.ͺ  Acceptable Quality Limit(AQL ) 
  Acceptable Quality Limit(AQL) plays an important ƌŽůĞ�ŝŶ�/^K�Ϯϴϱϵ-ϭ͘� It is 
the limit of a satisfactory process average for the purposes of sampling 
inspection, when a continuous series of lots is 
considered(www.woodencrates.org/standards/MIL-STD-
105.pdf) 
  Two definitions of AQL ĨƌŽŵ�Ϯ�ƐŽƵƌĐĞƐ�are followed: 
 
Definition ϭͿ  
quality level that is the worst tolerable process average when a 
continuing series of lots is submitted for acceptance sampling(ISO 
Ϯϴϱϵ-ϭ manual). 
Definition ϮͿ 
    The maximum percent nonconforming ( or maximum number of 
ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ƉĞƌ�ϭϬϬ�ƵŶŝƚƐͿ�ƚŚĂƚ�ĨŽƌ�ƚŚĞ�ƉƵƌƉŽƐĞ�ŽĨ�ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�
can be considered satisfactory as a process average.  The phrase " can be 
considered satisfactory" is interpreted as the producer risk 
;�ĞƐƚĞƌĮĞůĚ͕ϭϵϵϬ͕� ƉĂŐĞϮϯϳͿ� and denoted by  Ƚ which generally varies 
ďĞƚǁĞĞŶ�Ϭ͘Ϭϭ�ĂŶĚ�Ϭ͘ϭϬ͘ 
     The AQL is a parameter of the sampling scheme and should not be 
confused with the process average which describes the operating level of 
the manufacturing process. It is expected that the process average will be 
less than or equal to the AQL to avoid excessive rejections under this 
system( ISOϮϴϱϵ-ϭ manual). 
/^K�Ϯϴϱϵ-ϭ standard also states: 
    �Although individual lots with quality as bad as the acceptance quality limit may 
be accepted with fairly high probability, the designation of an AQL does not 
suggest that this is a desirable quality level.  Sampling schemes  in International 
^ƚĂŶĚĂƌĚƐ� ƐƵĐŚ� ĂƐ� ƚŚŝƐ� ƉĂƌƚ� ŽĨ� /^K� Ϯϴϱϵ͕� ǁŝƚŚ� ƚŚĞŝƌ� ƌƵůĞƐ� ĨŽƌ� ƐǁŝƚĐŚŝŶŐ� ĂŶĚ� ĨŽƌ�
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discontinuation of sampling inspection are designed to encourage suppliers to 
have  process averages consistently better than the AQL.�( ISO 2859:1,1991). 
 
  &Žƌ�ĞǆĂŵƉůĞ�ǁŚĞŶ� ƚŚĞ��Y>� ŝƐ� ϭй͕� Ă� Ϭ͘ϱй�ĚĞĨĞĐƟǀĞ� ůŽƚ� ŝƐ� ďĞƐƚ� ƌĞůĞĂƐĞĚ͘ 
However, it would be better still to have produced a lot free of defects. 
    /Ŷ� /^KϮϴϱϵ-ϭ� dĂďůĞƐ, �Y>� ZĂŶŐĞƐ� ĨƌŽŵ� Ϭ͘Ϭϭ� ƚŽ� ϭϬϬϬ͘� � /ƚ� ŝƐ� ǁŽƌƚŚ�
remembering AQL might be specified as the maximum percent 
ŶŽŶĐŽŶĨŽƌŵŝŶŐ��Žƌ�ŵĂǆŝŵƵŵ�ŶƵŵďĞƌ�ŽĨ�ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ƉĞƌ�ϭϬϬ�ƵŶŝƚƐ.    
Note that  
-The AQL values between Ϭ͘Ϭϭ� ƚŚƌŽƵŐŚ� ϭϬ� ĐŽƵůĚ� ďe either percent 
ŶŽŶĐŽŶĨŽƌŵŝŶŐ��Žƌ�ŵĂǆŝŵƵŵ�ŶƵŵďĞƌ�ŽĨ�ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ�ƉĞƌ�ϭϬϬ�ƵŶŝƚƐ͘� 
-�Y>� ǀĂůƵĞƐ� ĂďŽǀĞ� ϭϬ͘Ϭ� ĂƌĞ� ƚŽ� ďĞ� ŝŶƚĞƌƉƌĞƚĞĚ� ĂƐ� ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ� ƉĞƌ�
hundred units.  
dŚĞŶ� ďǇ� �Y>сϭϱϬ� � ŝƚ� ŝƐ�ŵĞĂŶƚ� ƚŚĂƚ� Ăƚ�ŵŽƐƚ� ϭϱϬ� ŶŽŶĐŽŶĨŽƌŵŝƟĞƐ� ŝŶ� ŽŶĞ�
hundred units is acceptable. 
-AQL in the tables are given in percent; i.e. , if AQL= �Ϯ͘ϱй for example, we 
ƐĞĂƌĐŚ�ĨŽƌ�Ϯ͘ϱ�ŝŶ�ƚŚĞ�ƚĂďůĞƐ�ŶŽƚ�Ϭ͘ϬϮϱ͘ 
Since AQL is usually specified by and stated on a contract and 
the supplier or manufacturer guarantee that products are of acceptable 
quality when sold to the consumer, a caution is worth noting here from 
/^KϮϴϱϵ-ϭ�ŵĂŶƵĂů͗ 
CAUTION �  
   "The designation of an AQL shall not imply that the supplier has the right 
knowingly to supply any nonconforming unit of product. In other words, the above 
ƉŚƌĂƐĞ��ĨƌŽŵ�/^KϮϴϱϵ-ϭ�Ɛtates that  AQL should not  be regarded  as a production 
goal or as permission to produce defects.  
    In using the plans indexed by AQL, the consumer is sure that the acceptance 
probability of the high-quality lots is high and the probability for bad lots is low." 
 
   It should be added that in certain literatures it is discussed that:  
-LQ sampling plans͕�ĚĞĂůƚ�ǁŝƚŚ� ŝŶ� ƚŚĞ�ƉƌĞǀŝŽƵƐ�ĐŚĂƉƚĞƌ�ĂŶĚ� ŝŶ� /^K�Ϯϴϱϵ-Ϯ͕�
provide protection to the consumer from accepting poor lots  , which is 
especially important when health and human welfare are involved.Ϯ 
-AQL plans protects producers from having good lots rejectedϯ. 
 
 
 

                                                           
ϭ�From: https:// qualityinspection.org/what-is-the-aql) 
Ϯ

www.pharmaceuticalonline.com/doc/how-to-establish-sample-sizes-for-process-validation-using-ltpd-sampling-ϬϬϬϭ 
 ϯ

e,g, see www.smartersolutions.com/resources/acceptable-quality-level-issues-and-ƌĞƐŽůƵƟŽŶ�ĂŶĚ���ŽǁŬĞƌ�Θ�ŝďĞƌŵĂŶ�͕ϭϵϳϮ�ƉĂŐĞϱϮϮͿ 

� 

https://
http://www.pharmaceuticalonline.com/doc/how-to-establish-sample-sizes-for-process-validation-using-ltpd-sampling-
http://www.smartersolutions.com/resources/acceptable-quality-level-issues-and-
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11.1.2 Acceptable Probabilities  of  lots if percent 
nonconforming= AQL:  
-To calculate the probability of accepting the lots, use binomial distribution 
ǁŝƚŚ��Y>Ɛ�ůĞƐƐ�Žƌ�ĞƋƵĂů�ϭϬ͕�ĂŶĚ�WŽŝƐƐŽŶ�ĚŝƐƚƌŝďƵƟŽŶ�ĨŽƌ��Y>�хϭϬ��ŝ͘Ğ͘�ϭϱ�Žƌ�
more. 
 
 -When contracting, various AQL values might specified for a desired defect 
whose  acceptance probability varies depending on the sample size and 
acceptance number ,ĂůŵŽƐƚ�ĨƌŽŵ�ϴϴй�ƚŽ�ϵϵй (based on Grant and leaven 
ǁŽƌƚŚ� ͕ϭϵϴϴ� ŝŶ��ŚĂƉƚĞƌ ϭϰ� �ƉĂŐĞ�ϰϱϲ ĂŶĚ��ŽǁŬĞƌ�Θ>ŝĞďĞƌŵĂŶ͕ϭϵϳϮ͕ƉĂŐĞ�
ϱϮϯ�on MILSTD-ϭϬϱ-E which is essentially the ƐŽƵƌĐĞ�ŽĨ�/^K�ϮϴϱϵͿ. 
-In this standard the decision to accept or reject the lots might be taken in 
one phase, two phases or several phases;  in other words there are single 
sampling plans, double sampling plan s and multiple sampling plans in ISO 
Ϯϴϱϵ�standard. 
 
11.1.2.1 Break Even Point in Quality & Establishing AQL  
  &ĞŝŐĞŶďĂƵŵ�;ϭϵϵϭͿ ŽŶ�ƉĂŐĞ�ϱϬϰ�ŐŝǀĞƐ the following  definition for 
breakeven point(BEP) in quality: 
 
Break even point for a given part of quality characteristic  may be defined  
as the percentage ratio  between two costs i.e. 
 �the cost of eliminating nonconforming units by inspection� 
and 
"the cost for repairing [the product] when nonconforming units have been 
allowed to move onto the manufacturing floor� 
 
The calculation of BEP value  for a single part or quality characteristic 
follows: 
 
ϭͿ�ĞƚĞƌŵŝŶĞ�ƚŚe cost of removing non conforming parts by inspection 
 
ϮͿDetermine the average repair cost for units or assemblies made using 
these nonconforming parts. 
 
ϯͿ�ĐĂůĐƵůĂƚĞ���W�ĨƌŽŵ;&ĞŝŐĞŶďĂƵŵ͕ϭϵϵϭ͕ƉĂŐĞ�ϱϬϰͿ 

��� ൌ ����������������������������
����������������������������������������� 

dĂǇůŽƌ;ϭϵϵϮͿ�ŐŝǀĞƐ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ƌĞůĂƟŽŶƐŚŝƉ�ĨŽƌ calculating  BEP: 

ᇱ݌������������������ ൌ ܲܧܤ ൌ �� ൅ ��
ܰ

ܧ ൈ ሺܮ ൅ ܦ െ ܲሻ 
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where 
D Discard value of unit 
E �ĸĐŝĞŶĐǇ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 
L Loss incurred per defective unit sold 
N Lot size 
P Price unit sold for 
�୦ WĞƌ�ůŽƚ�ƐĞƚƵƉ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 
�୦ WĞƌ�ƵŶŝƚ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 

 
The proof and illustration is given at the end of the chapter.  
 
ͳͳǤͳǤʹ.ʹ Ǥͳ�Determining AQL from BEP��
If product AQLs are viewed as break even qualities, then the BEP can 
be used to establish AQLs.  Feigenbaum ;ϭϵϵϭͿ�ƉƌĞƐĞŶƚƐ�the 
ĨŽůůŽǁŝŶŐ�Ϯ�simple approaches to select AQL using BEP:  
 
First   Approach 
   Select the AQL closest to or equal to the BEP from the AQL's used 
in standard Tables F, G and H (Feigenbaum͕ϭϵϵϭͿ i.e. from the 
following series of percents(%): 
Ϭ͘ϬϭϬ͕  Ϭ͘Ϭϭϱ͕ Ϭ͘ϬϮϱ͕ Ϭ͘ϬϰϬ͕ Ϭ͘Ϭϲϱ͕ ϬϭϬ͕ Ϭ͘ϭϱ ͕Ϭ͘Ϯϱ͕ Ϭ͘ϰϬ͕ Ϭ͘ϲϱ͕ ϭ͕ϭ͘ϱ͕ Ϯ͘ϱ͕ϰ͕ ϲ͘ϱ͕ ϭϬ͙͘ 

Example ϭϭ͘ϭ 
  In a factory the cost per unit  of a kind product for complete 
inspection ƚĞƐƚ��ŝƐ�Ϭ͘Ϭϭ�ĚŽůůĂƌ and cost of repair cost if   
nonconforming unit found in assembly ŝƐ�ϭΨ͘��tŚĂƚ��Y>�ĚŽ�ǇŽƵ�
suggest for this case if the lots are to be inspected using an AQL- 
indexed  plan? 

.
. . %

.

0 01 0 0091 0 911 1BEP   
 

In Table F the closest AQL to 0.91 is 1 then AQL= �1. 
This common approach is relatively inaccurate and in certain cases 
sacrifices some of the economy possible with sampling(Feigenbaum , 
ϭϵϵϭ͕ƉĂŐĞ�ϱϬϱͿ 
 
Second Approach 
Relate the BEP to an AQL given in  the following table(FeŝŐĞŶďĂƵŵ�͕�ϭϵϵϭͿ: 
 
BEP(%) 0.5-1 1-1.75 1.75-3 3-4 4-6 5.6-10.5 10.5-17 
AQL(%) 0.25 0.65 1 2.5 4 6.5 10 
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Example ϭϭ͘Ϯ 
     Solve the previous example using the second approach. 
��WсϬ͘ϵϭй� ǁŚŝĐŚ� ůŝĞƐ� ŝŶ� ƚŚĞ� ŝŶƚĞƌǀĂů� 0.5-1. From the ƚĂďůĞ� �Y>сϬ͘Ϯϱй; 
then a plan with this AQL is appropriate for inspecting the lots containing 
this product.   
 
    &ĞŝŐĞŶďĂƵŵ;ϭϵϵϭͿ�ĂĚĚƐ�ƚŚĂƚ�ǁŚĞƚŚĞƌ��ƉƉƌŽĂĐŚ�ϭ�Žƌ�Ϯ�ǁŝůů�ďĞ�ƵƐĞĚ�ŝŶ�Ă�
given factory �or whether this kind of calculations  is appropriate or not �
depends on almost upon the circumstances in the factory�  
 
    In actual practice ,accurate details for BEP calculations  may not be 
readily available in a given factory; and AQL selection is often dictated by 
past experience  on a given part or quality characteristic (Feigenbauŵ͕ϭϵϵϭ�
ƉĂŐĞ�ϱϬϳͿ͘�dŚĞ�ĂŐƌĞĞŵĞŶƚ�ďĞƚǁĞĞŶ�ƚŚĞ�ŵĂŶƵĨĂĐƚƵƌĞƌ�ĂŶĚ�ƚŚĞ�ĐŽŶƐƵŵĞƌ�ŝƐ�
also important in establishing AQL (based on �ƐŬĂŶĚĂƌŝ͕ϮϬϬϬ͕�ƉĂŐĞ�ϭϰͿ. 
 
Concerning  to use an AQL for each characteristic or an overall AQL for 
similar characteristics such as thickness, outer-diameter etc. or to use an 
AQL for each critical characteristic are  dealt briefly in such references as 
&ĞŝŐĞŶďĂƵŵ;ϭϵϵϭͿ� ƉĂŐĞ� ϱϬϴ͘   In this regard the following quotation is 
worth mentioning: 
 
  "Defects are commonly classified as critical, major, and minors. These categories 
correspond to differ severity's�. Within a category, the defects have similar 
consequences.  For example, major defects render the product nonfunctional.  The 
customer is little concerned with why it doesn�t work.  The impact is the same.  
Therefore it makes sense to group these defects together if their inspection costs 
are similar.  In particular, visual defects should be grouped together.  Functional 
defects with higher costs of testing should be inspected separately, not only using 
a separate sampling plan but also with a higher AQL. " 
(https://variation.com/classifying-defects-and-selecting-aqls/). 
 
To determine a plan for inspecting a lot  gŝǀĞŶ� ĂŶ� �Y>� ƵƐŝŶŐ� /^KϮϴϱϵ-ϭ�
some terms  including  inspection level and inspection severity  are needed 
which are defined here. 

11.1.3  Inspection level 
    The inspection level of a plan gives a relationship between the lot size 
and the sample size.  ISO Ϯϴϱϵ-ϭ� ƐƉĞĐŝĮĞƐ� � ƚŚŝƐ� ƌĞůĂƟŽŶƐŚŝƉ� ŝŶ� �ŶŐůŝƐŚ�
letters (A, B,�Q,R,..) given in Table E (reproduced) at the end of this book.   
As the table shows there are ϳ� ůĞǀĞůƐ� ŐƌŽƵƉĞĚ� ŝŶƚŽ� ƚǁŽ� categories: 
General(I,I,III) and special (S-ϭ͕^-Ϯ͕^-ϯ͕^-ϰͿ͘dŚƌĞĞ� ŝŶƐƉĞĐƟŽn   levels, I, II, 
and III are for general use.  
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 Unless otherwise specified, level   II    shall be used.  Level l may be  used 
when less discrimination is needed or level III when greater discrimination 
is required. Four additional special levels S-ϭ͕  S-Ϯ͕�^-ϯ�ĂŶd S-ϰ�ĂƌĞ�ĂůƐŽ�
given and may be used where relatively small sample sizes are necessary 
and large sampling risks can or shall be tolerated. 
    In the designation of inspection levels S-ϭ�ƚŽ�^-ϰ͕�ĐĂƌĞ�ƐŚĂůů�ďĞ exercised 
to avoid AOLs inconsistent with these inspection levels. In other words, the 
purpose of the special inspection levels is to keep samples small where 
necessary. For instance,  the code letters under S-ϭ�ŐŽ�ŶŽ�ĨƵƌƚŚĞƌ�ƚŚĂŶ��͕�
equivalent to a ƐŝŶŐůĞ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϴ͕�ďƵƚ�ŝƚ�ŝƐ�ŽĨ�ŶŽ�Ƶse to specify S-ϭ͕�ŝĨ�
the �K>�ŝƐ�Ϭ͕ϭ�й�ĨŽƌ�ǁŚŝĐŚ�ƚŚĞ�ŵŝŶŝŵƵŵ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�ϭϮϱ."(^ĞĐƟŽŶ�ϭϬ͘ϭ͕�
/^KϮϴϱϵ-ϭ�ŵĂŶƵĂůͿ͘�  
 
  However, Inspection Level I may be specified when less discrimination is 
needed, or Level III may be specified for greater discrimination ( Grant& 
>ĞǀĞŶ�ǁŽƌƚŚ�͕ϭϵϴϴ͕ƉĂŐĞ�ϰϱϱͿ͘ 
 
Different levels of inspection  provide approximately the same protection  
to the producer, but different protections to the consumer.   Level III gives 
a steeper OC curve and increased inspection costs;� an application of it is 
for complex and expensive items (BĞƐƚĞƌĮůĞĚ͕ϭϵϵϬ�ƉĂŐĞ�ϮϯϴͿ 
 

 
          Fig. 11-1    Comparison of general   inspection levels 

 (after �ĞƐƚĞƌĮůĞĚ͕ϭϵϵϬ�ƉĂŐĞ�Ϯϯϵ)    
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    Levels S-ϭ�ƚŚƌŽƵŐŚ�^-IV  are useful where the cost of inspecting a product 
is high and therefore small samples  are appropriate ;�ƐŬĂŶĚĂƌŝ͕�ϮϬϬϬͿ͘� An 
application of special levels is where  destructive tests have to be used for 
inspection, which impose a largish expenditure.    
    Shifting from Level I to Level II and then to III increases the inspection 
volume (Eskandari,ϮϬϬϬͿ�and the discrimination power  of bad lots from 
good ones.   Level II has a medium power of discrimination between good 
ĂŶĚ�ďĂĚ�ůŽƚƐ͖�ǁŚĞƌĞĂƐ�ƚŚĂƚ�ŽĨ�ůĞǀĞů��///�ŝƐ�ĂƐ��ϭ͘ϲ�ƟŵĞƐ�ĂƐ�ĨŽƌ�ůĞǀĞů�//, because 
its sample is larger  ĂŶĚ�ƚŚĂƚ�ŽĨ�ůĞǀĞů�/�ŝƐ�ϲϬй��ŽĨ�ƚŚĂƚ�ŽĨ�ůĞǀĞů�//;��ďƌĂŚŝŵŝ͕�
ϭϵϵϮͿ.  
 
11.1.4   inspection severity 
  The inspection severity is one of the criteria used as an input to determine 
the sample size.  This criterion  is classified into three groups: 
 
a)  Normal  
  A  normal inspection severity results in a medium sample size. 
^ĞĐƟŽŶ�ϵ͘�ϭ�/^K Ϯϴϱϵ-ϭ�ƐƚĂƚĞƐ�͗Η Normal inspection shall be carried out at 
the start of inspection,  unless otherwise directed by the responsible 
authority."  Table H deals with normal inspection. 
   It is advised If there is not a history of the qualities of lots supplied by the 
manufacturer or the vendor, acceptance sampling should be started at a 
ŶŽƌŵĂů�ƐĞǀĞƌŝƚǇ�;�ƐŬĂŶĚĂƌŝ͕ϮϬϬϬͿ͘��dŚĞ�ƐƚĂŶĚĂƌĚ�ƐƚĂƚĞƐ�ƐŽŵĞ�ĐŽŶĚŝƟŽŶƐ�for 
switching from one severity to another. 
b)  Tightened 
  More severe acceptance criteria designed to protect the customer 
must be used whenever the quality history is unsatisfactory. This 
gives the concept of tightened inspection as an alternative to normal 
inspection.  A tightened inspection severity results in a larger sample 
size.   Tightened inspection is intended when the submitted quality is 
worse than the AQL (Bowker& >ŝĞďĞƌŵĂŶ͕ϭϵϳϮ�ƉĂŐĞϱϮϯͿ.  Table F  Is 
concerned with this inspection. 
c)  Reduced 
  A reduced inspection severity results in a smaller sample size.  Table 
G Is concerned with this inspection. 
 
Example ϭϭ͘ϯ  
&Žƌ�Ă�ďĂƚĐŚ�ŽĨ��ƐŝǌĞ�EсϲϬϬ in normal inspection, determine  the 
codes  and the sample sizes for all inspection levels. 
The codes (from Table E) and the sample sizes ( from Table H )for 
different levels are as follows : 
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Inspection 

level 
Code 

 
Sample size 

NŽƌŵĂů�ŝŶƐƉĞĐƟŽŶ;�Y>сϭϬͿ 

I G ϯϮ� 
I J ϴϬ 

III K ϭϮϱ 
S-ϭ C ϱ 
S-Ϯ C ϱ 
S-ϯ E ϭϯ 
S-ϰ F ϮϬ 

Notice  that for certain other AQLs ,when encountered  an 
arrow, the size at the arrowhead  in the table has to be 
read, not the size for the original  code 

 
  It is worth explaining that in the /^KϮϴϱϵ-ϭ��Table for reduced inspection,  
there are some plans for which the difference  of rejection acceptation  
numbers i.e. "Re-�ĐΗ� ŝƐ� ŐƌĞĂƚĞƌ� ƚŚĂŶ� ϭ͘� � What should be done if the 
ĚŝīĞƌĞŶĐĞ�ďĞƚǁĞĞŶ��Đ�ĂŶĚ�ZĞ�ŝƐ�ŵŽƌĞ�ƚŚĂŶ�ϭ͍ 
/Ŷ�ƚŚŝƐ�ĐĂƐĞ��ƚŚĞ�ƐƚĂŶĚĂƌĚ�/^KϮϴϱϵ-ϭ��ƐƚĂƚĞƐ�ŝŶ�^ĞĐ͘�ϭϭ͘ϭ͘ϰ͗ 
 
"In reduced inspection, the sample may contain a number of nonconforming units 
or  ŶŽŶ� ĐŽŶĨŽƌŵŝƟĞƐ� ƉĞƌ� ϭϬϬ� ƵŶŝƚƐ� ďĞƚǁĞĞŶ� ƚŚĞ� ĂĐĐĞƉƚĂŶĐĞ� ĂŶĚ� ƌĞũĞĐƟŽŶ�
numbers. In these circumstances, the lot shall be considered acceptable, but 
normal inspection shall be reinstated starting with the next lot".�   
 
  Of course if the conditions changes, reduced inspection might be 
resumed.      An advice is to use normal inspection when the quality 
standard Is equal or better than the AQL; tightened, when the quality 
standard appears to have deteriorated; and reduced  in case of the 
improvement of  the quality level beyond AQL ;�ĞƌŵĂŶ�ĂŶĚ�ZŽƐƐ͕�ϭϵϵϳͿ. 
  

11.2  Selection an AQL-indexed  plan from ISO 2859-1Tables 
  After deciding on the  AQL, the inspection level, inspection severity and 
type of sampling  (single, double or multiple ) the following steps have to 
be followed .  The following steps are for designing single plans whose 
tables are reprinted at the end of this book.   Similar steps are followed for 
ƚŚĞ�ŽƚŚĞƌ�Ϯ�ƚǇƉĞƐ͕�ďƵƚ�ĂƌĞ�ŶŽƚ�ĐŽǀĞƌĞĚ�ŚĞƌĞ͘ 
^ƚĞƉ�ϭ : 
   Given   the lot size and the inspection level, read a  letter code  from 
Table E;dĂďůĞ�ϭ�ŝŶ�/^K�Ϯϴϱϵ-ϭ͗ϭϵϵϵͿ.  The default level is II.  Not that if you 
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would like to inspect m similar lot with size N from the same supplier, you 
could take the lot size as mൈN.  
 ^ƚĞƉ�Ϯ : 
  Given  the AQL ĂŶĚ�ƚŚĞ�ĐŽĚĞ�ŽĨ�ƐƚĞƉ�ϭ, refer to Table H,F or G ;dĂďůĞ��Ϯ-
�Θ�Θ�� ŝŶ� /^K� Ϯϴϱϵ-ϭ͗ϭϵϵϵ)depending on the severity of the inspection 
and read the plan specifications (i.e. sample size,  acceptance and rejection 
numbers (Ac, Re)).  If encountered an arrow,  ignore the sample size next  
ƚŽ� ƚŚĞ� ůĞƩĞƌ�ĐŽĚĞ�ŽďƚĂŝŶĞĚ� ŝŶ� ƐƚĞƉ�ϭ�ĂŶĚ� ƌĞĂĚ the plan corresponding to 
the letter code at  the arrowhead.  
    The sample has to drawn at random from the lot, representing  the 
whole lot.   
   If  number of  nonconformities is less or equal Ac, accept the lot, if it is 
greater or equal Re do not accept it.  
If the sample size exceeds the lo size, the entire lot has to be taken as the 
sample. 
   The responsible authority shall decide how lots which are not accepted 
will be disposed of. Such lots may be scrapped, sorted (with or without 
nonconforming units being replaced),reworked, re-evaluated against more 
specific usability criteria, held for additional information, etc;/^KϮϴϱϵ-ϭ�
ƐĞĐƟŽŶ�ϳ-ϭͿ. 
   It should be emphasized that,  although the absolute sample size(n) 
increases with lot size(N) in this standard  system, the relative sample size   
(
୬
୒) decreases as the following illustrative table shows    ( based on Grant 

and Leavenworth͕ϭϵϴϴ ƉĂŐĞ�ϰϱϴͿ͗  
 

N 
Normal inspection 
LĞǀĞů�//�ǁŝƚŚ��Y>сϭ 

݊
� 

N c 

ϱϭ-ϵϬ ϭϯ Ϭ 
13 13

( , )
51 90

 

Ϯϴϭ-ϱϬϬ ϱϬ ϭ 
50 50

( , )
281 500

��

ϭϮϬϭ-ϯϮϬϬ ϭϮϱ ϯ 
125 125

( , )
1201 3200

 

ϯϱϬϬϭ-ϭϱϬϬϬϬ ϱϬϬ ϭϬ 
500 500

( , )
35001 150000

��
  
�ǆĂŵƉůĞϭϭ͘ϰ 
  hƐŝŶŐ�/^K�Ϯϴϱϵ�ƐƚĂŶĚĂƌĚ find a single acceptance sampling plan for 
normal iŶƐƉĞĐƟŽŶ�ŽĨ�ůŽƚƐ�ŽĨ�ƐŝǌĞ�ϮϬϬϬϬ�ǁŝƚŚ��Y>сϬ͘Ϭϭϱй͘�  
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Answer: 
   &Žƌ�EсϮϬϬϬϬ�ĂŶĚ�default Level II from Table E  gives code letter M. With 
this ĐŽĚĞ�ĂŶĚ��Y>�с�Ϭ͘Ϭϭϱ under normal inspection we encounter an arrow 
in Table H.  The letter code at the arrowhead is P; then 
^ĂŵƉůĞ�ƐŝǌĞ�����ŶсϴϬϬ 
Acceptance number     �Đсϭ 
Rejection number         ZĞсϬ͘ 
 
It is worth remembering if encountered with an arrow,  the first sampling 
plan below or above the arrowhead has to be selected.  For example in Table 
H for code E, n=13; but for �Y>сϬ͘ϭϬ� we encounter an arrow; the plan 

ŶсϭϮϱ� ĂŶĚ� ĐсϬ� ŝƐ� ŐŝǀĞŶ� ďǇ� ƚŚĞ� ĂƌƌŽǁhead and also for �Y>сϬ͘Ϭϲϱй� �ฺ 
ŶсϮϬϬ�ΘĐсϬ�from Table H. 
 
Exampleϭϭ͘ϱ 
  ��ůŽƚ�ŽĨ�ƐŝǌĞ�ϭϬϬϬϬ is to be inspected using /^K�Ϯϴϱϵ standard  with AQL 
сϬ͘Ϯϱ � Find  

a)a single acceptance plan for each of ƚŚĞ��ϯ�ƚǇƉĞƐ�ŽĨ�ƐĞǀĞƌŝƚǇ͕ 
ďͿtŚĂƚ� ŝƐ� ƚŚĞ� ĂĐĐĞƉƚĂŶĐĞ� ƉƌŽďĂďŝůŝƚǇ� ĨŽƌ� ƚŚĞ� ϯ� ƉůĂŶƐ� ŽĨ� ƉĂƌƚ� Ă� ŝĨ� ƚŚĞ�
proportion nonconforming is equal to acceptable quality limit i.e. 

' 0.0025p   .  
Solution 
  The code from Table E with default Level II is L. The plans read from 
Tables  F,G,H with the code and the acceptance probability calculated using 
MATLAB command ݂݊݀ܿ݉ݎ݋ are shown below: 
 

Severity Table Sample 
size 

Ac Re �� 
(For p'=Ϭ͘ϬϮϱͿ 

Normal H ϮϬϬ ϭ Ϯ ݂݊݀ܿ݉ݎ݋ሺܿܣǡ ݊ǡ  ᇱሻ сϬ͘ϴϭϯϰ݌

Reduced G ϴϬ Ϭ Ϯ ݂݊݀ܿ݉ݎ݋ሺͳǡ ݊ǡ ᇱሻ݌ ൌ ͲǤͻͺʹ͸ 

Tightened F ϯϭϱ ϭ Ϯ ݂݊݀ܿ݉ݎ݋ሺܿܣǡ ݊ǡ  ᇱሻсϬ͘ϴϭϯϰ݌

 
Example ϭϭ͘ϲ 
/Ĩ�EсϰϬϬ͕��Y>сϬ͘Ϭϭϱ �� what plan should be used with normal inspection? 

Answer 
With the default Level II ĂŶĚ�EсϰϬϬ�ĨƌŽŵ�dĂďůĞ�, the code is read "G".  
ǁŝƚŚ��Y>сϬ͘Ϭϭϱ�ĂŶĚ��ŽĚĞ�'�ŝŶ�dĂďůĞ��,�ŝƚ�ŝƐ�ĞŶĐŽƵŶƚĞƌĞĚ�ǁŝƚŚ�ĂŶ�ĂƌƌŽǁ�
ǁŚŝĐŚ�ǇŝĞůĚƐ�ŶсϴϬϬ͘ 
SiŶĐĞ�EсϰϬϬ͕�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ŚĂƐ�ƚŽ�ĚŽŶĞ͘ 
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Example ϭϭ͘ϳ 
&Žƌ�Ă�ůŽƚ�ŽĨ�ƐŝǌĞ�ϮϱϬϬ͕�ĮŶĚ��Ă�ŶŽƌŵĂů�ĂŶĚ�a tightened single sampling plan 
with �Y>сϰй͘ 

 
Solution 
From Table E the letter code is K, 
For normal severity(Table H) 
^ĂŵƉůĞ�ƐŝǌĞ���Ŷс�ϭϮϱ 
Acceptance no.  AĐсϭϬ 
ZĞũĞĐƟŽŶ�ŶŽ͕�������ZĞсϭϭ 
---------------- 
For tightened  severity(Table F) 
^ĂŵƉůĞ�ƐŝǌĞ���Ŷс�ϭϮϱ 
�ĐĐĞƉƚĂŶĐĞ�ŶŽ͘���Đсϴ 
Rejection no.,      ZĞсϵ 
 
Example ϭϭ͘ϴ 
  In the previous example if the proportion nonconforming of the process is

04.0p , calculate the acceptance probability for the plan with normal 
and also tightened severity.   
Solution  
Normal: 

 :binocdf(10,125,0.04); Pr 10 0.9881MATLAB Pa X    

Tightened: 

 :binocdf(8,125,0.04); Pr 8 0.9359MATLAB Pa X    

Poisson Approximation: 

 ' 5 Pr 8 0.9319aPossion np P X       

Example ϭϭ͘ϵ 
Solve Example ϭϭ͘ϳ�for all levels under normal severity. 
Answer is given in the table below: 

N=2500,   AQL=4%,   Normal severity 
Level I II III S1 S2 S3 S4 

Code(from  Table E) H K L C D E F 
From 
Table 

G 

n 50 125 200 3 13 13 32 
Ac 5 10 14 0 1 1 3 
Re 6 11 15 1 2 2 4 

'( )

binocdf(A c,n ,0 .04)

p A Q L P a  
0.986 0.988 0.985 0.885 0.907 0.907 0.962 
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Example  ϭϭ͘ϭϬ (from ISO 28590:2017) 
��ƉƌŽĚƵĐƚ�ŚĂƐ�ĮǀĞ�ĚŝŵĞŶƐŝŽŶƐ� ƚŽ�ďĞ� ĐŚĞĐŬĞĚ͘��ŝŵĞŶƐŝŽŶƐ�ϭ� ĂŶĚ�Ϯ� ĂƌĞ� ŝŶ�
�ůĂƐƐ���ǁŝƚŚ�ĂŶ��Y>�ŽĨ�Ϭ͕ϲϱ�й�ĂŶĚ�ƚŚĞ�ŽƚŚĞƌ�ƚŚƌĞĞ�ĚŝŵĞŶƐŝŽŶƐ�ĂƌĞ��ůĂƐƐ B 
ǁŝƚŚ� ĂŶ� �Y>� ŽĨ� Ϯ͕ϱ� й͘� /ƚ� ǁĂƐ� ƐƉĞĐŝĮĞĚ� ƚŚĂƚ� ŐĞŶĞƌĂů� ŝŶƐƉĞĐƟŽŶ� ůĞǀĞů� ///�
should be used for all of the dimensions. The product is produced in lots of 
ϵϬϬ�ŝƚĞŵƐ͘ 
Table E gives code letter K for this situation.  
Table H  indicates the single sample size fŽƌ�ŶŽƌŵĂů� ŝŶƐƉĞĐƟŽŶ�ƚŽ�ďĞ�ϭϮϱ�
ĂŶĚ� ƚŚĞ� ĂĐĐĞƉƚĂŶĐĞ� ŶƵŵďĞƌƐ� ĂƌĞ� Ϯ� ĂŶĚ� ϳ� ĨŽƌ� �Y>� ŽĨ� Ϭ͕ϲϱ� й� ĂŶĚ� Ϯ͕ϱ�
%,respectively.  Suppose a particular lot was inspected with this 
procedures and the results are 
� ŽŶĞ�ŝƚĞŵ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝŶ�ĚŝŵĞŶƐŝŽŶ�ϭ�ŽŶůǇ͕ 
� one item nonconĨŽƌŵŝŶŐ�ŝŶ�ĚŝŵĞŶƐŝŽŶƐ�Ϯ�ĂŶĚ�ϰ͕ 
� ƚǁŽ�ŝƚĞŵƐ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝŶ�ĚŝŵĞŶƐŝŽŶ�ϯ�ŽŶůǇ͕�ĂŶĚ 
� ƚŚƌĞĞ�ŝƚĞŵƐ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝŶ�ĚŝŵĞŶƐŝŽŶƐ�ϯ�ĂŶĚ�ϰ͘ 
There are two nonconforming items in Class A and five in Class B, therefore 
the lot is accepted. 
End of Example ϭϭ͘ϭϬ. 
 

11.3  Switching Rules of ����ʹͺͷͻ 
   The switching rules are an inherent  part of  acceptance sampling  
Standards ƐƵĐŚ� ĂƐ� /^K� Ϯϴϱϵ-ϭ when  a series of lots are being inspected 
with the standard. The rules constitute a regime  to change between 
different levels of inspection  (normal, tightened, reduced) according to 
previous decisions on lot acceptance.   One purpose of  the regime is to 
protect consumers  against poor quality  and pressure on the provider to 
submit satisfactory quality;  the other is reducing the inspection cost in 
cases of proven good process quality (Balamurali et al. ͕ϮϬϬϴͿ i.e.to stop 
unnecessary inspections and therefore saving time and money.  
    The switching rules switch back and forth between three sampling plans 
that have different OC curves. That is, the normal plan, the tightened plan, 
and  the reduced plan each has its own OC curve: 

 
The rules are as follows;ĨƌŽŵ�/^KϮϴϱϵ-ϭͿ 
 
The inspection often begins with normal severity ,unless otherwise stated. 
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11.3.1  Normal to tightened(from ISO2859-1) 
  When normal inspection is being carried out, tightened inspection shall be 
implemented as soon as Ϯ out of ϱ(or less than ϱ) consecutive lots have 
been non-acceptable on original inspection (that is, ignoring resubmitted 
lots or batches for this procedure). 
 
11.3.2 Tightened to normal  (from ISO2859-1) 
  When tightened inspections being carried out, normal inspection shall be 
re-instated when five consecutive lots have been considered acceptable on 
originalϭ inspection. 
 
11.3.3 Reduced to Normal(from ISO2859-1) 
   When reduced inspection is being carried out, normal inspection shall be 
re-instated if any of the following occur on original inspection: 
a) a lot is not accepted; or 
b) production becomes irregular or delayed; or 
c) other conditions warrant that normal inspection shall be re-instated. 
 

11.3.4 Normal to reduced 
(from ISO2859-1) 
   When normal inspection is being carried out, reduced inspection shall be 
implemented provided that all of the following conditions are satisfied: 
a) the current value of an indicator named the "switching score" (see Sec. 
ϭϭ͘ϯ͘ϰ͘ϭ�belowͿ�ŝƐ�Ăƚ�ůĞĂƐƚ�ϯϬ͖�ĂŶĚ  
b) production is at a steady rate; and 
c) reduced inspection is considered desirable by the responsible authority. 
/Ŷ� ƌĞĚƵĐĞĚ� ŝŶƐƉĞĐƟŽŶ͕� ƚŚĞ� ƐĂŵƉůĞ� ƐŝǌĞ� ďĞĐŽŵĞƐ� ϰϬй� � ŽĨ� ƚŚĂƚ� ŝŶ� ŶŽƌŵĂů�
inspection.  This increases consumer's risk (Ⱦ) and reduces producer's risk 
(Ƚ) slightly.  
 
ͷͷǤ͹ǤͺǤͷ�Switching score 
  Switching score is an indicator, used under normal inspection to 
determine whether the current inspection results are sufficient to allow for 
a switch to reduced inspection. 
 
Calculation of the switching score(SC);ĨƌŽŵ�/^KϮϴϱϵ-ϭͿ 
   /^K� Ϯϴϱϵ-ϭ� ŵĂŶƵĂů� ŽŶ� ƉĂŐĞ� ϭϮ� presents the following procedure for 
calculating the switching score denoted by SC:  
   The calculation shall be initiated at the start of normal inspection unless 
otherwise specified by a responsible authority. The switching score shall be set 

                                                           
ϭ�Original inspection means first inspection of a lot according to the provisions of ISO 2859-1 
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at zero at the start and updated following the inspection of each subsequent 
lot on original normal inspection. 

dĂďůĞ��ϭϭ-ϭ Calculation of SC, for switching from normal to reduced 

Lot��
No 

Lot 
Size��

A 
Q 
L 
% 

C 
O 
D 
E 

Sam
ple 

size 

AC��

of 

defectives
 

S 
T 
E 
P��

SC��

��
Future Action�� Comments 

Value of SC at the start 0   

1 180 0.40 G 32 0 0 II 2 Continue normal Begin inspection with normal 
2 200 1.5 G 32 1 1 II 4 Continue normal  

3 250 0.40 G 32 0 1 II 0 Continue normal  

4 450 1.0 H 50 1 1 II 2 Continue normal  

5 300 1.0 H 50 1 1 II 4 Continue normal  

6 80 1.5 E 8 0 1 II 0 Switch to tightened Ϯ�ůŽƚƐ rejected form ϱ�ůŽƚƐ 

7 800 1 J 80 1 1 -- -- Continue tightened SC calculation Not applicable 

8 300 0.4 H 50 0 0 -- -- Continue tightened SC calculation Not applicable 

9 100 1 F 20 0 0 -- -- Continue tightened SC calculation Not applicable 
10 600 1 J 80 1 0 -- -- Continue tightened SC calculation Not applicable 

11 200 2.5 G 32 1 1 -- -- Restore normal  

12 250 0.65 G 20 0 0 II 2 Continue normal  

13 600 1.5 J 80 3 1 I 5 Continue normal Lot would be  rejected if AQL 
ǁĞƌĞ�ŽŶĞ�ĚĞŐƌĞĞ�ƟŐŚƚĞƌ�ŝ͘Ğ͘ϭй 

14 80 1.5 E 8 0 0 II 7 Continue normal  

15 200 0.40 G 32 0 0 II 9 Continue normal  

16 500 1.0 H 50 1 0 II 11 Continue normal  

17 100 2.5 F 20 1 0 II 13 Continue normal  

18 120 2.5 F 20 1 0 II I5 Continue normal  

19 85 1.5 E 8 0 0 II 17 Continue normal  

20 300 1.0 H 50 1 1 II 19 Continue normal  

21 500 1.0 H 50 2 0 II 21 Continue normal  

22 700 1.5 J 80 3 1 I 24 Continue normal Lot would be  accepted if AQL 
ǁĞƌĞ�ŽŶĞ�ĚĞŐƌĞĞ��ƐŵĂůůĞƌ�ŝ͘Ğ͘�ϭй 

23 600 1.5 J 80 3 0 I 27 Continue normal Lot would be  accepted if AQL 
ǁĞƌĞ�ŽŶĞ�ĚĞŐƌĞĞ��ƐŵĂůůĞƌ�ŝ͘Ğ͘�ϭй 

24 550 1.5 J 80 3 0 I 30 Switch to reduced  

25 400 1.0 H 20 0 0 -- -- Continue reduced  
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Steps for  SC calculations in single sampling plans: 
^ƚĞƉ�Ϭ-[Set SC= zero at the start]; 
Step I -ǁŚĞŶ�ƚŚĞ�ĂĐĐĞƉƚĂŶĐĞ�ŶƵŵďĞƌ�ŝƐ�Ϯ�Žƌ�ŵŽƌĞ͕�ĂĚĚ�ϯ�ƚŽ�ƚŚĞ�ƐǁŝƚĐŚŝŶŐ�
score if the lot would have been accepted if the AQL had been one step 
tighter; otherwise reset the SC to zero; 
Step II- ǁŚĞŶ� ƚŚĞ� ĂĐĐĞƉƚĂŶĐĞ� ŶƵŵďĞƌ� ŝƐ� Ϭ� Žƌ� ϭ͕� ĂĚĚ� Ϯ� ƚŽ� ƚŚĞ� ƐǁŝƚĐŚŝŶŐ�
score if the lot is accepted; otherwise reset the SC to zero. 
The application of SC is illustrated in the dĂďůĞ�ϭϭ-ϭ ŝŶ�ǁŚŝĐŚ�Ϯϱ� ůŽƚƐ� ĂƌĞ�
ŝŶƐƉĞĐƚĞĚ�;�ĂƐĞĚ�ŽŶ��ŶŶĞǆ���ŽĨ�/^KϮϴϱϵ-ϭ�ŵĂŶƵĂůͿ͘ 
 
11.3.5 Discontinuation of inspection 
  If the cumulative number of lots not accepted, in a sequence of 
consecutive lots on original tightened inspection, ƌĞĂĐŚĞƐ� ϱ͕� ƚŚĞ�
ĂĐĐĞƉƚĂŶĐĞ�ƉƌŽĐĞĚƵƌĞƐ�ŽĨ�ƚŚŝƐ�ƉĂƌƚ�ŽĨ�/^K�Ϯϴϱϵ�ƐŚĂůů�ŶŽƚ�ďĞ�ƌĞƐƵŵĞĚ�ƵŶƟů�
action has been taken by the  supplier to improve the quality of the 
submitted product or service, and the responsible authority has agreed 
that this action is likely to be effective. Tightened inspection shall then be 
used as if normal to tightened had been invoked. 
 
Example ϭϭ͘ϭϭ 
 (Extracted from   ISO 28590:2017 manual) 
   A kind of product is being ƐƵƉƉůŝĞĚ� ŝŶ� ůŽƚƐ� ŽĨ� ϰϬϬϬ͘� dŚĞ� �Y>� ŝƐ� ϭ͘ϱй�
nonconforming. The general inspection level III is used with single 
sampling. Table E ;dĂďůĞ�ϭ� ŝŶ� /^K�Ϯϴϱϵ-ϭ͗ϭϵϵϵͿĨŽƌ�EсϰϬϬϬ  gives code M, 
ĂŶĚ�dĂďůĞƐ�,� ͕&͕�';dĂďůĞƐ� �Ϯ-A, Ϯ-��ĂŶĚ�Ϯ-�� ŝŶ� /^K�Ϯϴϱϵ-ϭ͗ϭϵϵϵ� Ϳ�ŐŝǀĞ� ƚŚĞ�
following sampling plans  . 

 
Severity Normal Tightened Reduced 

Table  H F G 
N ϯϭϱ ϯϭϱ ϭϮϱ 
Ac ϭϬ ϴ ϲ 
Re ϭϭ ϵ ϳ 

d  
  Inspection starts with the normal plan.  ƐƵƉƉŽƐĞ� ůŽƚƐ� ϭ� ƚŚƌŽƵŐŚϵ� ǁĞƌĞ�
accepted;  lŽƚƐ� ϭϬ� ĂŶĚ� ϭϮ� ǁĞƌĞ� ŶŽƚ� ĂĐĐĞƉƚĞĚ͕� ƌĞƋƵŝƌŝŶŐ� Ă� ƐǁŝƚĐŚ� ƚŽ�
tightened inspection.  
  Normal inspection cannot be resumed until five successive lots have been 
accepted. If five lots are not accepted while on tightened inspection, the 
sampling inspection will be discontinued. 
If the switching score calculated according to the /^K� Ϯϴϱϵ-ϭ� ƉƌŽĐĞĚƵƌĞ��
ƌĞĂĐŚĞƐ�ϯϬ͕�ƌĞĚƵĐĞĚ�ŝŶƐƉĞĐƟŽŶ�ŵĂǇ�ďĞ�ƵƐĞĚ�ƵŶƟů�Ă�ůŽƚ�ŝƐ�ŶŽƚ�ĂĐĐĞƉƚĞĚ. 
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ͳͳǤͶ�Consumer's risk quality(CRQ=LQ=LTPD)ͳ Tables in 
���ʹͺͷͻ-ͳ 
  �ůƚŚŽƵŐŚ�/^KϮϴϱϵ-ϭ�ƐƚĂŶĚĂƌĚ�ĚĞĂůƐ�ŵĂŝŶůǇ�ǁŝth AQL, but there are some 
tables in it which are concerned with consumer's risk quality 
(CRQ=LQ=LTPD).  Before introducing these tables let us read some 
quotations in the following paragraph: 
   There are two basic approaches to acceptance quality control, depending 
upon the nature of the lots to be inspected. A continuing supply of lots 
from the same producer is most effectively treated by a sampling scheme. 
A single lot, unique in itself, is treated by sampling plans designed for use 
with an ��isolated lot". This distinction is fundamental to acceptance 
sampling, and even the basic probability distributions  used in these two 
cases are not the same(Schilling,Neubauer,ϮϬϬϴͿ. 
  If the series of lots is not long enough to allow the switching rules to be 
applied, it maybe desirable to limit the selection of sampling plans to 
those, associated with a designated AQL value, that give consumer�s risk 
quality not more than a specified limiting quality protection.  Sampling 
plans for this purpose can be selected by choosing a CRQ and a consumer's 
risk (Ⱦ ൌprobability of lot acceptance) to be associated with it 
(from:/^KϮϴϱϵ-ϭ manual).   In other words if a sampling plan is desirable 
for a lot or batch of an isolated nature, it should be chosen based on the 
CRQ and Ⱦ  (extracted from  
homes.ieu.edu.tr/~ykaǌĂŶĐŽŐůƵͬ��ϰϭϬͬͬ͘͘͘ϬϭϯϱϬϯϯϱϭϵͺƉƉϭϬĂ͘ƉƉƚͿ 
 

  Tables ϲ-�͕ϲ-�͕ϲ-C and ϳ-�͕ϳ-�͕ϳ-C ŽĨ�/^KϮϴϱϵ-ϭ�give values of LTPD or LQ, 
changed  to consumer's risk quality(  CRQ) in the heading of these tables,  
for which the probability of lot acceptance  under various sampling plans is  
Ⱦ =ϭϬ�й.  TableƐ�ϲ(-A,B&C) apply when inspecting for nonconforming items 
and TableƐ� ϳ(-A,B,C) apply ,when inspecting for number of 
nonconformities.  For individual lots with quality levels less than or equal 
to the tabulated values of CRQ, the probabilities of lot acceptance are less 
than or equal to ϭϬ%.   When there is reason for avoiding more than a 
limiting percentage  of nonconforming units in a lot, Tables ϲ�and ϳ may be 
useful for fixing minimum sample sizes to be associated with the AQL and 
the level specified for the inspection of the ƐĞƌŝĞƐ�ŽĨ�ůŽƚƐ͘�/^K�Ϯϴϱϵ-Ϯ�ŐŝǀĞƐ�
further details of the method of sampling for lots in isolation. In this book 
only one of the tables i.e.: 
Table ϲ-A :CRQ for which Ⱦ ൌ 10% has been reproduced in dĂďůĞ�ϭϭ͘Ϯ. 

                                                           
ϭ�Consumer 's risk quality is the percentage of nonconforming units (or nonconformities) in a batch or 
lot for which for purposes of acceptance sampling, the consumer wishes the probability of acceptance 
to be restricted to a specified low value(Elementary Statistical QualitǇ��ŽŶƚƌŽů͕�ϮŶĚ��ĚŝƟŽŶ�ĞĚŝƚĞĚ�ďǇ�
John T. Burr) 
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Table 11.2      (Table 6-A, ISO2859-1 page 38)  
CRQ=LQL=LTPD (in percent nonconforming )&ࢼ� ൌ ૙Ǥ ૚૙ for 
Single sampling ǡNormal inspection n 

C 
O
D 
E AQL(%) percent nonconforming items�� �

10� �6.5� �4.0� �2.5� �1.5� �1.0 0.65� �0.40� �0.25� �0.15� �0.10� �0.065� �0.040� �0.025� �0.015� �0.010� �
69.0*� �68.4� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �2 A� �
57.6

*� �
54.1

*� �53.6� �� �� �� �� �� �� �� �� �� �� �� �� �� �3� �B� �

58.4� �39.8
*� �

37.3
*� �36.9� �� �� �� �� �� �� �� �� �� �� �� �� �5� �C� �

53.8� �40.6� �27.0
*� �

25.2
*� �25.0� �� �� �� �� �� �� �� �� �� �� �� �8 D� �

44.4� �36.0� �26.8� �17.5
*� �

16.4
*� �16.2� �� �� �� �� �� �� �� �� �� �� �13� �E� �

41.5 30.4� �24.5� �18.1� �11.8
*� �

11.0
*� �10.9� �� �� �� �� �� �� �� �� �� �20� �F� �

34.0 27.1� �19.7� �15.8� �11.6� �7.50
*� �

7.01
*� �6.94� �� �� �� �� �� �� �� �� �32� �G� �

29.1� �22.4� �17.8� �12.9� �10.3� �7.56� �4.87
*� �

4.54
*� �4.50� �� �� �� �� �� �� �� �50� �H� �

24.2� �18.6� �14.3� �11.3� �8.16� �6.52� �4.78� �3.07
*� �

2.86
*� �2.84� �� �� �� �� �� �� �80� �J� �

21.9� �15.7� �12.1� �9.24� �7.29� �5.27� �4.20� �3.08� �1.97
*� �

1.84
*� �1.83 � �� �� �� �� �125� �K� �

� �13.8� �9.91� �7.60� �5.82� �4.59� �3.31� �2.64� �1.93� �1.24
*� �1.16*� �1.14� �� �� �� �� �200 L� �

� �� �8.84� �6.33� �4.85� �3.71� �2.92� �2.11� �1.68� �1.23� �0.887
*� �

0.735
*� �0.728� �� �� �� �315� �M� �

� �� �� �5.60� �4.00� �3.06� �2.34 1.85� �1.33� �1.06� �0.776� �0.497� �0.464
*� �0.459� �� �� �500� �N� �

� �� �� �� �3.51� �2.51� �1.92� �1.47� �1.16� �0.833 0.664� �0.485� �0.311
* 

0.290
*� �0.287� �� �800� �P� �

� �� �� �� �� �2.25� �1.61� �1.23� �0.940� �0.741 0.534� �0.425� �0.311� �0.199
*� �

0.186
*� �0.184� �125

0 Q� �

� �� �� �� �� �� �1.41� �1.00� �0.769� �0.588� �0.463� �0.334� �0.266� �0.194� �0.124
*� �

0.116
*� �

200
0 R� �

NOTES 
ϭ���ƚ�ƚŚĞ�ĐŽŶƐƵŵĞƌΖƐ�ƌŝƐŬ�ƋƵĂůŝƚǇ͕�ϭϬй�ŽĨ�ůŽƚƐ�ǁŝůů�ďĞ�ĂĐĐĞƉƚĞĚ 
Ϯ���ůů�ƚŚĞ�ǀĂůƵĞƐ�ĂƌĞ�ďĂƐĞĚ�ŽŶ�ďŝŶŽŵŝĂů�ĚŝƐƚƌŝďƵƟŽŶ 
ϯ��Superscript(*) denotes that the value is for the original fractional acceptance number 
sampling plan;^ĞĞ�dĂďůĞ�ϭϭ-��ŽĨ�/^K�Ϯϴϱϵ-ϭ�ƐƚĂŶĚĂƌĚ�ŵĂŶƵĂů�ŽŶ�ƉĂŐĞ�ϴϭͿ 
 

 
Some applications of the table are illustrated here: 
�ǆĂŵƉůĞ�ϭϭ͘ϭϮ 
LTPD=CRQ with  WĂсϭϬ and AQL are given to design a plan  
(based on example ISO 2859-1:1999 manual page 14) 
   �ƐƐƵŵĞ�Ă��ZY�ŽĨ�ϱй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƚĞŵƐ�ǁŝƚŚ�ĂŶ�ĂƐƐŽĐŝĂƚĞĚ�ƉƌŽďĂďŝůŝƚǇ�
of accepƚĂŶĐĞ��ŽĨ�ϭϬ�й�Žƌ�ůĞƐƐ�ŝƐ�ĚĞƐŝƌĞĚ�ĨŽƌ�ŝŶĚŝǀŝĚƵĂů�ůŽƚƐ͘��/Ĩ�ĂŶ��Y>�ŽĨ�ϭ�%  
nonconforming item is designated for inspecting the series of lots, 
determine the corresponding sample size code.  
dĂďůĞ� ϭϭ-ϭ� ŝŶĚŝĐĂƚĞƐ� ƚŚĂƚ� ƚŚĞ� ŵŝŶŝŵƵŵ� ƐĂŵƉůĞ� ƐŝǌĞ� ƐŚĂůů� ďĞ� ŐŝǀĞŶ� ďǇ 
sample size letter code L. 
 
Example ϭϭ͘ϭϯ 
Determining  the CRQ=LQ ǁŝƚŚ�WĂсϬ͘ϭ�ŽĨ�ĂŶ��Y>-indexed Plan 
   ��ůŽƚ�ŽĨ� ƐŝǌĞ�ϰϬϬ� ŝƐ� ƚŽ�ďĞ� ŝŶƐƉĞĐƚĞĚ�ǁŝƚŚ�Ă�ƐŝŶŐůĞ�ƐĂŵƉůŝŶŐ�ƉůĂŶ�ŽĨ�
normal severity and �Y>сϰй . 
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a)Find the consumer's risk quality(CRQ) for which the probability of 
ĂĐĐĞƉƚĂŶĐĞ�ŝƐ�ϭϬй͘� 
b)What is the specifications of the plan?  
c)What is the probability of acceptance if the proportions non-conforming  
ŝƐ�ƉΖсϰй͘ 
Solution 
a)The default level is II. The letter code from Table E ĨŽƌ�EсϰϬϬ is H. 
Given AQ>сϰй and ĐŽĚĞ�,͕�ĨƌŽŵ�dĂďůĞ�ϭϭ-ϭ��ZYс>Y�ŝƐ�ƌĞĂĚ�ĂƐ�ϭϳ͘ϴй͘ 
b)Table H ฺŶсϱϬ͕��Đсϱ͕�ZĞсϲ͘ 
c)Pa , ĐĂůĐƵůĂƚĞĚ�ďǇ�ďŝŶŽĐĚĨ;ϱ͕ϱϬ͕Ϭ͘ϬϰͿ�ŝŶ�D�d>��͕�ŝƐ�Ϭ͘ϵϴϱϲ͘ 
 
�ǆĂŵƉůĞ�ϭϭ͘ϭϰ 
  �� ƐŝŶŐůĞ� ƐĂŵƉůŝŶŐ� ƉůĂŶ� ;Ŷсϯϭϱ͕� ĐсϮϭͿŝƐ� ƵƐĞĚ� with normal inspection, 
ɴсϭϬй��& CRQ = LQ сϵй�͘��tŚĂƚ��Y>�ĐŽƌƌĞƐƉŽŶĚƐ�ƚŽ�ƚŚŝƐ�ĐĂƐĞ͍ 
Answer  
From Table H, the code of the plan is M.  
/Ŷ�dĂďůĞ�ϭϭ-ϭ��ǁŝƚŚ�ƚŚŝƐ�ĐŽĚĞ͕�ƚŚĞ�ŶĞĂƌĞƐƚ��ZY��ƚŽ�ϵ�ŝƐ�ϴ͘ϵ�ƵŶĚĞƌ�ƚŚĞ�ĐŽůƵŵŶ�
ϰ͖�ƚŚĞn �Y>�сϰй͘ 
 
ͳͳ-ͷ    Designing  single acceptance sampling plan with 
 two points of an OC curve 
   /Ŷ�ƚŚŝƐ�ƐĞĐƟŽŶ�ĚĞƐŝŐŶŝŶŐ�ƉůĂŶƐ�ŐŝǀĞŶ�ĂŶǇ�Ϯ�ƉŽŝŶƚƐ�ŽĨ�K��ĐƵƌǀĞ�Žƌ�ƚŚĞ�Ϯ�
corresponding with ߙƬߚ is described 

11.5.1 Constructing single sampling plan,  
            given any 2 arbitrary points of OC curve  
   ^ƵƉƉŽƐĞ�ǁĞ�ŚĂǀĞ� �Ϯ�ƉŽŝŶƚƐ�ŽĨ�an OC curve ( each showing a proportion 
nonconforming and the corresponding  Pa) related to an unknown single 
sampling plan and would like to determine the specifications of the plan  
i.e. the sample size (n) and the acceptance number(c ).   
  If the proportion non-conforming of a process  is denoted with p', the 
probability of accepting a lot from this process with a single sampling plan 
n &c  is given by: 

 

       n - x n n - 1 n -c

0

P =Pr X ca

c n n n nx cp 1-p 1-p p 1-p p 1-p
x=0 x 0 1 c

=

n
= + +...+

x

C

x 



      
         
         

        

/Ĩ�ƚŚĞ�Ŷ�ĂŶĚ�Đ�ŝƐ�ŶŽƚ��ŬŶŽǁŶ��ĂŶĚ�Ϯ�ƉŽŝŶƚƐ�ŽĨ�ƚŚĞ�curve i.e.

' '
' '1 2
2 1

1 2

p p
p p

Pa Pa

    
  
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are known,  the coordinates of the points are substituted in the 
following relationship    

     1
1 1 ... 1

0 1
n n n cc

a

n n n
P p p p p p

c
                     

       
and n &  c  be determined from the resulting simultaneous 
equations:  

   

   

'0 ' ' '
1 1 1 1

1

'0 ' ' '
2 2 2 2

2

P 1 ... 1
a   0

P 1 ... 1
a   0

n nn n ccp p p p
c

n nn n ccp p p p
c

     
        

    


                     
or

1

2

' '
1

' '
2

( , , )

( , , )

a

a

P binocdf p n c

P binocdf p n c

 


  

Example ϭϭ͘ϭϱ 
  Design  a single sampling plan such that if used with a lot from a  process 
ŚĂǀŝŶŐ�ϭй��ƉƌŽƉŽƌƟŽŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ͕�ƚŚĞ�ůŽƚ�ǁŝůů�ďĞ�ĂĐĐĞƉƚĞĚ�ϵϬй�ŽĨ�ƚŚĞ�
ƟŵĞƐ� ĂŶĚ� ŝĨ� ƵƐĞĚ� ǁŝƚŚ� Ă� ůŽƚ� ĨƌŽŵ� Ă� � ƉƌŽĐĞƐƐ� ŚĂǀŝŶŐ� ϭϬй� � ƉƌŽƉŽƌƟŽŶ�
nonconforming, the lot will be accepted ǁŝƚŚ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�Ϭ͘ϭ.  
Solution 

 

0.90 (.01, , )

.03 (.1, , )

binocdf n c

binocdf n c


    

  The above system could be solved using the following  code 
clc; 
ĚсϬ͗͘Ϭϭ͗͘Ϯϭ͖ 
�ϭсϭϬϬϬϬϬϬϬϬϬ͖�ϮсϭϬϬϬϬϬϬϬϬϬ͖ 
ŝсϭ͖ 

while abs(D1)>= d(i) &abs(D2)>= d(i); 

for Ŷсϭ͗ϲϬ͖ 
 for ĐсϬ͗ϭϬ 
�ϭс�ďŝŶŽĐĚĨ;Đ͕Ŷ͕͘ϬϭͿ-͘ϵϬ͖ 

 �Ϯс�ďŝŶŽĐĚĨ;Đ͕Ŷ͕͘ϭͿ-͘Ϭϯ͖ 
if ;ĂďƐ;�ϭͿфсĚ;ŝͿΘĂďƐ;�ϮͿфсĚ;ŝͿͿ͖ 

break; 
end; 
end;    

end; 
ŝсŝнϭ͖ 

end;   disp(sprintf(Ζ�Ŷс��йϯ͘ϬĨ�͕Đс����йϮ͘ϬĨΖ, n ,  c )); 
Running the code results in    Ŷс�ϲϬ��͕Đс��ϭ 
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dĂďůĞ�ϭϭ-ϯ�Cameron�s Table  for constructing single-sampling plans given હǡ઺  
 ;dĂďůĞ�dϱ-ϭ͕ Schilling �& Neubauer͕ϮϬϬϵ�Ɖ�ϲϮϵ͖dĂďůĞ�ϭϯ-ϭϯ��ŽǁŬĞƌ�Θ>ŝĞďĞƌŵĂŶ͕�ϭϵϳϮ�Ɖ�ϱϰϬͿ 

 

ଵିఈᇱ݌݊  

 
 

ఉᇱ݌ Ȁ݌ଵିఈᇱ
for
ߙ ൌ ͲǤͲͳ  

c ݊݌ଵିఈᇱ  

 
 

ఉᇱ݌  Ȁ݌ଵିఈᇱ
for
ߙ ൌ ͲǤͲͷ  

c 
ߚ ൌ ͲǤͲͳ ߚߚ ൌ ͲǤͳͲ ߚ ൌ ͲǤͲͳ ߚߚ ൌ ͲǤͳͲ 

Ϭ͘ϬϭϬ 
Ϭ͘ϭϰϵ 
Ϭ͘ϰϯϲ 
Ϭ͘ϴϮϯ 
ϭ͘Ϯϳϵ 
ϭ͘ϳϴϱ 
Ϯ͘ϯϯϬ 
Ϯ͘ϵϬϲ 
ϯ͘ϱϬϳ 
ϰ͘ϭϯϬ 
ϰ͘ϳϳϭ 
ϱ͘ϰϮϴ 
ϲ͘Ϭϵϵ 
ϲ͘ϳϴϮ 
ϳ͘ϰϳϳ 
ϴ͘ϭϴϭ 
ϴ͘ϴϵϱ 
ϵ͘ϲϭϲ 
ϭϬ͘ϯϰϲ 
ϭϭ͘ϬϴϮ 
ϭϭ͘ϴϮϱ 
ϭϮ͘ϱϳϰ 
ϭϯ͘ϯϮϵ 
ϭϰ͘Ϭϴϴ 
ϭϰ͘ϴϱϯ 
ϭϱ͘ϲϮϯ 
ϭϲ͘ϯϵϳ 
ϭϳ͘ϭϳϱ 
ϭϳ͘ϵϱϳ 
ϭϴ͘ϳϰϮ 
ϭϵ͘ϱϯϮ 
ϮϬ͘ϯϮϰ�
Ϯϭ͘ϭϮϬ�
Ϯϭ͘ϵϭϵ�
ϮϮ͘ϳϮϭ�
Ϯϯ͘ϱϮϱ�
Ϯϰ͘ϯϯϯ�
Ϯϱ͘ϭϰϯ�
Ϯϱ͘ϵϱϱ�
Ϯϲ͘ϳϳϬ�
Ϯϳ͘ϱϴϳ�
Ϯϴ͘ϰϬϲ 
Ϯϵ͘ϮϮϴ 
ϯϬ͘Ϭϱϭ 
ϯϬ͘ϴϳϳ 
ϯϭ͘ϳϬϰ 
ϯϮ͘ϱϯϰ 
ϯϯ͘ϯϲϱ 
ϯϰ͘ϭϵϴ 
ϯϱ͘ϬϯϮ 

ϰϱϴ͘ϮϭϬ 
ϰϰ͘ϲϴϲ 
ϭϵ͘Ϯϳϴ 
ϭϮ͘ϮϬϮ 
ϵ͘ϬϳϮ 
ϳ͘ϯϰϯ 
ϲ͘Ϯϱϯ 
ϱ͘ϱϬϲ 
ϰ͘ϵϲϮ 
ϰ͘ϱϰϴ 
ϰ͘ϮϮϮ 
ϯ͘ϵϱϵ 
ϯ͘ϳϰϮ 
ϯ͘ϱϱϵ 
ϯ͘ϰϬϯ 
ϯ͘Ϯϲϵ 
ϯ͘ϭϱϭ 
ϯ͘Ϭϰϴ 
Ϯ͘ϵϱϲ 
Ϯ͘ϴϳϰ 
Ϯ͘ϳϵϵ 
Ϯ͘ϳϯϯ 
Ϯ͘ϲϳϭ 
Ϯ͘ϲϭϱ 
Ϯ͘ϱϲϰ 
Ϯ͘ϱϭϲ 
Ϯ͘ϰϳϮ 
Ϯ͘ϰϯϭ 
Ϯ͘ϯϵϯ 
Ϯ͘ϯϱϴ 
Ϯ͘ϯϮϰ 
2͘Ϯϵϯ� 
Ϯ͘Ϯϲϰ� 
Ϯ͘Ϯϯϲ 
 Ϯ͘ϮϭϬ�
Ϯ͘ϭϴϱ 
 Ϯ͘ϭϲϮ�
Ϯ͘ϭϯϭ� 
Ϯ͘ϭϭϴ 
 Ϯ͘Ϭϵϴ�
Ϯ͘Ϭϳϵ� 
Ϯ͘ϬϲϬ 
Ϯ͘Ϭϰϯ� 
Ϯ͘ϬϮϲ� 
Ϯ͘ϬϭϬ� 
ϭ͘ϵϵϰ� 
ϭ͘ϵϴϬ� 
ϭ͘ϵϲϱ� 
ϭ͘ϵϱϮ 
 ϭ͘ϵϯϴ 

Ϯϵϴ͘Ϭϳϯ 
ϯϭ͘ϵϯϯ 
ϭϰ͘ϰϯϵ 
ϵ͘ϰϭϴ 
ϳ͘ϭϱϲ 
ϱ͘ϴϴϵ 
ϱ͘ϬϴϮ 
ϰ͘ϱϮϰ 
ϰ͘ϭϭϱ 
ϯ͘ϴϬϯ 
ϯ͘ϱϱϱ 
ϯ͘ϯϱϰ 
ϯ͘ϭϴϴ 
ϯ͘Ϭϰϳ 
Ϯ͘ϵϮϳ 
Ϯ͘ϴϮϯ 
Ϯ͘ϳϯϮ 
Ϯ͘ϲϱϮ 
Ϯ͘ϱϴϬ 
Ϯ͘ϱϭϲ 
Ϯ͘ϰϱϴ 
Ϯ͘ϰϬϱ 
Ϯ͘ϯϱϳ 
Ϯ͘ϯϭϯ 
Ϯ͘ϮϳϮ 
Ϯ͘Ϯϯϱ 
Ϯ͘ϮϬϬ 
Ϯ͘ϭϲϴ 
Ϯ͘ϭϯϴ 
Ϯ͘ϭϭϬ 
 Ϯ͘Ϭϴϯ� 
Ϯ͘Ϭϱϵ� 
Ϯ͘Ϭϯϱ 
 Ϯ͘Ϭϭϯ 
 ϭ͘ϵϵϮ� 
ϭ͘ϵϳϯ� 
ϭ͘ϵϱϰ� 
ϭ͘ϵϯϲ 
 ϭ͘ϵϮϬ 
 ϭ͘ϵϬϯ� 
ϭ͘ϴϴϳ� 
ϭ͘ϴϳϯ 
ϭ͘ϴϱϵ 
ϭ͘ϴϰϱ� 
ϭ͘ϴϯϮ� 
ϭ͘ϴϮϬ� 
ϭ͘ϴϬϴ� 
ϭ͘ϳϵϲ� 
ϭ͘ϳϴϱ� 
ϭ͘ϳϳϱ 

ϮϮϵ͘ϭϬϱ 
Ϯϲ͘ϭϴϰ 
ϭϮ͘ϮϬϲ 
ϴ͘ϭϭϱ 
ϲ͘Ϯϰϵ 
ϱ͘ϭϵϱ 
ϰ͘ϱϮϬ 
ϰ͘ϬϱϬ 
ϯ͘ϳϬϱ 
ϯ͘ϰϰϬ 
ϯ͘ϮϮϵ 
ϯ͘Ϭϱϴ 
Ϯ͘ϵϭϱ 
Ϯ͘ϳϵϱ 
Ϯ͘ϲϵϮ 
Ϯ͘ϲϬϯ 
Ϯ͘ϱϮϰ 
Ϯ͘ϰϱϱ 
Ϯ͘ϯϵϯ 
Ϯ͘ϯϯϳ 
Ϯ͘Ϯϴϳ 
Ϯ͘Ϯϰϭ 
Ϯ͘ϮϬϬ 
Ϯ͘ϭϲϮ 
Ϯ͘ϭϮϲ 
Ϯ͘Ϭϵϰ 
Ϯ͘Ϭϲϰ 
Ϯ͘Ϭϯϱ 
Ϯ͘ϬϬϵ 
ϭ͘ϵϴϱ 
ϭ͘ϵϲϮ 
ϭ͘ϵϲϮ 
ϭ͘ϵϰϬ�
ϭ͘ϵϮϬ�
ϭ͘ϵϬϬ�
ϭ͘ϴϴϮ�
ϭ͘ϴϲϱ�
ϭ͘ϴϰϴ�
ϭ͘ϴϯϯ�
ϭ͘ϴϭϴ�
ϭ͘ϴϬϰ�
ϭ͘ϳϵϬ 
ϭ͘ϳϲϱ�
ϭ͘ϳϱϯ�
ϭ͘ϳϰϮ�
ϭ͘ϳϯϭ�
ϭ͘ϳϮϬ�
ϭ͘ϳϭϬ�
ϭ͘ϳϬϭ�
ϭ͘ϲϵϭ 

Ϭ 
ϭ 
Ϯ 
ϯ 
ϰ 
ϱ 
ϲ 
ϳ 
ϴ 
ϵ 
ϭϬ 
ϭϭ 
ϭϮ 
ϭϯ 
ϭϰ 
ϭϱ 
ϭϲ 
ϭϳ 
ϭϴ 
ϭϵ 
ϮϬ 
Ϯϭ 
ϮϮ 
Ϯϯ 
Ϯϰ 
Ϯϱ 
Ϯϲ 
Ϯϳ 
Ϯϴ 
Ϯϵ 
ϯϬ 
ϯϭ 
ϯϮ 
ϯϯ 
ϯϰ 
ϯϱ 
ϯϲ 
ϯϳ 
ϯϴ 
ϯϵ 
ϰϬ 
ϰϭ 
ϰϮ 
ϰϯ 
ϰϰ 
ϰϱ 
ϰϲ 
ϰϳ 
ϰϴ 
ϰϵ 

Ϭ͘ϬϱϮ 
Ϭ͘ϯϱϱ 
Ϭ͘ϴϭϴ 
ϭ͘ϯϲϲ 
ϭ͘ϵϳϬ 
Ϯ͘ϲϭϯ 
ϯ͘Ϯϴϲ 
ϯ͘ϵϴϭ 
ϰ͘ϲϵϱ 
ϱ͘ϰϮϲ 
ϲ͘ϭϲϵ 
ϲ͘ϵϮϰ 
ϳ͘ϲϵϬ 
ϴ͘ϰϲϰ 
ϵ͘Ϯϰϲ 
ϭϬ͘Ϭϯϱ 
ϭϬ͘ϴϯϭ 
ϭϭ͘ϲϯϯ 
ϭϮ͘ϰϰϮ 
ϭϯ͘Ϯϱϰ 
ϭϰ͘ϬϳϮ 
ϭϰ͘ϴϵϰ 
ϭϱ͘ϳϭϵ 
ϭϲ͘ϱϰϴ 
ϭϳ͘ϯϴϮ 
ϭϴ͘Ϯϭϴ 
ϭϵ͘Ϭϱϴ 
ϭϵ͘ϵϬϬ 
ϮϬ͘ϳϰϲ 
Ϯϭ͘ϱϵϰ 
ϮϮ͘ϰϰϰ 
Ϯϯ͘Ϯϵϴ 
Ϯϰ͘ϭϱϮ 
Ϯϱ͘ϬϭϬ 
Ϯϱ͘ϴϳϬ 
Ϯϲ͘ϳϯϭ 
Ϯϳ͘ϱϵϰ 
Ϯϴ͘ϰϲϬ 
Ϯϵ͘ϯϮϳ 
ϯϬ͘ϭϵϲ 
ϯϭ͘Ϭϲϲ 
ϯϭ͘ϵϯϴ 
ϯϮ͘ϴϭϮ 
ϯϯ͘ϲϴϲ 
ϯϰ͘ϱϲϯ 
ϯϱ͘ϰϰϭ 
ϯϲ͘ϯϮϬ 
ϯϳ͘ϮϬϬ 
ϯϴ͘ϬϴϮ 
ϯϴ͘ϵϲϱ 

ϴϵ͘ϳϴϭ 
ϭϴ͘ϲϴϭ 
ϭϬ͘ϮϴϬ 
ϳ͘ϯϱϮ 
ϱ͘ϴϵϬ 
ϱ͘Ϭϭϳ 
ϰ͘ϰϯϱ 
ϰ͘Ϭϭϵ 
ϯ͘ϳϬϳ 
ϯ͘ϰϲϮ 
ϯ͘Ϯϲϱ 
ϯ͘ϭϬϰ 
Ϯ͘ϵϲϴ 
Ϯ͘ϴϱϮ 
Ϯ͘ϳϱϮ 
Ϯ͘ϲϲϱ 
Ϯ͘ϱϴϴ 
Ϯ͘ϱϮϬ 
Ϯ͘ϰϱϴ 
Ϯ͘ϰϬϯ 
Ϯ͘ϯϱϮ 
ϯ͘ϯϬϳ 
Ϯ͘Ϯϲϱ 
Ϯ͘ϮϮϲ 
Ϯ͘ϭϵϭ 
Ϯ͘ϭϱϴ 
Ϯ͘ϭϮϳ 
Ϯ͘Ϭϵϴ 
Ϯ͘Ϭϳϭ 
Ϯ͘Ϭϰϲ 
Ϯ͘ϬϮϯ 
Ϯ͘ϬϬϭ 
ϭ͘ϵϴϬ 
ϭ͘ϵϲϬ 
ϭ͘ϵϰϭ 
ϭ͘ϵϮϯ 
ϭ͘ϵϬϲ 
ϭ͘ϴϵϬ 
ϭ͘ϴϳϵ 
ϭ͘ϴϲϬ 
ϭ͘ϴϰϲ 
ϭ͘ϴϯϯ 
ϭ͘ϴϮϬ 
ϭ͘ϴϬϳ 
ϭ͘ϳϵϲ 
ϭ͘ϴϳϰ 
ϭ͘ϳϳϯ 
ϭ͘ϳϲϯ 
ϭ͘ϳϱϮ 
ϭ͘ϳϰϯ 

ϱϴ͘ϰϬϰ 
ϭϯ͘ϯϰϵ 
ϳ͘ϲϵϵ 
ϱ͘ϲϳϱ 
ϰ͘ϲϰϲ 
ϰ͘ϬϮϯ 
ϯ͘ϲϬϰ 
ϯ͘ϯϬϯ 
ϯ͘Ϭϳϰ 
Ϯ͘ϴϵϱ 
Ϯ͘ϳϱϬ 
Ϯ͘ϲϯϬ 
Ϯ͘ϱϮϴ 
Ϯ͘ϰϰϮ 
Ϯ͘ϯϲϳ 
Ϯ͘ϯϬϮ 
Ϯ͘Ϯϰϰ 
Ϯ͘ϭϵϮ 
Ϯ͘ϭϰϱ 
Ϯ͘ϭϬϯ 
Ϯ͘Ϭϲϱ 
Ϯ͘ϬϯϬ 
ϭ͘ϵϵϵ 
ϭ͘ϵϲϵ 
ϭ͘ϵϰϮ 
ϭ͘ϵϭϳ 
ϭ͘ϴϵϯ 
ϭ͘ϴϳϭ 
ϭ͘ϴϱϬ 
ϭ͘ϴϯϭ 
ϭ͘ϴϭϯ 
ϭ͘ϳϵϲ 
ϭ͘ϳϴϬ 
ϭ͘ϳϲϰ 
ϭ͘ϳϱϬ 
ϭ͘ϳϯϲ 
ϭ͘ϳϮϯ 
ϭ͘ϳϭϬ 
ϭ͘ϲϵϴ 
ϭ͘ϲϴϳ 
ϭ͘ϲϳϲ 
ϭ͘ϲϲϲ 
ϭ͘ϲϱϲ 
ϭ͘ϲϰϲ 
ϭ͘ϲϯϳ 
ϭ͘ϲϮϴ 
ϭ͘ϲϭϵ 
ϭ͘ϲϭϭ 
ϭ͘ϲϬϯ 
ϭ͘ϱϵϲ 

ϰϰ͘ϴϵϬ 
ϭϬ͘ϵϰϲ 
ϲ͘ϱϬϵ 
ϰ͘ϴϵϬ 
ϰ͘Ϭϱϳ 
ϯ͘ϱϰϵ 
ϯ͘ϮϬϲ 
Ϯ͘ϵϱϳ 
Ϯ͘ϳϲϴ 
Ϯ͘ϲϭϴ 
Ϯ͘ϰϵϳ 
Ϯ͘ϯϵϳ 
Ϯ͘ϯϭϮ 
Ϯ͘ϮϰϬ 
Ϯ͘ϭϳϳ 
Ϯ͘ϭϮϮ 
Ϯ͘Ϭϳϯ 
Ϯ͘ϬϮϵ 
ϭ͘ϵϵϬ 
ϭ͘ϵϱϰ 
ϭ͘ϵϮϮ 
ϭ͘ϴϵϮ 
ϭ͘ϴϲϱ 
ϭ͘ϴϰϬ 
ϭ͘ϴϭϳ 
ϭ͘ϳϵϱ 
ϭ͘ϳϳϱ 
ϭ͘ϳϱϳ 
ϭ͘ϳϯϵ 
ϭ͘ϳϮϯ 
ϭ͘ϳϬϳ 
ϭ͘ϲϵϮ 
ϭ͘ϲϳϵ 
ϭ͘ϲϲϱ 
ϭ͘ϲϱϯ 
ϭ͘ϲϰϭ 
ϭ͘ϲϯϬ 
ϭ͘ϲϭϵ 
ϭ͘ϲϬϵ 
ϭ͘ϱϵϵ 
ϭ͘ϱϵϬ 
ϭ͘ϱϴϭ 
ϭ͘ϱϳϮ 
ϭ͘ϱϲϰ 
ϭ͘ϱϱϲ 
ϭ͘ϱϰϴ 
ϭ͘ϱϰϭ 
ϭ͘ϱϯϰ 
ϭ͘ϱϮϳ 
ϭ͘ϱϮϭ 

Ϭ 
ϭ 
Ϯ 
ϯ 
ϰ 
ϱ 
ϲ 
ϳ 
ϴ 
ϵ 
ϭϬ 
ϭϭ 
ϭϮ 
ϭϯ 
ϭϰ 
ϭϱ 
ϭϲ 
ϭϳ 
ϭϴ 
ϭϵ 
ϮϬ 
Ϯϭ 
ϮϮ 
Ϯϯ 
Ϯϰ 
Ϯϱ 
Ϯϲ 
Ϯϳ 
Ϯϴ 
Ϯϵ 
ϯϬ 
ϯϭ 
ϯϮ 
ϯϯ 
ϯϰ 
ϯϱ 
ϯϲ 
ϯϳ 
ϯϴ 
ϯϵ 
ϰϬ 
ϰϭ 
ϰϮ 
ϰϯ 
ϰϰ 
ϰϱ 
ϰϲ 
ϰϳ 
ϰϴ 
ϰϵ 

If  ratio ݌ఉᇱ Ȁ݌ଵିఈᇱ  not found in the appropriate column, choose the value just  less than the ratio.  
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ͳͳǤͷǤʹ Constructing sampling plan  
given ࢻ ���  using Cameron Table ࢼ
   Cameron's Table͕� ƌĞƉƌŽĚƵĐĞĚ� ŝŶ� dĂďůĞ� ϭϭ-ϯ͕ is among the works 
developed in the field of acceptance sampling(� Schilling, �& 
Neubauer͕ϮϬϬϴͿ.   
If a single sampling plan is to be designed given 

ࢻ  ൌ ૞Ψ࢘࢕��૚Ψࢼ�������� ൌ ૚૙Ψ࢘࢕ř૞Ψ࢘࢕�ř�૚Ψ  

then this table could be used to design the plan.   
To construct a plan for a given ݌ଵǡᇱ ଶᇱ݌ and  ߙ,  . ߚ,
 
 Calculate the ratio    ሺ݌ଶᇱ ൌ ఉᇱ݌ ሻȀሺ݌ଵିఈᇱ ൌ ଵᇱ݌ ሻ. 
Refer to the appropriate Į and ȕ column of Tableϭϭ-ϯ, 
Find the entry which is equal or just less than the desired ratio,  
Read the acceptance number(c) directly and also ݊݌ଵᇱ �from the table, 
Determine the sample size by dividing ݊݌ଵᇱ ଵᇱ݌��ݕܾ� , 
;�ŽǁŬĞƌ�>ŝĞďĞƌŵĂŶ͕ϭϵϳϮ�ƉĂŐĞ�ϱϯϳͿ. 
 
Example ϭϭ͘ϭϲ 
  Find a single sampling plan for which if the lot is from a process 
with proportion nonconforming Ϭ͘ϬϮ�ƚŚĞŶ�WĂсϬ͘ϵϱ͖�ĂŶĚ�ƚŚĞ�ůŽƚ�ŝƐ�
ĨƌŽŵ�Ă�ƉƌŽĐĞƐƐ�ǁŝƚŚ�ƉƌŽƉŽƌƟŽŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�Ϭ͘Ϭϰ�ƚŚĞŶ�WĂсϬ͘Ϭϱ͘ 
Solution 

  ' '
1 20.02, 0.04 , 0.5, 0.05p p       

The  greater proportion is divided by the smaller : 

 
The value in the" 0.5, 0.05    " ĐŽůƵŵŶ�ŽĨ�dĂďůĞ�ϭϭ-ϯ�ũust less 

than this ratio is ϭ͘ϵϵϵ͘�  Hence ĐсϮϮ and '
1 15.719np    Ŷсϳϴϲ. 

Example ϭϭ͘ϭϳ 
  Find a single sampling plan in such a way that 

 

Solution 
Ԣఉ݌
Ԣଵିఈ݌ ൌ

ͲǤʹͷ
ͲǤͳ ൌ ʹǤͷ����ܾ݈ܶܽ݁�ͳͳ െ ͵ ՜ ൜ ܿ ൌ ͳͲ������������������������������������

Ԣଵିఈ݌݊ ൌ ͸Ǥͳ͸ͻ ฺ ݊ ൌ ͸ʹ � 
 

''
2
' '
1 1

0.04
2

0.02

pp

p p




  

















25.0

1.0

1.0

95.01
'
2

2

'
1

1

p

Pa

p

Pa 



�ŚĂƉƚĞƌ�ϭϭ͗��/^KϮϴϱϵ͕��ĂŵĞƌŽŶ�Θ�WŚŝůůŝƉƐ�dĂďůĞƐ��
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11-6   Designing single or double  acceptance 
sampling plan given  Indifference point  of OC curve  
using  Philips Standard Sampling system1 
  How a sampling plan is designed when݌��଴Ǥହ଴ᇱ  , the so-called indifference 
point or control point, of an OC curve is given?   
  Table D should be used for this purpose.  " Table D is a reproduction of  an 
attribute sampling system developed by ;�'ƌĂŶƚ�Θ>ĞĂǀĞŶ�ǁŽƌƚŚ͕ϭϵϴϴ͕�ƉĂŐĞ�
ϱϬϰͿ͘� 
Dr. Hamakerans and his associates of  N.V. Phillips' Gloeilampenfabrieken , 
Einhoven, Holland.  
 
Its plans which are either single or double are  all based on the indifference 
point of the OC curve.   For lots of size N൑ ͳͲͲͲ the table gives single 
samƉůŝŶŐ�ƉůĂŶƐ�ĂŶĚ�ĨŽƌ�EхϭϬϬϬ�Őives double sampling plans with nϮ�сϮŶϭ. 
 
Example ϭϭ͘ϭϴ 
  &Žƌ� ŝŶƐƉĞĐƟŶŐ� ůŽƚƐ�ŽĨ� � ƐŝǌĞ�EсϴϬϬ͕�ĮŶĚ�Ă� ƐĂŵƉůŝŶŐ�ƉůĂŶ�ǁŚŽƐĞ�K��ĐƵƌǀĞ�
ƉĂƐƐĞƐ�ƚŚĞ�ŝŶĚŝīĞƌĞŶĐĞ��ƉŽŝŶƚ�Ϭ͘ϱй͘��ZĞƉĞĂƚ�ĐĂƐĞ�ĨŽƌ�EсϯϬϬϬ͘�  
Answer  
From Table D for EсϴϬϬ   
^ĂŵƉůĞ�ƐŝǌĞ���ŶсϮϮϱ Acceptance no.  Cсϭ���� 
  and also 
for EсϯϬϬϬ 
nϭсϮϬϬ�����ϭсϬ������ϮсϬ    nϮ�сϮŶϭсϰϬϬ���� 
The flowchart of Fig.  ϭϬ-ϭϱ��ŽĨ�ĐŚĂƉƚĞƌ�ϭϬ�ƐŚŽǁƐ�how double sampling 
plans are implemented. 
 
 
 
 
 
 
 
 
 
 
 

                                                           
ϭ��ĞǀĞůŽƉĞĚ�ďǇ�,ĂŵĂŬĞƌ�͕,͘�͕ϭϵϰϵ͘�>Žƚ�ŝŶƐƉĞĐƟŽŶ�ďǇ�^ĂŵƉůŝŶŐ�͕�WŚŝůŝƉƐ�dĞĐŚŶŝĐĂů�ZĞǀŝĞǁ�sŽůϭϭ�ƉƉ�ϭϳϲ�-ϭϴϮ��ĞĐϭϵϰϵ 
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Appendix : More on the BEP  
Dr Taylor , an expert in the field of acceptance sampling especially for 
medical purposes, introduces the breakeven point(BEP) in quality in the 
following wayϭ: 
Lots with proportion nonconforming up to the AQL are acceptable for 
release. Any lot [with quality] worse than the AQL should be rejected.  This 
does not mean that all such lots are actually rejected. Often the sampling 
plan is only capable of rejecting lots significantly above the AQL.   However, 
ŝĨ� Ă� ƐĂŵƉůŝŶŐ�ƉůĂŶ� ƌĞũĞĐƚƐ�Ă�Ϯй�ĚĞĨĞĐƟǀĞ� ůŽƚ�ǁŚĞŶ� ƚŚĞ��Y>� ŝƐ�ϭй͕�ŶŽ�ŽŶĞ�
would consider that an error.   This  interpretation of the AQL closely 
coincides with what is called the breakeven point in quality.    
The break-even point  for a process  is the point at which the total revenue 
curve intersects the total cost curve.    The break-even point foƌ�Ϯ�ƉƌŽĐĞƐƐ�
is the point where their revenue curves or their cost curve intersect.   Here 
the break even quality is that point where the "customer  value"(VC) of 
ϭϬϬй�ŝŶƐƉĞcting a lot is exactly equal to   the "customer  value " related to 
the case where no inspection is applied on the lot. Customer value(VC) is 
defined as(TĂǇůŽƌ͕ϭϵϵϮ  pϲϭͿ 
Customer value(VC) = 
income from sale of units &discards  �   Production costs �Inspection Costs 
� Loss due to sale of defectives. 
Example ;dĂǇůŽƌ͕ϭϵϵϮ�ƉĂŐĞϲϬ�Ϳ 
A switch ƵƐĞĚ� ŝŶ� ƚĞůĞǀŝƐŝŽŶ� ƐĞƚƐ� ŝƐ� ĐƵƌƌĞŶƚůǇ� ϭϬϬй� ŝŶƐƉĞĐƚĞĚ͘� YƵĂůŝƚǇ�
improvement efforts have recently reduced the incidence of defective 
ƐǁŝƚĐŚĞƐ͘� �Ɛ� Ă� ƌĞƐƵůƚ͕� ƚŚĞ� ĞůŝŵŝŶĂƟŽŶ� ŽĨ� ƚŚĞ� ϭϬϬй� ŝŶƐƉĞĐƟŽŶ� ŝƐ� ďĞŝŶŐ�
considered. To address this issue, one needs to know the lot size, the 
quality of the lots, and the costs involved. The parametersϮ are as follows: 
 
parameter Description value 

p' Lot percent defective  
 Mean Lot percent defective ϭ% 

C Per unit cost of manufacturing $ Ϯ 

D Discard value of unit $ Ϭ 

E EffiĐŝĞŶĐǇ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ=The 
percentage of defective units detected by 
ϭϬϬй�ŝŶƐƉĞĐƟŽŶ;dĂǇůŽƌ͕ϭϵϵϮ͕ƉĂŐĞϳϲͿ 

ϵϬй 

L Loss incurred per defective unit sold ΨϱϬ 

N Lot size ϭϬϬϬ 

                                                           
ϭhttp://www.variation.com/techlib/as-ϭ͘Śƚŵů 
Ϯ�dŚĞƐĞ�ƉĂƌĂŵĞƚĞƌƐ�ĂƌĞ�ĐŽǀĞƌĞĚ�ŝŶ�ĚĞƚĂŝůƐ�ŝŶ�^ĞĐ͘�ϰ͘ϯ�Θϰ͘ϰ�ŽĨ�dĂǇůŽƌ;ϭϵϵϮͿ͘ 

http://www.variation.com/techlib/as-
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P Price unit sold for $ ϱ 
R Per unit cost of rework Not  possible 

Sh Per loƚ�ƐĞƚƵƉ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ � ϭϬϬ 
Sp' Standard deviation of lot percent defective Ϯ % 
Ss Per lot setup cost of acceptance sampling $ Ϭ 
Uh WĞƌ�ƵŶŝƚ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ $ Ϭ͘Ϯϱ 
Us Per unit cost of acceptance sampling $ Ϭ͘ϱϬ 

 
We would like to choose the action whose customer value(VC) per lot is 
more than that of  the  other action. 
Solution 
VC = 
income from sale of units &discards  �   Production costs �Inspection Costs 
� Loss due to sale of defectives. 
 
Based on the details mentioned in SĞĐ�ϰ͘ϯ�Θϰ͘ϴ�ŽĨ�dĂǇůŽƌ;ϭϵϵϮͿ͕ 
ƚŽ�ĚĞƌŝǀĞ�ƚŚĞ�ƌĞůĂƟŽŶƐŚŝƉ�ďĞƚǁĞĞŶ�ƚŚĞ�s��ŽĨ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ĂŶĚ�ƉΖ�ƚŚĞ�
following elements are included in VC: 
 

Element Description �� General Formula Value for the example 
Revenue from selling non 
defective products 

ܲ ൈ ܰሺͳ െ ܧ ൈ ᇱሻ ͷ݌ ൈ ͳͲͲͲሺͳ െ ͲǤͻ݌ᇱሻ 

Revenue from selling 
defective products 

ܦ ൈ ܰ ൈ ܧ ൈ ᇱ åൈ݌ ͳͲͲͲ ൈ ͻሺ݌ᇱሻ å  

Production cost ܰ ൈ ͳͲͲͲ  ܥ ൈ ʹ 
�ŽƐƚ�ŽĨ�ϭϬϬ�ƉĞƌĐĞŶƚ�
inspecting a lot of size N 

�� ൅ ܰ ൈ �� ሺͳͲͲ ൅ ͳͲͲͲ ൈ ͲǤʹͷሻ ൌ ͵ͷͲ 

Loss due to unintentional 
selling defectives 

ܮ ൈ ܰሺͳ െ ሻܧ ൈ ᇱ ͷͲͲͲͲ݌ ൈ ሺͳ െ ͲǤͻሻ݌Ԣ 

 
dŚĞ�s��ŽĨ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ŝƐ�ĂƐ�ĨŽůůŽǁƐ͗ 
 
ܥܸ ൌ ͷͲͲͲሺͳ െ ͲǤͻ݌ᇱሻ ൅ Ͳ െ ʹͲͲͲ െ ͵ͷͲ െ ͷͲͲͲͲ ൈ ሺͳ െ ͲǤͻሻ݌Ԣ 
or  

ܥܸ ൌ ʹ͸ͷͲ െ ͻͷͲͲ݌ 
The elements of  applying no inspection: 
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Element Description  General  For the example 
Revenue from selling non 
defective products 

ܲ ൈ ܰ ͷ ൈ ͳͲͲͲ 
Revenue from selling 
defective products 

Ͳ Ͳ 
Production cost ܰ ൈ ͳͲͲͲ ܥ ൈ ʹ 
Cost of inspecting the lot N Ͳ Ͳ 
Loss due to unintentional 
selling defectives of  the 
lot of  size N having p' as 
(proportion nonconforming) 

ܮ ൈ ܰ ൈ ᇱ ͷͲ݌ ൈ ͳͲͲͲ݌ᇱ 

  
The VC when applying no inspection would be: 
 
ܥܸ ൌ ͷͲͲͲ െ ʹͲͲͲ െ Ͳ െ ͷͲͲͲͲሺ݌ᇱሻݎ݋���� 
ܥܸ ൌ ͵ͲͲͲ െ ͷͲͲͲͲ݌ᇱ. 
 
Figure  ϭϭ-Ϯ�ƐŚŽǁƐ�ƚŚĞƐĞ�ĐŽƐƚ�ůŝŶĞƐ��ƉůŽƚted using the following 
MATLAB commands: 
 
ƉсϬ͗Ϭ͘Ϭϭ͗Ϭ͘ϭ͖�s�сϯϬϬϬ-ϱϬϬϬϬΎƉ͖�ƉůŽƚ;Ɖ͕�s�Ϳ͖�ŚŽůĚ�ŽŶ͖�s�сϮϲϱϬ-ϵϱϬϬΎƉ͖�
plot(p, VC) 
 
Here the intersection point is where the customer values of the 
ĂĐƟŽŶƐ�;ŝ͘Ğ͘�ΗϭϬϬй�ŝŶƐƉĞĐƟŽŶ��ŽĨ�ƚŚĞ�ůŽƚΗ�ĂŶĚ�Η�ŶŽƚ�ŝŶƐƉĞĐƟŶŐ�
the lot and thus a number defectives in the lot are left") 
intersect.  Somewhere between 0% defective and 100% defective, 
there is a point where it is a tie.  This is the beak event point of 
quality calculated as follows: 
ͷͲͲͲሺͳ െ ͲǤͻ݌ᇱሻ ൅ Ͳ െ ʹͲͲͲ െ ͵ͷͲ െ ͷͲͲͲͲ ൈ ሺͳ െ ͲǤͻሻ݌ᇱ

ൌ ͵ͲͲͲ െ ͷͲ ൈ ͳͲͲͲ݌ᇱ 
ฺ ͷሺെͲǤͻ݌ᇱሻ ൅ ͷͲሺͲǤͻሻ݌ᇱ ൌ ͵ͷͲ

ͳͲͲͲ 

������������������ᇱ ൌ ��� ൌ
͵ͷͲ
ͳͲͲͲ

ͲǤͻሺͷͲ െ ͷሻ ൌ ͲǤͲͲͺ͸Ͷ 

��������ͲǤͺ͸ͶΨ��������������  
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Fig 11-2  Break event Point of Quality, for the  example. 

/Ŷ�ŐĞŶĞƌĂů�ďǇ�ĞƋƵĂƟŶŐ�ƚŚĞ�Ϯ�ƌĞůĂƟŽŶƐŚŝƉƐ�ŝ͘Ğ͘ 
ܥܸ ൌ ܲ ൈ ܰሺͳ െ ܧ ൈ ᇱሻ݌ ൅ ܧܰܦ ൈ ᇱ݌ െ ܥܰ െ �� ൅ܰ ൈ �� െ ܮ ൈ ܰሺͳ

െ ሻܧ ൈ  ᇱ݌
and 
ܥܸ ൌ ܲ ൈ ܰ െܰܥ െ ܮ ൈ ܰ ൈ ᇱ݌ ֜ 
the p' as the BEP  is calculated from the following relationship: 

 
 
 
 
 
 

where 
D Discard value of unit 
E �ĸĐŝĞŶĐǇ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 

L Loss incurred per defective unit sold 
N Lot size 

P Price unit sold for 
�� WĞƌ�ůŽƚ�ƐĞƚƵƉ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 
�� WĞƌ�ƵŶŝƚ�ĐŽƐƚ�ŽĨ�ƚŚĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ 

It is worth mentioning BEP could also help to decide ǁŚĞƚŚĞƌ� ƚŽ�ƵƐĞ�ϭϬϬй�
inspection or sampling inspection, as described below from 
&ĞŝŐĞŶďĂƵŵ;ϭϵϵϭͿ�ƉĂŐĞ�ϱϬϰ͘ 

�������������������� ᇱ ൌ ܲܧܤ
ൌ ��൅ ��

ܰ
ܧ ൈ ሺܮ ൅ ܦ െ ܲሻ 
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First determine the actual percent non-con forming or process average 
nonconformity for the part  or material in question.  This value should be 
determined from the inspection results of several thousand parts.  Then  
by comparing the BEP with average incoming percent nonconforming, it can 
ďĞ�ĚĞƚĞƌŵŝŶĞĚ�ǁŚĞƚŚĞƌ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�͕�ŶŽ�ŝŶƐƉĞĐƟŽŶ��Žƌ�ƐĂŵƉůĞ�ŝŶƐƉĞĐƟŽŶ�
ŝƐ�ŝŶĚŝĐĂƚĞĚ͘�ϰ�ƚǇƉŝĐĂů�ƐŝƚƵĂƟŽŶs may be indicated : 
A)  
The percent nonconforming of incoming material is (p�)fairly close to the BEP, 
then sampling inspection may be the economical answer. 
B) 
 Ɖ͛�ŝƐ�ƐŽŵĞ�ǁŚĂƚ�ŚŝŐŚĞƌ�ƚŚĂŶ�ƚŚĞ���W�͕ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ǁŝůů�ŵŽƌĞ�ƚŚĂŶ�ƉĂǇ�ĨŽƌ�
itself. 
C)  
p� is considerably lower than the BEP but erratic, sampling inspection may be 
indicated purely for the purpose of protection. 
D)  
p� is considerably lower than the BEP but stable,  then a case might be made 
for no inspection at all. 
At the end of the chapter, a table summarizes the application of acceptable 
sampling Tables  described in this chapter. 
 

Quantity index  Single sampling  Double sampling  
LQL=LQ=CRQ�� Table A,B�� ��

IQL�� Table D�� D 
AOQL Tables I,J K 

AQL�� /^K�Ϯϴϱϵ��
Table E+F,G,H)� 

 

Ϯ�ƉŽŝŶƚƐ�ǁŝƚŚ�ȽǡȾ Cameron Table  
 

 
 
 
 
 
 
 
 
 
 
 

C.1,C
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Exercises 
ϭϭ͘ϭ 
  Full test of a part ĐŽƐƚƐ�Ψϭ�ĂŶĚ�ΨϬ͘ϭϴ� has to be paid on the average 
to repair a product assembled using several parts including  a 
defective one. Calculate the BEP.  Determine the appropriate AQL 
based on  this BEP. 
ϭϭ͘Ϯ  
  A sŝŶŐůĞ�ƐĂŵƉůŝŶŐ� � ĨƌŽŵ� /^KϮϱϴϵ-ϭ� is to be selected for inspecting 
ůŽƚƐ� ŽĨ� ƐŝǌĞ� ϮϱϬϬ� ͘� � ^ƉĞĐŝĨǇ� ƚŚĞ� ƉůĂŶƐ� ĨŽƌ� ŶŽƌŵĂů� ĂŶĚ� ƟŐŚƚĞŶĞĚ�
inspection of leveů�//�ĂŶĚ��Y>сϰй͘ 
 �ŶƐǁĞƌ͗�ŶсϭϮϱ���ĐсϭϬ�͖������ŶсϭϮϱ�Đсϴ 
ϭϭ͘ϯ 
In Problem ϭϭ͘Ϯ what is the probability of accepting a lot with each 
of the plans if the percent of nonconforming p'=AQL. 
ϭϭ͘ϰ 
  Suppose tightened inspection is performed ŝŶ� ƉƌŽďůĞŵ� Ϯ� ĂŶĚ� ƚŚĞ�
percent  ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉΖсϰй͘��tŚĂƚ�ŝƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ƐŚŝŌŝŶŐ�ƚŽ�
ŶŽƌŵĂů�ƐĞǀĞƌŝƚǇ�ĂŌĞƌ�ŝŶƐƉĞĐƟŶŐ�ϱ�such lots? 
ϭϭ͘ϱ 
  A single sampling  frŽŵ�/^KϮϱϴϵ-ϭ� ŝƐ� ƚŽ�ďĞ�ƐĞůĞĐƚĞĚ� ĨŽƌ� ŝŶƐƉĞĐƟŶŐ�
ůŽƚƐ�ŽĨ�ƐŝǌĞ�ϯϬϬϬ͘��^ƉĞĐŝĨǇ�ƚŚĞ�ƉůĂŶƐ�ĨŽƌ�reduced inspection of level II 
ĂŶĚ��Y>сϰй͘  
�ŶƐǁĞƌ͗�ŶсϱϬ����Đсϱ�͖ZĞсϴ 
ϭϭ͘ϲ 
In problem ϭϭ͘ϱ͕ƐƵƉƉŽƐĞ�ƚŚĞ�ůŽƚ�ŝƐ�ŽĨ�ϴй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ. Use Poisson 
approximation to calculate: 
a)the lot is accepted and the reduced severity continues.  
�ŶƐ��Ϭ͘ϳϱϴ���� 
b) the lot is accepted and the severity be switched to normal.  
�ŶƐ��Ϭ͘ϭϲϰ���� 
c) the lot is rejected.  
 �ŶƐ��Ϭ͘Ϭϱϭ���� 
ϭϭ͘ϳ 
Write a MATLAB code to specify a single sampling  plan in such a way that  
ϲй�ŽĨ�ƚŚĞ�ůŽƚƐ�ĂƌĞ��ĂĐĐĞƉƚĞĚ�ŝĨ�ƚŚĞ�ƉƌŽƉŽƌƟŽŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƐ�Ϭ͘ϬϬϱ� 
ϵϰй�ŽĨ�ƚŚĞ�ůŽƚƐ�ĂƌĞ��ĂĐĐĞƉƚĞĚ�ŝĨ�ƚŚĞ�ƉƌŽƉŽƌƟŽŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƐ�Ϭ͘ϭй͘ 
ϭϭ͘ϴ 
Use Cameron Table to specify a single sampling plan, in such way that  
If  the proportioŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƐ�Ϭ͘ϭй�ƚŚĞ�ĂĐĐĞƉƚĂŶĐĞ�ƉƌŽďĂďŝůŝƚǇ�ǁŝůů�ďĞ�
ϵϵй�ĂŶĚ� 
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/Ĩ��ƚŚĞ�ƉƌŽƉŽƌƟŽŶ�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ŝƐ�Ϭ͘ϱй�ƚŚĞ�ĂĐĐĞƉƚĂŶĐĞ�ƉƌŽďĂďŝůŝƚǇ�ǁŝůů�ďĞ�
ϱй�͘��&ŝŶĚ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ƚŚĂƚ��Ă�ůŽƚ�ǁŝƚŚ�ƉΖсϬ͘ϬϬϮ�ŝƐ�ĂĐĐĞƉƚĞĚ�ǁŝƚŚ�ƚŚŝƐ�
plan? 
ϭϭ͘ϵ 
  A company uses The Philips ^ƚĂŶĚĂƌĚ�^ǇƐƚĞŵ�ǁŝƚŚ�Ă�ƉŽŝŶƚ�ŽĨ�ĐŽŶƚƌŽů�Ăƚ�ϭй 
ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚ͘��dŚĞ�ůŽƚ�ƐŝǌĞ�ŝƐ�ϴϬϬ͘ 
What plan does the system require? 
Find the proportions of nonconforming product that ŚĂǀĞ� ϵϬ� ĂŶĚ� ϭϬй�
probabilities of acceptance. 
What plan does the system requiƌĞ�ŝĨ�ƚŚĞ�ůŽƚƐ�ĂƌĞ�ƐŝǌĞ�ϭϮϬϬ�ĨƌŽŵ�Ă�ƉƌŽĐĞƐƐ�
with ϱй��ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚ͍ 
What is ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ƌĞũĞĐƟŶŐ� ůŽƚƐ�ŚĂǀŝŶŐ�Ϯй�ĚĞĨĞĐƟǀĞƐ�ǁŝƚŚ�WůĂŶ�ŽĨ�
part a ? 
ϭϭ͘ϭϬ 
 (�ĂƐĞĚ�ŽŶ�'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞϱϭϳ)  
A consumer has the choice of using an ISO Ϯϴϱϭ�ƐƚĂŶĚĂƌĚ�ƐŝŶŐůĞ�ƉůĂŶ or a 
Philips  standard single sampling plan ĨŽƌ� ůŽƚƐ� ŽĨ� ƐŝǌĞ� ϱϬϬ. The ISO plan 
ǁŽƵůĚ�ďĞ�ƵƐĞĚ�ǁŝƚŚ�ĂŶ�ŝŶƐƉĞĐƟŽŶ�ůĞǀĞů�//͕�ĂŶ��Y>сϭй .  The Philips would 
be used with indifference point /Y>сϯй͘ 
a)Find the acceptance criteria under both systems. 
ďͿ� ŝĨ� ƚŚĞ� ĐŽŶƐƵŵĞƌ� ƉƌŝŵĂƌǇ� ĐŽŶĐĞƌŶ� ŝƐ� ƚŚĞ� ĂƐƐƵƌĂŶĐĞ� ƚŚĂƚ� ůŽƚƐ� ϱй�
nonconforming are rejected, which plan should  he choose? Explain. 
ϭϭ͘ϭϭ 
  Could you design a single sampling plan that satisfies the following  
supplier and customer:  
A supplŝĞƌ�ǁŚŽ�ǁĂŶƚƐ�ϵϱй�ŽĨ�ƚŚĞ�ůŽƚƐ�ŚĂǀŝŶŐ�Ϭ͘Ϭϱй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ� 
products are accepted; 
��ĐŽŶƐƵŵĞƌ�ǁŚŽ�ϵϱй�ŽĨ�ƚŚĞ�ůŽƚƐ�ŚĂǀŝŶŐ�Ϯй�ŶŽŶĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚƐ� 
are not accepted.   

 
Thinking is a fine mirror  
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Chapter   ͳʹ  Continuous Sampling Plans 
Aims 
 
  This chapter deals with acceptance sampling of the products as they are 
being produced, not necessarily to accumulate a lot before making a 
decision on the quality of the product.  The procedure used for this 
purpose is based on AOQL, a point on the AOQ curve.  The chapter mainly 
deals with the so-called single level sampling plans CSP-ϭ͕��^W-Ϯ�Θ�^W-ϯ� ͕ 
i.e. the plans which prescribe inspecting with a constant fraction f of the 
units. Multilevel  continuous sampling plans are only defined here.     
   
ͳʹ-ͳ��Classification of Production Systems 
  Production systems can be classified into continuous and intermittent , as 
&ŝŐ͘�ϭϮ-ϭ�ƐŚŽǁƐ.  Continuous production system is in turn divided into mass 
production and flow or process production.  Intermittent production 
system is also divided into batch production and order/shop production.  
Order production could be either Job shop or flow shop. A  Short 
descriptions of the production systems follows. 
 

��
                      Fig.  12-1  A Classification of production systems 
 
Continuous production system Is the one in which the materials , are 
continuously in motion undergoing chemical reactions or subject to 
mechanical or heat treatment. 
 
Intermittent production system  is a manufacturing method of producing 
several low volume different products.  The process is interrupted in order 
to modify the setups to produce different products or to  execute different 
specifications of the same basic design. 

Order/ 
shop. 

Production 
Systems��

Continuous 

Mass 
Production 

Flow  
Production 

Intermittent 

Batch 

Flow Shop Job shop��
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Flow / process production system involves a continuous movement of 
materials  through  chemical reactions. 
 
Mass  production  system  manufactures  standardized goods on a large 
scale, often done  using an automated assembly line. 
 
Batch or large lot production is a production technique that produces 
multiple units in a series of steps. 
  The degree of repetitiveness increases from Job production to batch 
production, from batch production to mass production and from mass 
production to ƉƌŽĐĞƐƐ�ƉƌŽĚƵĐƟŽŶ;ƐŝŶŚĂ͕ϮϬϬϴͿ͘ 
 
Order/Shop  system, divided into flow shop and Job shop, does jobs 
according to the orders from the customers. 
 
flow shop scheduling processes jobs on machines in a set order.  It  is 
assumed that all jobs in a flow shop problem are to be processed  on the 
same machines with identical precedence ordering.   
 
In  contrast, a  
job shop places no restrictions on the processing order; each job may have 
a different routing;  the precedence depend on each job. 
 
The purpose of this chapter is to introduce  plans for acceptance sampling 
of the products as they are being produced in a mass production process to 
make a decision on the quality of the product. 
 
ͳʹǤʹ Acceptance Sampling plans  
for continuous (mass production) process 
   When the  production is continuous, the formation of inspection lots for 
lot-by-lot acceptance is artificial and may be impractical.    The  first 
sampling plan proposed  for  inspection of consecutively 
produced units was that of Dodge.  Dodge described his procedure, 
namely, CSP-ϭ�ĂƐ�ĨŽůůŽǁƐ;'ƌĂŶƚ�Θ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϮϭͿ͗ 
 
12.2.1 CSP-1  
  The steps of CSP-ϭ�ĂƌĞ�ĂƐ�ĨŽůůŽǁƐ͗ 
 ;ĂͿ��ƚ�ƚŚĞ�ŽƵƚƐĞƚ͕�ŝŶƐƉĞĐƚ�ϭϬϬй�ŽĨ�ƚŚĞ�ƵŶŝƚƐ�ĐŽŶƐĞĐƵƟǀĞůǇ�ĂƐ�ƉƌŽĚƵĐĞĚ�ĂŶĚ�
continue such inspection until i units in succession are found clear of 
defects.  
 



    Statistical   methods in Quality Control 

Ϯϵϵ 

 

;ďͿ�tŚĞŶ�ŝ�ƵŶŝƚƐ�ŝŶ�ƐƵĐĐĞƐƐŝŽŶ�ĂƌĞ�ĨŽƵŶĚ�ĐůĞĂƌ�ŽĨ�ĚĞĨĞĐƚƐ͕�ĚŝƐĐŽŶƟŶƵĞ�ϭϬϬй�
inspection, and inspect only a fraction f of the units, selecting individual 
sample units one at a time from the flow of product, in such a manner as to 
assure an unbiased sample.  
 
;ĐͿ�/Ĩ�Ă�ƐĂŵƉůĞ�ƵŶŝƚ�ŝƐ�ĨŽƵŶĚ�ĚĞĨĞĐƟǀĞ͕�ƌĞǀĞƌƚ�ŝŵŵĞĚŝĂƚĞůǇ�ƚŽ�Ă�ϭϬϬй�
inspection of succeeding units and continue until again i units in succession 
are found clear of defects, as in paragraph (a ).  
 
(d) Correct or replace, with good units, all defective units found.  
&ŝŐƵƌĞ�ϭϮ-Ϯ�Žƌ�dĂďůĞ�ϭϮ-ϭ gives the necessary information for the selection 
of such a plan from sixteen values of AOQL. 
 
Example ϭϮ͘ϭ 
  Suppose ƚŽ�ŝŶƐƉĞĐƚ�Ă�ŵĂƐƐ�ƉƌŽĚƵĐƟŽŶ͕�ĂŶ���KY>��ŽĨ�Ϯй�ĂŶĚ�ŝŶƐƉĞĐƟŽŶ�ŽĨ�
ϭ�ŽƵƚ��ŽĨ�ϮϬ�ƉŝĞĐĞƐ�ĨƌŽŵ�ƚŚĞ�ĐŽŶǀĞǇŽƌ�ďĞůƚ��ŝƐ�ĚĞƐŝƌĞĚ͕�ƚŚĞŶ�Ĩс�Ϭ͘Ϭϱ�Žƌ��ϱй�. 
From Fig.  ϭϲ͘ϭ�ƚŚĞ�ǀĂůƵĞ�ŽĨ��ŝ��ŝƐ�ĨŽƵŶĚ�ƚŽ�ďĞ�ŝсϳϲ͘   
the acceptance plan is then as follows: 
 
;ĂͿ�/ŶƐƉĞĐƚ�Ăůů�ƚŚĞ�ƵŶŝƚƐ�ĐŽŶƐĞĐƵƟǀĞůǇ�ĂƐ�ƉƌŽĚƵĐĞĚ�ƵŶƟů�ϳϲ�ƵŶŝƚƐ�ŝŶ� 
succession are free from defects. 
  
;ďͿ��Ɛ�ƐŽŽŶ�ĂƐ�ϳϲ�ƐƵĐĐĞƐƐŝǀĞ�ƵŶŝƚƐ�ĂƌĞ�ĨƌĞĞ�ĨƌŽŵ�ĚĞĨĞĐƚƐ͕� ŝŶƐƉĞĐƚ�Ă�ƐĂŵƉůĞ�
consisting of only one unit out of every twenty. Accept all the product as 
long as the sample is free from defects.  
 
(c) Whenever one of these sample units is ĨŽƵŶĚ�ĚĞĨĞĐƟǀĞ͕� ƌĞƐƵŵĞ�ϭϬϬй�
ŝŶƐƉĞĐƟŽŶ� ƵŶƟů� ϳϲ� ƵŶŝƚƐ� ŝŶ� ƐƵĐĐĞƐƐŝŽŶ� ŚĂǀĞ� ĂŐĂŝŶ� ďĞĞŶ� ĨŽƵŶĚ� ĨƌĞĞ� ĨƌŽŵ�
defects. Then resume sampling inspection.  
 
^ŝŶĐĞ� ϭϵϰϯ� various  modification of CSP-ϭ� � ŚĂǀĞ� ďĞĞŶ� ĚĞǀŝƐĞĚ including 
CSP-ϭ, CSP-Ϯ͕��^W-ϯ�͕�^W-ϰ , CSP-ϱ͕��^W-F,�  
 
12.2.2 CSP-2  
  The CSP-Ϯ�ƉůĂŶ was proposed by Dodge and Torrey as modification 
over CSP-ϭ͘   CSP-Ϯ�ĚĞůĂǇƐ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ǁŚĞŶ�Ă�ƐĂŵƉůĞ�ƵŶŝƚ�ŝƐ�ĨŽƵŶĚ�ĨŽƌ�
the first time, it is invoked only if a second defect occurs in the next k or 
less sample units. 
 
They describe CSP-Ϯ�ĂƐ�ĨŽůůŽǁƐ͗� 
Plan CSP-Ϯ� ĚŝīĞƌƐ� ĨƌŽŵ� WůĂŶ� �^W-ϭ� ŝŶ� ƚŚĂƚ͕� ŽŶĐĞ� ƐĂŵƉůŝŶŐ� ŝŶƐƉĞĐƟŽŶ� ŝƐ�
ƐƚĂƌƚĞĚ͕�ϭϬϬй� ŝŶƐƉĞĐƟŽŶ� ŝƐ�ŶŽƚ� ŝŶǀŽŬĞĚ�ǁŚĞŶ�ĞĂĐŚ�ĚĞĨĞĐƚ� ŝƐ� ĨŽƵŶĚ�ďƵƚ� ŝƐ�
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invoked only if a second defect occurs in the next k or less sample units. In 
other words, if two defects observed during sampling are separated by k or 
less good inspected ƵŶŝƚƐ͕�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ŝƐ�ŝŶǀŽŬĞĚ͘�KƚŚĞƌǁŝƐĞ�ƐĂŵƉůŝŶŐ�
is continued.  Although the factor k might conceivably be assigned any 
value, the only CSP-Ϯ�ƉůĂŶƐ�ƉƌĞƉared for use have been those in which k = i.  
dĂďůĞ���ϭϮ-ϭ�ŐŝǀĞƐ�ǀĂůƵĞƐ�ŽĨ�ŝ�ŝŶ��^W-ϭ�ĂŶĚ��^W-Ϯ�ƵƐŝŶŐ�ϱй�ĂŶĚ�ϭϬй�ƐĂŵƉůĞƐ��
and various AOQL values. These values for CSP-Ϯ� ǁĞƌĞ� ŽďƚĂŝŶĞĚ� ĨƌŽŵ� Ă�
ŐƌĂƉŚ�ƐŝŵŝůĂƌ�ƚŽ�&ŝŐ�ϭϮ.Ϯ͕ given by the Dodge-Torrey article. 

 
TaďůĞ�ϭϮ͘ϭ sĂůƵĞƐ�ŽĨ�/�ΘŬ���ĨŽƌ�Ĩс�ϱй��ĂŶĚ�ϭϬй��
and some AOQL in CSP-ϭ�,  CSP-Ϯ 
;ĨƌŽŵ�'ƌĂŶƚ�Θ�>ĞĂǀĞŶ�ǁŽƌƚŚ͕�ϭϵϴϴ͕Ɖ͘ϱϮϯͿ 

 
AOQL 

%��

Ĩсϱй ĨсϭϬй 
i ��

CSP-ϭ 
i(=k) 

CSP-Ϯ 
i  

CSP-ϭ 
i (=k) 
CSP-Ϯ 

Ϭ͘ϯ ϱϭϬ ϲϱϬ ϯϳϬ ϰϬϬ 
Ϭ͘ϱ ϯϬϱ ϯϵϬ ϮϮϬ ϮϵϬ 
ϭ ϭϱϬ ϭϵϱ ϭϬϴ ϭϰϳ 
Ϯ ϳϲ ϵϲ ϱϱ ϳϮ 
ϯ�� ϰϵ ϲϰ ϯϲ ϰϴ 
ϰ ϯϳ ϰϴ Ϯϳ ϯϲ 
ϱ Ϯϵ ϯϴ Ϯϭ Ϯϵ 
ϲ Ϯϰ ϯϭ ϭϳ Ϯϯ 
ϴ ϭϴ Ϯϯ�� ϭϯ ϭϳ 

 
�ǆĂŵƉůĞ��ϭϮ͘Ϯ 
   Describe a CSP-2 plan for a continuous production if �KY>сϮй�͕�Ĩсϱй. 
Solution 
    &ƌŽŵ�dĂďůĞ�ϭϮ-ϭ�ƚŚĞ�ǀĂůƵĞ�ŽĨ�ŝсŬ�ŝƐ��ƌĞĂĚ�ϵϲ͘��dŚĞŶ�ƚŚĞ��^W-Ϯ�ƉůĂŶ�
is: 
ϭ͘�/ŶƐƉĞĐƚ�Ăůů�ƚŚĞ�ƵŶŝƚƐ�ĐŽŶƐĞĐƵƟǀĞůǇ�ĂƐ�ƉƌŽĚƵĐĞĚ�ƵŶƟů�ϵϲ�ƵŶŝƚƐ�ŝŶ�
succession are free from defects.  
Ϯ͘��Ɛ�ƐŽŽŶ�ĂƐ�ϵϲ�ƐƵĐĐĞƐƐŝǀĞ�ƵŶŝƚƐ�ĂƌĞ�ĨƌĞĞ�ĨƌŽŵ�ĚĞĨĞĐƚƐ͕�ŝŶƐƉĞĐƚ�Ă�
ƐĂŵƉůĞ�ĐŽŶƐŝƐƟŶŐ�ŽĨ�ŽŶůǇ�ϭ�ŽƵƚ�ŽĨ�ĞǀĞƌǇ�ϮϬ͘��ĐĐĞƉƚ�Ăůů�ƚŚĞ�ƉƌŽĚƵĐƚ�ĂƐ�
long as the sample is free from defects.  
ϯ͘�/Ĩ�ŽŶĞ�ĚĞĨĞĐƟǀĞ�ŝƐ�ĨŽƵŶĚ�ŝŶ�ƚŚŝƐ�ƐĂŵƉůŝŶŐ͕�ĐŽŶƟŶƵĞ�ƐĂŵƉůŝŶŐ�
inspection for the time being. However, if a second sample defective 
ŝƐ�ĨŽƵŶĚ�ǁŝƚŚŝŶ�ƚŚĞ�ŶĞǆƚ�ϵϲ�ƐĂŵƉůĞƐ͕�ƌĞƐƵŵĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�
ŝŵŵĞĚŝĂƚĞůǇ͘��ŽŶƟŶƵĞ�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ƵŶƟů�ϵϲ�ƵŶŝƚƐ�ŝŶ�ƐƵĐĐĞƐƐŝŽŶ�
have been found free from defects. Then resume sampling under the 
ĨŽƌĞŐŽŝŶŐ�ƌƵůĞƐ�ǁŝƚŚ�͕�Ĩсϱй�ŝ͘Ğ͘�ϭ�ƉŝĞĐĞ�ŝŶ�ƌĂŶĚŽŵ�ŽƵƚ�ŽĨ�ĞǀĞƌǇ�ϮϬ�
pieces.  
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AOQ  Formulas for CSP-1 and CSP-2 
 (Grant &Leavenwoth,1988 page 532) 

fraction nonconforming

1(1 )
1(1 )

2(1 )(2 )
2(1 )(2 )

1:

1

2 :

ip f q
AOQ if f q

i ip f q q
AOQ i if q f q q

CSP

p

q p

CSP


 

 
   

 


 

 

 

12.2.3  CSP-3 
  Plan CSP-ϯ�ŝƐ�Ă�ƌĞĮŶĞŵĞŶƚ�ŽĨ��^W-Ϯ�ƚŽ�ƉƌŽǀŝĚĞ�ŐƌĞĂƚĞƌ�ƉƌŽƚĞĐƟŽŶ��ĂŐĂŝŶƐƚ�
a sudden run of bad quality. When one sample defective is found, the next 
four units from the production line are inspected. If none of these are 
defective, the sampling procedure is continued as in CSP-Ϯ͘� /Ĩ� ŽŶĞ�ŽĨ� ƚŚĞ�
ĨŽƵƌ�ƵŶŝƚƐ�ŝƐ�ĚĞĨĞĐƟǀĞ͕�ϭϬϬй�ŝŶƐƉĞĐƟŽŶ�ŝƐ�ƌĞƐƵŵĞĚ�Ăƚ�ŽŶĐĞ�ĂŶĚ�ĐŽŶƟŶƵĞĚ�
under the rules of CSP-Ϯ͘� /Ŷ� �^W-ϯ͕� ƚŚĞ� ǀĂůƵĞ� ŽĨ� ŝ� ƵƐĞĚ for a given / and 
AOQL is the same as in CSP-Ϯ(Grant &LeaǀĞŶǁŽƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϮϯͿ. 
 
ͳʹǤ͵�Multilevel Continuous sampling plans(CSP-M) 
   To secure economies and obtaining certain other advantages, sometimes 
it is desired to start sampling with a relatively large faction sampled such 

as� ൌ ଶ
ଷ ǡ
ଵ
ଷ ǡ
ଵ
ଶ  and permit a subsequent change to  a smaller sampling 

fraction.  In one particular of  such a plans, developed by Lieberman and 
^ŽůŽŵŽŶ;ϭϵϱϱͿ͕� ƚŚĞ� ƉůĂŶƐ� � ƐƚĂƌƚ�ǁŝƚŚ� ϭϬϬй� ŝŶƐƉĞĐƟŽŶ,  as in CSP's , and 
continues until  i  good units found in succession.  Then sampling  
inspection is started with a faction f;  if  acceptable  units found in 
succession, the sampling inspection continues with fraction fϮ.  Another    i  
conforming  units in a row permit for  sampling inspection with fraction Ĩϯ 
,etc.   When a unit is rejected, inspection  is shifted back to a next lower 
level. The number of levels ƌĂŶŐĞ�ĨƌŽŵ�Ϯ�ƚŽ��ĂŶ�ŝŶĮŶŝƚĞ�ŶƵŵďĞƌ͘  
   
12.3.1 A Source for  Multilevel Plans  
   Several   years ago Dept. of Industrial Engineering  of  Stanford University 
prepared a pamphlet( AMC Manual ϳϰͿ. Later  with some modification  it 
was  published as  
    /ŶƐƉĞĐƟŽŶ�ĂŶĚ�YƵĂůŝƚǇ��ŽŶƚƌŽů�,ĂŶĚďŽŽŬ�;/ŶƚĞƌŝŵͿ��,�ϭϬϲ͕� 
    Multilevel Continuous Sampling Procedures & Tables for Inspection by Attrib. 
 
dĂďůĞ�ϭϮ-Ϯ�shows the plans discussed in the above documents. 
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It should be added that there are other plans for continuous inspection 
such as CSP-F, CSP-V, Wald-Wolfowitz Type Plans and that of Girshick who 
provided a modification of the Wald and Wolfowitz approach.  These 
methods are described in the quality books and in the internet. One  final 
thing  worth  mentioning is that Mil-STD-ϭϮϯϱ��ŝƐ�ĂŶ��ĞǆŝƐƟŶŐ�ƐƚĂŶĚĂƌĚ�ŽŶ�
continuous sampling which combines Handbooks H-ϭϬϲ� Θ� ,ϭϬϳ͘� � dŚŝƐ�
standard is dealt in the internet and references such as Bowker and 
Lieberman book on statistics and quality control.  

 

 
 
 

dĂďůĞ��ϭϮ-Ϯ�sĂůƵĞƐ�ŽĨ��i  for multilevel sampling plans ;'ƌĂŶƚΘ>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ pϱϮϲ)  
 

AOQL 
% 
��
 

݂ ൌ ͳ
ʹ ݂ ൌ ͳ

͵ ݂ ൌ ʹ
͵ 

Number of levels (k) 

Ŭ�с�ϭ Ŭ�с�Ϯ Ŭ�сϯ Ŭ�с�ϰ Ŭ�сϱ Ŭ�сϭ Ŭ�с�Ϯ Ŭ�сϯ Ŭ�с�ϰ Ŭ�сϱ Ŭ�сϭ Ŭ�сϮ Ŭ�с�ϯ 

ϮϬ͘Ϭ ^ ^ ^ ^ ^ ^ ^ ϰ ϱ ϲ ^ ^ ^��
ϭϱ͘Ϭ ^ ^ ^ ϰ ϱ ^ ϰ ϲ ϳ ϴ ^ ^ ^ 

ϭϬ͘Ϭ ^ ϰ ϲ ϴ ϵ ^ ϳ ϭϬ ϭϮ ϭϯ ^ ^ ^ 

ϳ͘ϱ ^ ϲ ϵ ϭϭ ϭϯ ϲ ϭϭ ϭϰ ϭϲ ϭϴ ^ ^ ^ 
ϱ͘Ϭ ϱ ϭϭ ϭϱ ϭϴ ϮϬ ϭϬ ϭϴ ϮϮ Ϯϱ Ϯϳ ^ ϱ ϴ 
ϰ͘Ϭ ϳ ϭϰ ϭϵ ϮϮ Ϯϱ ϭϰ Ϯϯ Ϯϵ ϯϮ ϯϰ ^ ϳ ϭϭ 
ϯ͘Ϭ ϭϭ ϮϬ Ϯϲ�� ϯϭ ϯϰ ϭϵ ϯϮ ϯϵ ϰϯ ϰϲ ϱ ϭϭ�� ϭϲ 
Ϯ͘Ϭ ϭϴ ϯϭ ϰϬ ϰϳ ϱϭ ϯϭ ϰϴ ϱϵ ϲϲ ϳϭ ϵ ϭϴ Ϯϱ 
ϭ͘ϱ�� Ϯϱ ϰϯ ϱϱ ϲϯ ϲϵ ϰϮ ϲϲ ϴϬ ϴϵ ϵϱ ϭϯ Ϯϱ ϯϰ 

ϭ͘Ϭ ϯϵ ϲϱ ϴϯ ϵϱ ϭϬϰ ϲϰ ϭϬϬ ϭϮϬ ϭϯϰ ϭϰϮ Ϯϭ ϯϵ ϱϮ 

Ϭ͘ϳϱ ϱϰ ϴϴ ϭϭϮ ϭϮϴ ϭϰϬ ϴϳ ϭϯϰ ϭϲϭ ϭϳϵ ϭϵϭ ϯϬ ϱϯ ϳϭ 

Ϭ͘ϱϬ ϴϮ ϭϯϮ ϭϲϴ ϭϵϯ ϮϭϬ ϭϯϯ ϮϬϮ Ϯϰϯ Ϯϲϵ Ϯϴϳ ϰϲ ϴϬ ϭϬϳ 
Ϭ͘ϯϱ ϭϭϵ ϭϵϳ Ϯϰϭ Ϯϳϱ ϯϬϮ ϭϵϬ ϮϵϬ ϯϰϵ ϯϴϲ ϰϬϴ    
Ϭ͘Ϯϱ ϭϲϳ Ϯϲϵ ϯϯϳ ϯϴϲ ϰϮϮ Ϯϲϵ ϰϬϲ ϰϴϴ ϱϰϬ ϱϳϲ ϵϲ ϭϲϰ Ϯϭϳ 
Ϭ͘ϭϱ Ϯϭϴ ϰϰϲ ϱϲϰ ϲϯϲ ϳϬϲ ϰϱϬ ϲϴϬ ϴϭϱ ϵϬϯ ϵϲϬ    

Ϭ͘ϭϬ ϰϮϭ ϲϳϱ ϴϰϳ ϵϲϵ ϭϬϱϵ ϲϳϳ ϭϬϮϮ ϭϮϮϰ ϭϯϱϰ ϭϰϰϯ    

 
^  Sampling plans are not available for values of   i   ůĞƐƐ�ƚŚĂŶ�ϰ͘ 
��
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Exercises  
ϭϮ͘ϭ (Grant and  LeavenworƚŚ͕�ϭϵϴϴ�ƉĂŐĞϱϯϲ) 
In CSP-Ϯ��ƉůĂŶ�ŝƚ�ŝƐ�ĚĞƐŝƌĞĚ�ƚŽ�ĂƉƉůǇ�ƐĂŵƉůŝŶŐ ŝŶƐƉĞĐƟŽŶ�ƚŽ�ϭ�ŝƚĞŵ�ŝŶ�ĞǀĞƌǇ�
ϮϬ and to maintain aŶ��KY>�ŽĨ�Ϯй͘ 
a)What are  the values of i&k 

b)Calculate AOQ if incoming ůŽƚƐ�ĐŽŶƚĂŝŶ�ϰй�ŶŽŶĐŽŶĨŽƌŵŝŶŐunits . 

ϭϮ͘Ϯ ;'ƌĂŶƚ�ĂŶĚ��>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ�ƉĂŐĞϱϯϰͿ 
It is desired tŽ�ƵƐĞ��^Wϭ�ĂŶĚ�ŝŶƐƉĞĐƚ  ϭ�ƉŝĞĐĞ�ŽƵƚ�ŽĨ�ĞǀĞƌǇ�ϭϱ�ĂŶĚ�ƚŽ�
ŵĂŝŶƚĂŝŶ�ĂŶ��KY>�ŽĨ�Ϯй͘��ĞƚĞƌŵŝŶĞ the value of i  ͘��ŝĨ�ϭ�ƉŝĞĐĞ�ĨƌŽŵ�ĞǀĞƌǇ�ϴ�
pieces is selected , what should be the value of i? 
Answer : ϲϴ͘ 
 
ϭϮ͘ϯ (Grant and LeavenworƚŚ͕�ϭϵϴϴ�ƉĂŐĞϱϯϰ)  
In Dodge-Torrey  CSP-Ϯ�ŝƚ�ŝƐ�ĚĞƐŝƌĞĚ�ƚŽ�ĂƉƉůǇ�ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�ƚŽ�ϭ�ƉŝĞĐĞ��
ŽƵƚ�ŽĨ�ĞǀĞƌǇ�ϭϬ��Ănd to ŵĂŝŶƚĂŝŶ�ĂŶ��KY>�ŽĨ�ϯй�͘�that should be the value 
of i?  Assume i=k. 
�ŶƐǁĞƌ͗�ϰϴ 
 
ϭϮ͘ϰ  ;'ƌĂŶƚ�Θ�>ĞĂǀĞŶǁŽƌƚŚ͕�ϭϵϴϴ͕�ƉĂŐĞ�ϱϯϱͿ 
/ƚ�ŝƐ�ĚĞƐŝƌĞĚ�ƚŽ�ĂƉƉůǇ�ĐŽŶƟŶƵŽƵƐ�ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�ƚŽ�ϭ�ƉŝĞĐĞ�ŽƵƚ�ŽĨ�ĞǀĞƌǇ�
ϭϬ�ĂŶĚ ƚŽ�ŵĂŝŶƚĂŝŶ�ĂŶ��KY>�с�Ϯй͘ 
Find the value of   i   ĨŽƌ��^Wϭ.        Answer :ϱϱ 
Find the values of i  &k for CSP-Ϯ.   Answer: ϳϮ 
Prepare  flowcharts  of the operations of these plans. 
 

The ignorant never realizes 
 his  

mistake nor accepts advice  
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��������ͳ͵  Acceptance Sampling by Variables 
using  ISO-͵ͻͷͳ 
 

Aims 
   This chapter introduces the international standard ISO-ϯϵϱϭ͘� This 
standard is used for sampling inspection of a product characteristics that 
are variable.   Given a value for AQL and LSL or USL or both for a 
measurable characteristic of a product, the standard gives a plan for 
accepting /rejecting a lot of the product.  
 
ͳ͵Ǥͳ��Acceptance Sampling by Variables 
   If accepting/ rejecting a lot is not to take place based on pure observation 
and the characteristic to be inspected is measurable  with a scale, then the 
plans of acceptance sampling  inspection by variables would be helpful.  
Examples of measurable characteristics are output voltage of an adaptor, 
the leak (water, air, gas,�) from an isolation and  the fuel consumption of 
ĂŶ� ĞŶŐŝŶĞ͘� � &Žƌ� /ŶƐƉĞĐƟŶŐ� ƚŚĞƐĞ� ŬŝŶĚ� ŽĨ� ĐŚĂƌĂĐƚĞƌŝƐƟĐƐ͕� /^K� ϯϵϱϭ�
applicable.  It is worth mentioning that every plan of this system of 
acceptance sampling for variables could be used for one normally- 
distributed variable characteristic, while a plan of acceptance sampling by 
attributes could deal with several similar attribute characteristics.  

   
ͳ͵Ǥʹ�  ����͵ͻͷͳ Standard  
  /^K�ϯϵϱϭ�ŝƐ�ĂŶ�ŝŶƚĞƌŶĂƟŽŶĂů�ƐƚĂŶĚĂƌĚ�ĨŽƌ�ƐĂŵƉůŝŶŐ�ŝŶƐƉĞĐƟŽŶ�ďǇ�ǀĂƌŝĂďůĞs 
which in essence is similar to Mil-STD-ϰϭϰ;ϭϵϱϳ-ϭϵϵϵͿ�Θ �E^/ͬ�^Y��ϭ͘ϵ͘����
This standard consists of the following five parts, under the general title 
"sampling procedures for inspection by variables" ;/^Kϯϵϱϭ-ϭ-ϮϬϭϯ&�ƉĂŐĞ�
vi): 
 
 WĂƌƚ�ϭ͗ 
   Specification for single sampling plans indexed by acceptance quality limit 
(AQL) for lot-by-lot inspection for a single quality characteristic and a single 
AQL , 
 
WĂƌƚ�Ϯ͗� 
  General specification for single sampling plans indexed by AQL for lot by 
lot inspection of independent quality characteristics, 
 
 WĂƌƚ�ϯ͗� 
   Double sampling schemes indexed by AQL for lot-by-lot inspection  
WĂƌƚ�ϰ͗� 
Procedures for assessment of declared quality levels, 
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WĂƌƚ�ϱ͗� 
Sequential sampling plans indexed by AQL for inspection by variables 
(known standard deviation) 
 
   /ƚ� ŝƐ� ǁŽƌƚŚ� ŬŶŽǁŝŶŐ� ƚŚĂƚ� /^K� ϯϵϱϭ� ƐƚĂŶĚĂƌĚ� ŝŶƚƌŽĚƵĐĞƐ� ƐĞǀĞƌĂů� ƐŝŶŐůĞ�
sampling  and double sampling procedures.    It is worth mentioning that an 
advantage of double sampling is smaller ATI and saving time and money  in 
the long run.   However, this chapter  introduces some single sampling 
plans for variables from Parts ϭ�ĂŶĚ�Ϯ�ŽĨ�ƚŚĞ�ƐƚĂŶĚĂƌĚ�ŝ͘Ğ͘ /^K�ϯϵϱϭ-ϭ�Θ/^K�
ϯϵϱϭ-Ϯ͘ 
 
13.2.1   ISO 3951-1  
;ĨƌŽŵ�/^K�ϯϵϱϭ-ϭ͗ϮϬϭϯ�ƉĂŐĞ�ǀŝŝͿ 

   WĂƌƚ� ϭ� ŽĨ� ƚŚĞ� ƐƚĂŶĚĂƌĚ� ŝ͘Ğ͘� /^K� ϯϵϱϭ-ϭ introduces a system of single 
sampling plans for inspection by variables in order to be used for  accepting  
or rejecting  lots .  dŚŝƐ� ƉĂƌƚ� ŽĨ� /^K� ϯϵϱϭ� ŝƐ� ŝŶĚĞǆĞĚ� ŝŶ� ƚĞƌŵƐ� ŽĨ� ƚŚĞ�
acceptance quality limit (AQL) and is designed for users who have simple 
requirements. A more comprehensive and technical treatment is given in 
/^K�ϯϵϱϭ-Ϯ ǁŚŝĐŚ�ŝƐ�ĐŽŵƉůĞŵĞŶƚĂƌǇ��ƚŽ�WĂƌƚ�ϭ͘� 
 
ͷ͹Ǥ͸ǤͷǤͷ   Assumptions 
The assumptions of this part of the standard  are: 
a) 
The lots submitted  for inspection are a continuing series of lots of discrete 
products all supplied by one producer using one production process, 
b) 
 A single quality characteristic, measurable on a continuous scale, is to be 
inspected. Measurement error is negligible; [The measurements are done 
independently], 
c) 
Lots have not been screened for nonconforming items. The reason for this 
ĂƐƐƵŵƉƟŽŶ�ŝƐ�ƚŚĞ�ĨĂĐƚ�ƚŚĂƚ�ƚŚĞ�ƉƌŽĐĞĚƵƌĞƐ�ŝŶ�ƚŚŝƐ�ƉĂƌƚ�ŽĨ�/^K�ϯϵϱϭ�ĂƌĞ�ŶŽƚ�
suitable for application to already screened lots , 
Moreover ;ĨƌŽŵ�/^K�ϯϵϱϭ-ϭ͗ϮϬϭϯ�ƉĂŐĞ�ϭͿ͗ 

d) 
where production is stable (under statistical control) and 
 the  characteristic, X, is distributed according to a normal 
distribution or close to it, 
e) 
  where a contract or standard defines a lower specification limit(( L), an 
upper  specification limit( U) or both; an item is qualified as conforming if 
and only if its measured quality characteristic, X, satisfies the appropriate 
one of the following inequalities:  
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ϭͿ�y�≥ L (i.e. the lower specification limit is not violated);  
ϮͿ�y≤ U (i.e. the upper specification limit is not violated); 
ϯͿ�y�≥ L and X ≤ U  (i.e. neither the lower nor the upper specification limit is 
violated). 
 
ͷ͹Ǥ͸ǤͷǤ͸   Definitions 
 
ͳ͵ǤʹǤͳǤʹǤͳ�  Acceptable Quality Limit(AQL)  
    AQL is the worst tolerable fraction non conforming when a continuing 
series of lots is submitted for acceptance sampling. 
 
ͳ͵ǤʹǤͳǤʹǤʹ�  Inspection Level 
   The level of inspection is actually a relationship between the sample  size 
and the lot size  given in letter codes (A, B,H,�).  The relationship is an 
empirical one rather than a mathematical relationship  based on 
ƉƌŽďĂďŝůŝƚǇ͘��dŚĞƌĞ�ĂƌĞ�ϳ�ůĞǀĞůƐ�ŝŶ�ƚŚŝƐ�ƐƚĂŶĚĂƌĚ�͗ 
 
ϯ�ŐĞŶĞƌĂů�ůĞǀĞůƐ�ŝ͘Ğ͘�/͕//͕/// 
ϰ�ƐƉĞĐŝĂů�ůĞǀĞů�ŝ͘Ğ͘�^-ϭ͕^-Ϯ͕^-ϯ͕^-ϰ͘ 
Default level is II 
-If no level has been specified, inspection level II shall be used 
;/^Kϯϵϱϭ-ϭ-ϮϬϭϯ��ƉĂŐĞϭϮͿ͘ 
 
-Special levels are for the cases where the test is destructive or the cost of 
testing is high and  small sample  sizes are necessary  and larger risks can 
be tolerated.  
-level S-I gives the smallest sample size and Level III gives the greatest size. 
-level    I with respect to level II gives smaller size and greater risk.  
-Level  III  with respect to level II gives  greater size and smaller risk 
;�ĂůĂŵƵƌĂůŝ͕�Ğƚ�Ăů͕�ϮϬϭϰͿ. 
 
ͳ͵ǤʹǤͳǤʹǤ͵Inspection Severity 
   The degree of tightness or severity  of inspection in this standard is stated 
as normal, tightened  or reduced.  Inspection severity  affects sample size 
and acceptance criteria.   The standard advises to use normal inspection at 
the start unless otherwise desiŐŶĂƚĞĚ� ;/^Kϯϵϱϭ-ϮϬϭϯ���ƉĂŐĞ�ϮϰͿ�ǁŝƚŚ� ƚŚĞ�
possibility of shifting to tightened or reduced. 
 
ͳ͵Ǥ͵� Switching Rules of ����͵ͻͷͳ 
    The switching rules are an inherent part of an acceptance sampling 
standard ƐƵĐŚ�ĂƐ�/^K�ϯϵϱϭ-ϭ�ǁŚĞŶ��Ă�ƐĞƌŝĞƐ�ŽĨ�ůŽƚƐ�ĂƌĞ�ďĞŝŶŐ�ŝŶƐƉĞĐƚĞĚ�ǁŝƚŚ�
it. The rules say how to shift from one severity to other or when to  
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discontinue the inspection.  dŚĞ� ƌƵůĞƐ� ĂƌĞ� ĂƐ� ĨŽůůŽǁƐ� ;ĨƌŽŵ� /^Kϯϵϱϭ-ϭ�
ƉĂŐĞϮϰͿ͗ 
 
13.3.1  Normal to tightened 
  Normal inspection starts at the start of inspection unless otherwise 
stated.  Tightened inspection shall be instituted when two lots on original 
normal inspection are not accepted within any five or fewer successive 
lots. 
 

13.3.2  Tightened to normal 
   When tightened inspections is being carried out, normal inspection shall 
be re-instated when five consecutive lots have been considered acceptable 
on originalϭ inspection. 
 
13.3.3  Normal to reduced 
  ZĞĚƵĐĞĚ�ŝŶƐƉĞĐƟŽŶ�ŵĂǇ�ďĞ�ŝŶƐƟƚƵƚĞĚ�ĂŌĞƌ�ϭϬ�ƐƵĐĐĞƐƐŝǀĞ�ůŽƚƐ�ŚĂǀĞ�
been accepted under normal inspection, provided that either of the 
following happens  
a) These lots would have been accepted if the AQL had been one step 
ƟŐŚƚĞƌ�;Ğ͘Ő͘�Ϭ͕ϲϱ�й�ŝŶƐƚĞĂĚ�ŽĨ�ϭ͕ϬйͿ͕� 
 
NOTE :If a value of acceptability constant k for this tighter AQL is not given 
in Table T (s�ŵĞƚŚŽĚͿ�Žƌ�dĂďůĞ�Y͘ϭ�;ʍ�method), refer to the supplementary 
acceptance constants provided in Table V.  
 
b) Production is in statistical control, and  reduced inspection is considered 
desirable by the responsible authority.  
 
13.3.4  Reduced to Normal 
   Reduced inspection shall cease and normal inspection be reinstated  if 
any of the following occurs on original inspection: 
a) a lot is not accepted;  
b) production becomes irregular or delayed;  
c) reduced inspection is no longer considered desirable by the responsible 
authority. 
 

13.3.5 Discontinuation of inspection 
  If the cumulative number of lots not accepted in a sequence of 
consecutive lots on original tightened inspection reaches five, the 
ĂĐĐĞƉƚĂŶĐĞ� ƉƌŽĐĞĚƵƌĞƐ� ŽĨ� ƚŚŝƐ� ƉĂƌƚ� ŽĨ� /^K� ϯϵϱϭ� ƐŚĂůů� ďĞ� ĚŝƐĐŽŶƟŶƵĞĚ͘�

                                                           
ϭ�Original inspection means first inspection of a lot according to the provisions of ISO 2859-1 
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Inspection under the provisions of this ƉĂƌƚ� ŽĨ� /^K� ϯϵϱϭ� ƐŚĂůů� ŶŽƚ� ďĞ�
resumed until action has been taken by the supplier to improve the quality 
of the submitted product or service and the responsible authority has 
agreed that this action is likely to be effective. Tightened inspection shall 
then be used as if ^ĞĐ�ϭϯ͘ϯ͘ϭ��ŝŶ�ƚŚĞ�ĂďŽǀĞ��has been invoked. 
 
ͳ͵ǤͶ���������������������� sampling Plans �������͵ͻͷͳ 
Symbols  
betacdf MATLAB command for  beta cumulative distribution 

ఙ݂  Factor relating maximum process standard deviation  to U-L 
௦݂ Factor relating maximum sample standard deviation  to U-L 
k Acceptability constant  
L Lower specification limit 
N Lot size 
n Sample size 

p* Max. acceptable value for the estimate of the process fraction non 
conforming 

௅ܲ Process fraction non-conforming below lower specification 
limit 

௎ܲ Process fraction non-conforming above lower specification 
limit 

 Ƹ Estimate of the process fraction nonconforming݌
�෡୐ Estimate of   ௅ܲ 
�෡୙ Estimate of� ௎ܲ 

ܳ௎Ƭܳ௅ ܳ௅ ൌ ௅ିଡ଼ഥ
ௌ , ܳ௎ ൌ ௎ିଡ଼ഥ

ௌ  
S Sample standard deviation 

�୫ୟ୶ �୫ୟ୶ ൌ ሺܷ െ ሻܮ ௦݂ ,Maximum sample standard deviation 
U Upper specification limit 
X measured quality characteristic 
�ഥ Sample mean 

߮௓(a)  CDF of standard normal at point a 
ρ Process mean, E(X) 
ɐ Process standard deviation, the standard deviation of 

measured quality characteristic  
ɐ୫ୟ୶ Maximum process standard deviation: ı௠௔௫ ൌ ሺܷ െ ሻܮ ఙ݂  

      
  When sampling �by- ǀĂƌŝĂďůĞ� ƐǇƐƚĞŵ� � ŽĨ� � /^K� ϯϵϱϭ� ŝƐ� ƚŽ� ďĞ� ƵƐĞĚ� Ĩor 
inspecting a lot, there are two kind of methods available in this standard 
namely:  
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s-method and ɐ -method.  The former is applicable to the cases where the 
variability(the standard deviation) of the production process or the lot is 
not known and the latter is for the case where the standard deviation of 
the process is a known and constant.  When the variability is unknown, in 
the cases where a single specification is given there are Ϯ� ƚǇƉĞƐ� ŽĨ�
acceptance criteria: 
 Form K            &          Form p*ϭ. 
 dŚĞ��ƐƚĞƉƐ�ŽĨ�ƐŽŵĞ�ŽĨ�ƚŚĞ�ƉƌŽĐĞĚƵƌĞƐ�ĨƌŽŵ�/^Kϯϵϱϭ-ϭ�ĂŶĚ�/^Kϯϵϱϭ-Ϯ�ĂƌĞ�
summarized in a Table at the end of this chapter and described and 
illustrated Below. But before describing the plans and procedures, let us 
show how the proportion nonconforming of a production process is 
ĞƐƟŵĂƚĞĚ�ŝŶ�/^K�ϯϵϱϭ�ƉůĂŶƐ͘� 
 
Estimation of the process proportion nonconforming 
    If  the measured quality characteristic is denoted by X, the proportion 
non conforming of a production process or a  is that values of which 
satisfies one of the following inequalities:  
 
ϭͿ�y�ф�>�;ŝ͘Ğ͘�ƚŚĞ�ůŽǁĞƌ�ƐƉĞĐŝĮĐĂƟŽŶ�ůŝŵŝƚ�ŝƐ�ǀŝŽůĂƚĞĚͿ͖� 
ϮͿ�yх�h�;ŝ͘Ğ͘�ƚŚĞ�ƵƉƉĞƌ�ƐƉĞĐŝĮĐĂƟŽŶ�ůŝŵŝƚ�ŝƐ�ǀŝŽůĂƚĞĚͿ͖ 
 
Since X is assumed to be normally distributed, if the process average and 
standard deviation i.e.  ρƬɐ  were known, the  proportions ��ሺ� ൐ ܷሻ�ǡ����
��ሺ� ൏  ሻ�in Fig. ϭϯ͘ϭ͕���would be calculated as followsܮ

�୐ ൌ ��ሺ� ൏ ሻܮ ൌ ɔ୞ ൬� െ ρɐ ൰ǡ�������� 
௎ܲ ൌ���ሺ� ൐ ܷሻ ൌ �ͳ െ ɔ୞ ൬ܷ െ ߪߤ ൰ ൌ ɔ୞ ൬ߤ െ ߪܷ ൰�ǡ 
݌ ൌ ��ሺܺ ൏ ሻܮ ൅ ��ሺܺ ൐ ܷሻ ൌ ɔ୞ ൬ܮ െ ߪߤ ൰ ൅ɔ୞ ൬ߤ െ ߪܷ ൰Ǥ 
ɔ୞ሺ�ሻ is the cdf of standard normal at point a. 

 
Fig 13.1 proportion non conforming if ૄƬો  were known 

                                                           
ϭ�/Ŷ��D/>^d�ϰϭϰ͗�&Žƌŵ�ϭ�ĂŶĚ�Ϯ� 
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��
  However  the  ȝ�Ƭı  are often unknown and  the best estimator of p is 
not obtained by just plugging the sample  average and standard deviation 
estimators into the above relationships. 
  It is shown in the standard ϯϵϱϭ manual that if  a random sample of size n 
is taken form the process or the lot,  the estimate of the proportion non 
conforming  (�ො୐���Ƭ������ො୙��) would be calculated as indicated in the 
ĨŽůůŽǁŝŶŐ�dĂďůĞ͘����ĚĞƐĐƌŝƉƟŽŶ�ŝƐ�ŝŶ��;�/^K�ϯϵϱϭ-Ϯ͗ϮϬϭϯ� �� ƉĂŐĞ�ϭϴ�Žƌ��ŶŶĞǆ�>�
).  In the table ɔ୞(a) represents the cumulative distribution function of 
standard normal at point a. 

  
  The proof  is in references ƐƵĐŚ�ĂƐ�ĐŚĂƉƚĞƌ�ϰ�ŽĨ�Ă�ďŽŽŬ�ƚŽ�ďĞ�ƉƵďůŝƐŚĞĚ�ďǇ�
Dr Wayne Taylorϭ, a specialist in acceptance sampling; and in the following 
manual: 
 

Office of the Assistant Secretary of Defense (15 October 1958). 
Technical Report: Mathematics and Statistical Principles Underlying 
Military Standard 414. 

  As ŵĞŶƟŽŶĞĚ� ĞĂƌůŝĞƌ� ƚŚĞƌĞ� ĂƌĞ� Ϯ� ƚǇƉĞƐ� ŽĨ� ŵĞƚŚŽĚƐ in international 
ƐƚĂŶĚĂƌĚ���/^K�ϯϵϱϭ�ƚŽ�ŝŶƐƉĞĐƚ�Ă�ůŽƚ�͗� 
s-method and  ɐ �ethod,depending whether the process  variability is 
known or not, i.e. the standard deviation of the measured  quality 
characteristic(ɐ) is unknown or known.   Some of the procedures of s- and  
ɐ �methods are summarized in a table at the end of this chapter and 
described and illustrated below. 
 
                                                           
ϭ�See www.variation .com, Taylor enterprises  

http://www.variation
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ͳ͵ǤͶǤͳ   Case I : process  variability(ો) unknown 
   When the distribution of the characteristic being measured is roughly 
normal with  unknown ɐ, the method used to inspect the lot  is generally 
called s-method.  Some of the procedures for this kind, given lower 
specification or upper specification limits or both(U&L) are described and 
illustrated here. 
 
ͳ͵ǤͶǤͳǤͳ    S-method, Single Specification , form k 
    In this method, given (L or U), one takes a random sample  of size n 
ଵǡǥݔ) ǡ   ௡ሻ  )from the lot , accepts the lot  ifݔ

  
Or 

   
where  
�ഥ     is the sample mean 
S      is the sample variance 
k      is an acceptability constant given by the standard. 
 
The procedure of  the s-method for this situation is: 
 
After deciding on  
i)AQL ( if necessary , using converting Table L), 
choose one of the AQLs avaiůĂďůĞ�ŝŶ�/^K�ϯϵϱϭ�dĂďůĞƐ (Tales  such as N or P 
Ăƚ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚŝƐ�ďŽŽŬͿ͕�Ă�ǀĂůƵĞ�ďĞƚǁĞĞŶ�Ϭ͘Ϭϭй�ƚŽ�ϭϬй 
ii)Inspection level  
  and  
iii)Inspection severity (i.e.  normal , tightened and reduced)  
 
follow the steps below: 
-Given the lot size(N) and inspection level , read  letter code  from Table M, 

-Given AQL, the code and severity of inspection, read  sample size(n) and 
parameter k from: 

Table 
S-method, 

Type of inspection 
T Normal 
d͘ϭ Tightened 
d͘Ϯ Reduced 

 

k
s

LX
orKsLX 




k
s

XU
orksUX 



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-Take a random size of size n from the lot and measure the desired quality 
characteristic of each product of the sample,  
 

-Calculate തܺ ൌ σ௫೔
௡ ǡ ܵ ൌ σ௫೔మି௡௑തమ

௡ିଵ Ǥ  .  
-Calculate ܳ௅ ൌ ௅ିଡ଼ഥ

ௌ   if L is given, or ܳ௎ ൌ ௎ିଡ଼ഥ
ௌ   if U is given 

-Accept  the lot if ܳ௅ܳ�ݎ݋௎ ൒ ݇ ��  When��ܳ௎ orܳ௅ �is negative or(ܳ௎  
orܳ௅ ൏ ݇ሻ  conclude the lot does not satisfy your  desired quality. 
 
Example ϭϯ͘ϭ 
��ƚŚĞƌŵŽƐƚĂƚ�ŵĂŶƵĨĂĐƚƵƌĞƌ�ƉĂĐŬƐ�ŝƚƐ�ƉƌŽĚƵĐƚ�ŝŶ�ůŽƚƐ�ŽĨ�ƐŝǌĞ�ϯϱ͕�ƚŚĞ�
maximum temperature that the ƚŚĞƌŵŽƐƚĂƚ�ŝƐ�ĂůůŽǁĞĚ�ƚŽ�ŽƉĞŶ�ŝƐ�ϭϬϬ�
degree centigrade͘��^ƉĞĐŝĨǇ��Ă�ƉůĂŶ�ĨƌŽŵ��^ƚĂŶĚĂƌĚ��/^K�ϯϵϱϭ�ƚŽ�ŝŶƐƉĞĐƚ�ƚŚĞ�
lot with normal severity and �Y>сϭ͘ϯй .The temperature at which the 
thermostats open is roughly  normally distributed . 

Solution 

From Table L,  �Y>�сϭ͘ϱй�ĂŶĚ�ďǇ�ĚĞĨĂƵůƚ�>ĞǀĞů���//�ŝƐ�ĐŚŽƐĞŶ͘� 
 The steps are: 
-&ƌŽŵ�dĂďůĞ��D�ŐŝǀĞŶ�Eсϯϱ͕�ƚŚĞ�ůĞƩĞƌ�ĐŽĚĞ���ŝƐ�ƌĞĂĚ� 
-&ƌŽŵ�dĂďůĞ�d�ǁŝƚŚ��ŽĚĞ��͕���Y>�сϭ͘ϱй�ĂŶĚ�ŶŽƌŵĂů�ŝŶƐƉĞĐƟŽŶ�ฺ Ŭсϭ͘ϰϳϲ�͕�
Ŷсϲ 
-dĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϲ : ݔଵǡǥ ǡ  ��଺�ǡݔ
-suppose  �s сϭ͘ϵϮϲ�͕ 

-Calculate ܳ௎ ൌ ௎ିଡ଼ഥ
ௌ ൌ ଵ଴଴ିଽ଻Ǥ଼

ଵǤଽଶ଺ ൌ ͳǤͳͶ  

-The lot is rejected since ͳǤͳͶ ൌ �୙ ൏ ݇ ൌ ͳǤͶ͹Ǥ��� 
 
ͷ͹ǤͺǤͷǤ͸    S-method, Single Specification , form p* 
     After deciding on 
 i) AQL ; use Table L if necessary, 
 ii) Inspection level   and 
 iii)Inspection severity (i.e. normal, tightened and reduced), 
 
follow the steps below: 
-Given the lot size(N) and inspection level, read  letter code  from Table M, 

-Given AQL, the code and the severity of inspection, read  n and the 
maximum allowable proportion nonconforming in the lot (כ݌)from : 

8.97X
2 2

1
s

x nXi

n





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Table S-method, 
Type of inspection 

N Normal 
E͘ϭ Tightened 
E͘Ϯ Reduced 

 
-Take a random size of size n from the lot and measure the desired, 
quality characteristic of each product of the sample, 
 
-Calculate s and തܺ . 

-Calculate ܳ௅ ൌ ଡ଼ഥି௅
ௌ ��if L is given, or ܳ௎ ൌ ௎ିଡ଼ഥ

ௌ  if U is given, if negative 

reject the lot, otherwise go the next step 
-Calculate the proportion non conforming beyond L  or U(݌Ƹ௅݌ݎ݋Ƹ௎) ϭ 
Note that ෠ܲ௅ݎ݋ ෠ܲ௎ could be computed by the following MATLAB 
commands, given ܳ௅ �Ƭ ܳ௅: 

W>ŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-Y>Ύ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
WƵŚĂƚс�ďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 

The values of �෡୐Ƭ�෡୙for some n &  Q are also  available from Table O. 
-Accept the lot if �ො୐�����ො୙ ൑ reject it if �ො୐�����ො୙  ,כ݌ ൐  .כ݌
Example ϭϯ͘Ϯ 
Solve the previous example with S-method- Form p*. 
&ƌŽŵ�dĂďůĞ�>͕���Y>�сϭ͘ϱй�ĂŶĚ��ďǇ�ĚĞĨĂƵůƚ�>ĞǀĞů II is chosen. The steps are 
ϭͿ 'ŝǀĞŶ�Eсϯϱ͕�Ĩom Table  M, the letter code D is read  
 
ϮͿ �ŽĚĞ� �͕� � �Y>� сϭ͘ϱй� ĂŶĚ� ŶŽƌŵĂů� ŝŶƐƉĞĐƟŽŶ͕� From Table N ฺ כ� ൌ
ͷǤʹʹΨ ͕�Ŷсϲ 
ϯͿdĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϲ 
ϰͿƐƵƉƉŽƐĞ  �ഥ ൌ ϵϳ͘ϴ͕ �Ɛсϭ͘ϵϮϲ�͕ 
ϱͿ�ĂůĐƵůĂƚĞ��୙ ൌ ଵ଴଴ିଽ଻Ǥ଼

ଵǤଽଶ଺ ൌ ͳǤͳͶ  

Using MATLAB: 
ϲͿŶсϲ͖YƵсϭ͘ϭϰ͖WƵŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮ) 

                                                           
ϭ�dŚĞƐĞ�Ϯ�ĐŽŵŵĂŶĚƐ��ƵƐĞ�Ă�ďĞƚĂ�ĚŝƐƚƌŝďƵƟŽŶ��ǁŝƚŚ�ďŽƚŚ�ƉĂƌameters equal  
to  

୬ିଶ
ଶ  ;�ďĂƐĞĚ�ŽŶ�/^K�ϯϵϱϭ-ϭ-ϮϬϭϯ��ƉĂŐĞ�ϭϴͿ�͗ 

 
where 
೙షమܩ 

మ ሺ௔ሻ represents  the value of beta cumulative distribution function with both parameters at point 

a. 
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   ��෡୙ ൌWƵŚĂƚсϭϮ͘ϰϳй͘������������ 
 Kƌ�&ƌŽŵ�dĂďůĞ�K͕�ǁŝƚŚ�Ŷсϱ͕����୙ ൌ ͳǤͳͶ��: �෡୙ ؆ ͳ͵ 
 ϳͿThe lot is rejected because �෡୙ ൐ כ� ൌ ͷǤʹʹǤ 
 
ͳ͵ǤͶǤͳǤ͵�  S-method, Double Specifications  
;/^Kϯϵϱϭ-ϭ-ϮϬϭϯ�ƉĂŐĞ�ϭϲͿ 
  �ůƚŚŽƵŐŚ� ƚŚŝƐ� ĐĂƐĞ� ĐŽƵůĚ� ďĞ� ƚƌĞĂƚĞĚ� � ĂƐ� Ϯ� ƐŝŶŐůĞ� � ƐƉĞĐŝĮĐĂƟŽŶ� � ůŝŵŝƚs 
ƐĞƉĂƌĂƚĞůǇ͕� ƚŚĞƌĞ� ĂƌĞ� ƐŽŵĞ� ƉƌŽĐĞĚƵƌĞƐ� � ĨŽƌ� � ĐŽŶƐŝĚĞƌŝŶŐ� ƚŚĞ� Ϯ� ůŝŵŝƚƐ�
simultaneously, one of which is as follows: 
After deciding on 
 i)AQL , if necessary , using converting Table L, 
 ii)Inspection level   and  
iii)Inspection severity (i.e.  normal , tightened and reduced) 
 follow the steps below: 
ϭͿ'ŝǀĞŶ�ƚŚĞ�ůŽƚ�ƐŝǌĞ;EͿ�& inspection level , read  letter code  from Table M , 

ϮͿ'ŝǀĞŶ��Y>͕�ƚŚĞ�ĐŽĚĞ�ĂŶĚ�ƐĞǀĞƌŝƚǇ of inspection, read  sample size(n) and 
parameter p* i.e. the max. allowable proportion nonconforming from  : 

Table Type of inspection 
N Normal 
E͘ϭ Tightened 
E͘Ϯ Reduced 

ϯͿdĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐŝǌĞ�ŽĨ�ƐŝǌĞ�Ŷ�ĨƌŽŵ�ƚŚĞ�ůŽƚ�ĂŶĚ�ŵĞĂƐƵƌĞ�ƚŚĞ�ĚĞƐŝƌĞĚ�ƋƵĂůŝƚǇ�
characteristic of each product in the sample, 

ϰͿ�ĂůĐƵůĂƚĞ�ƐΘ�ഥ .  Read parameter  fs� from: 

Table Type of inspection 
W͘ϭ Normal 
W͘Ϯ Tightened 
W͘ϯ Reduced 

 

If��ഥ� is outside [L,U] or   ݏ ൐ ���� ൌ ሺܷ െ  reject the lot, otherwise ,ݏሻ݂ܮ
ŐŽ�ƚŽ�ƐƚĞƉ�ϱ 

ϱͿ��Ălculate ܳ௅ ൌ ଡ଼ഥି௅
ௌ    and ܳ௎ ൌ ௎ିଡ଼ഥ

ௌ ; if either of them is negative , 

ƌĞũĞĐƚ�ƚŚĞ�ůŽƚ͕�ŽƚŚĞƌǁŝƐĞ�ŐŽ�ƚŽ�ƐƚĞƉ�ϲ͘ 

ϲͿ�/Ĩݏ� ൑ ܵ௠௔௫�calculate ݌Ƹ௅Ƭ݌Ƹ௎�using the following MATLAB  commands 
 
W>�ŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-Y>Ύ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
WƵ�ŚĂƚ�с�ďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
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The values of �෡୐Ƭ�෡୙for some n and  Q are also  available from Table O 
and S. 
Estimate ෠ܲ� ,i.e. the total proportion nonconforming beyond the 
specification limits, from   ݌Ƹ ൌ Ƹ௅݌ ൅  ,Ƹ௎݌

Accept the submitted lot if ݌Ƹ ൑ p*
, reject it  ݌Ƹ> p*

. 

Example ϭϯ͘Ϯ ��/^K�ϯϵϱϭ-Ϯ͗ϮϬϭϯ;�Ϳ�ƉĂŐĞ�ϭϵͿ�����������������������������������������������������������������������������������������������������������

  A kind of weapon (TorpedoesͿ� ƐƵƉƉůŝĞĚ� ŝŶ� ďĂƚĐŚĞƐ� ŽĨ� ϭϬϬ� ŝƐ to be 
inspected for accuracy in the horizontal plane. Positive or negative angular 
errors are equally unacceptable, so combined control of the double 
speĐŝĮĐĂƟŽŶ� ůŝŵŝƚƐ� ŝƐ�ĂƉƉƌŽƉƌŝĂƚĞ͘�dŚĞ�ƐƉĞĐŝĮĐĂƟŽŶ� ůŝŵŝƚƐ�ĂƌĞ�ƐĞƚ�Ăƚ�ϭϬ�ŵ�
ĞŝƚŚĞƌ�ƐŝĚĞ�ŽĨ�ƚŚĞ�ƉŽŝŶƚ�ŽĨ�Ăŝŵ�Ăƚ�Ă�ĚŝƐƚĂŶĐĞ�ŽĨ�ϭ�Ŭŵ͕�ǁŝƚŚ�ĂŶ��Y>�ŽĨ�ϰ�й͘�
Because testing is destructive and very costly, it has been agreed between 
the producer and the responsible authority on special inspection level S-Ϯ͘��
Determine a plan for the inspection. 
Answer 
dŚĞ��Y>� ŝƐ�ĂǀĂŝůĂďůĞ� ŝŶ� /^Kϯϵϱϭ Tables , therefore need not be converted 
using Table L. Normal inspection is selected and the steps listed below are 
followed: 
Step ϭ͗ tŝƚŚ�EсϭϬϬ & Level S-Ϯ, Table M gives code B, 
Step Ϯ͗�tŝƚŚ�ĐŽĚĞ���ĂŶĚ��Y>�ŽĨ�ϰdĂďůĞ�E�ŐŝǀĞƐ 
 Ŷсϯ�ĂŶĚכ�� ൌ ͳͻǤʹͷΨ�сϬ͘ϭϵϮϱ͘ 
Step ϯ͗�^ƵƉƉŽƐĞ�ƚŚĞ�ƌĞƐƵůƚ�ŽĨ�ƚŚĞ�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϯ�ĂƌĞ��ϴ͘ϴ͕�ϲ͘ϳ�ĂŶĚ�-
ϱ͘Ϭ͕ 
Step  ϰ͗ ��� �ഥ ൌ ͵Ǥͷ�,   ��� ൌ ͹ǤͶ͵͹�͕���dĂďůĞ�W͘ϭ�Őŝǀes �ୱ ൌ ͲǤͶ͹ͷ 
 
�୫ୟ୶ ൌ ሺܷ െ ሻܮ ௦݂ ൌ ሾͳͲ െ ሺെͳͲሻሿ ൈ ͲǡͶ͹ͷ ൌ ͻǤͷ�  we continue since  
� ൏ �୫ୟ୶, 
 

^ƚĞƉ� ϱ͗��୙ ൌ ୙ିଡ଼ഥ
ୗ ൌ ͲǤͺ͹Ͷͳ �� 	 �୐ ൌ ଡ଼ഥି୐

ୱ ൌ ͳǤͺͳͷ since neither 

�୙�����������୐ are negative, the lot in not rejected and we continue, 
 
Step ϲ͗�ĐĂůĐƵůĂƟŽn of �ො୐Ƭ�ො୙, 
 
with MATLAB: 
Ŷсϯ͖Y>сϭ͘ϴϭϱ͖�W>ŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-Y>Ύ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
W>�ŚĂƚсϬ 
Ŷсϯ͖YƵсϬ͘ϴϳϰϭ͖WƵŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
 
WƵ�ŚĂƚс���Ϭ͘ϮϮϲϲ 
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�ො �ൌ �ො୐ ൅ �ො୙ ൌ Ͳ ൅ Ǥʹʹ͹ ൌ ͲǤʹʹ͹��������� 
 
^ƚĞƉ�ϳ͗�ƐŝŶĐĞ �ො �ൌ Ǥʹʹ͹ ൐ Ǥͳͻʹͷ ൌ  the lot is rejected although ,כ�
all inspected items in the sample within the specification limits 
 
Example ϭϯ͘ϯ 
  >ŽƚƐ�ŽĨ�ϭϱ-Watt amplifier are to be inspected to see if their power is in the 
ƌĂŶŐĞ�΀ϭϮ���ϭϲ΁͘��ĞƚĞƌŵŝŶĞ�ĂŶ�ĂĐĐĞƉƚĂŶĐĞ�ƐĂŵƉůŝŶŐ�ƉůĂŶ��ǁŝƚŚ��Y>�сϮй�ĨŽƌ�
this case. 
 
Answer 
  &ƌŽŵ� dĂďůĞ� >͘ϭ� �Y>� сϮ͘ϱ͕� ƚŚĞ� ĚĞĨĂƵůƚ� ůĞǀĞů� ŝŶ� ŝŶƐƉĞĐƟŽŶ� ŝƐ� //� ĂŶĚ�
normal inspection is applied. 
 
^ƚĞƉ�ϭ͗dĂďůĞ�D�ŐŝǀĞƐ�ĐŽĚĞ���ĨŽƌ�EсϰϬ��ĂŶĚ�ůĞǀĞů�// 
 
^ƚĞƉ�Ϯ͕�ǁŝƚŚ��Y>сϮ͘ϱ�ĂŶĚ�ŶŽƌŵĂů� ŝŶƐƉĞĐƟŽŶ�dĂďůĞ�E�ŐŝǀĞƐ�Ŷсϵ�ĂŶĚ�
ͳͲͲכ� ൌ ͻǤ͹ͳ͹  orכ�� ൌ ͲǤͲͻ͹ ൌ ͻǤ͹Ψ 
 
^ƚĞƉϯ�Θϰ͗�ƐƵƉƉŽƐĞ� തܺ ൌ ͳͶǤ͸��ܽ݊݀ݏ� ൌ ͳǤͳͶ 

^ƚĞƉ�ϱ͗��୙ ൌ ୙ିଡ଼ഥ
ୗ ൌ ଵ଺ିଵସǤ଺

ଵǤଵସ ൌ ͳǤʹ͵ǡ �୐ ൌ ʹǤʹͺǤ�       
 
 

^ƚĞƉ�ϲ͗�ĐĂůĐƵůĂƟŽŶ�ŽĨ� ෠ܲ௅� ෠ܲ௎Ƭ݌Ƹ �� 
Ŷсϵ͖Y>=Ϯ͘Ϯϴ͖�W>ŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-Y>Ύ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕(n-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
W>ŚĂƚсϬ͘ϬϬϭϳсϬ͘ϭϳй 
Ŷсϵ͖YƵсϭ͘Ϯϯ͖WƵŚĂƚс�ďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
WƵŚĂƚ�сϬ͘ϭϬϱϳсϭϬ͘ϱϳй 
�ො �ൌ �ො୐ ൅ �ො୙ ൌ� Ǥͳ͹ ൅ ��ͳͲǤͷ͹ ൌ ͳͲǤ͹ͶΨ 
The lot is rejected since it  �ො> p*

. 

13.4.2 Case II: Process  variability(ો) known 
  In /^K�ϯϵϱϭ͕�ƚŚĞƌĞ�ĂƌĞ�ƐŽŵĞ�ƉƌŽĐĞĚƵƌĞƐ͕�ĐĂůůĞĚ��ó�method for inspecting 
variable characteristics of the products of lots by acceptance sampling 
when the characteristic is normally distributed and variability of the 
process i.e. ɐ is known.   The ó�method shall only be used when there is 
valid evidence that the standard deviation of  the process(ó ) can be 
ĐŽŶƐŝĚĞƌĞĚ�ĐŽŶƐƚĂŶƚ�ǁŝƚŚ�Ă�ŬŶŽǁŶ�ǀĂůƵĞ;/^Kϯϵϱϭ-ϭ͗ϮϬϭϯ��ƉĂŐĞ�ϮϭͿ͘���ĞůŽǁ�
a procedure  for dealing with single specification limit  and one  for double 
specification limits are introduced. 
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ͷ͹ǤͺǤ͸Ǥͷ��������ó-method, Single Specification , Form k    ��
  After deciding on AQL, Level and the severity of inspection, 
^ƚĞƉ�ϭ͗�ZĞĂĚ�ƚŚĞ�Đode from Table M, 
^ƚĞƉϮ͗�ZĞĂĚ�ƐĂŵƉůĞ�ƐŝǌĞ��Ŷ, and acceptability constant K from : 

 
ó�method 

Type of inspection 
Table in this book Table in 

/^Kϯϵϱϭ-Ϯ͗ϮϬϭϯ Manual 

Normal Y͘ϭ �͘ϭ 
Tightened Y͘Ϯ �͘Ϯ 
Reduced Y͘ϯ �͘ϯ 

 
^ƚĞƉ� ϯ͗� ƚĂŬĞ� Ă� ƌĂŶĚŽŵ� ƐĂŵƉůĞ� ŽĨ� ƐŝǌĞ� � Ŷ� ĨƌŽŵ� ƚŚĞ� ůŽƚ� ĂŶĚ�ŵĞĂƐƵƌĞ� ƚŚĞ�
desired characteristic of its products. 

^ƚĞƉ�ϰ͗�ĐĂůĐƵůĂƚe sample mean(�ሻതതത  and �୙ ൌ ୙ିଡ଼ഥ
஢ �	���୐ ൌ ଡ଼ഥି୐

஢  

^ƚĞƉ�ϱ͗ Accept the lot if �୙ݎ݋�����୐ ൒ ݇                  
 Reject  if  �୙�������୐������������� or  �୙ݎ݋�����୐ ൏ ݇. 
 
�ǆĂŵƉůĞ�ϭϯ͘ϰ 
 /Ĩ� EсϮϱ͕>с>^>сϮϬϬϬ͕ߪ ൌ ͳͲͲͲ ͕ĂŶĚ��Y>сϰ͘ϱй͕ specify  a single sampling 
ƉůĂŶ�ĨƌŽŵ��/^Kϯϵϱϭ�Ăƚ�ůĞǀĞů�//�ĂŶĚ�ŶŽƌŵĂů�ŝŶƐƉĞĐƟŽŶ 
Answer  &ƌŽŵ�dĂďůĞ�>�͗�Y>сϲ͘ϱй�͖�ƚŚĞ�ƐƚĞƉƐ�ĂƌĞ� 
ϭ͗�dĂďůĞ�D�ŐŝǀĞƐ�ĐŽĚĞ�,͕ 
Ϯ͗�dĂďůĞ�Y͘ϭ�ŐŝǀĞƐ�Ŷсϭϵ�ĂŶĚ�Ŭсϭ͘ϬϬϵ 
ϯ͗�ƚŚĞ�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ  ϭϵ�is:  
΀ϮϯϯϬϴ�  Ϯϭϴϰϯ    ϮϬϱϲϴ   Ϯϭϯϭϯ�   ϭϵϴϰϴ��  ϮϮϳϲϮ��  ϮϭϭϬϴ��  Ϯϭϲϳϭ��ϮϬϬϬϴ� ϮϭϮϬϰ��
ϮϬϯϮϲ��ϮϬϱϳϯ��ϮϬϯϭϰ��ϭϵϴϱϴ��ϭϵϵϳϱ��ϮϬϲϳϰ��ϭϵϭϴϱ��ϮϭϰϵϮ��   ϮϬϳϲϲ΁ 

ϰ͗��ഥ ൌ ʹͲͺͺͶǡ  ��୐ ൌ ଡ଼ഥି୐
஢ ൌ ଶ଴଼଼ସିଶ଴଴଴଴

ଵ଴଴଴ ൌ ͲǤͺͺͶ
 
, 

ϲ͗�dŚĞ�ůŽƚ�ŝƐ�ƌĞũĞĐƚĞĚ�ďĞĐĂƵƐĞ����୐ ൏ ݇ ൌ ͳǤͲͲͻǤ 
 
Exampleϭϯ͘ϱ 
A ɐ െ������� plan for ƵƉƉĞƌ� ƐƉĞĐŝĮĐĂƟŽŶ� ůŝŵŝƚ� ƵƐĞƐ� Ŷсϵ� ĂŶĚ�
Ŭсϭ͘ϰϲϲ�ƚŽ�ŝŶƐƉĞĐƚ�ĐŽŵŝŶŐ�ůŽƚƐ͕�ŝĨ�ƚŚĞ�ŵĞĂƐƵƌĞƐ�ƋƵĂůŝƚǇ�ĐŚĂƌĂĐƚĞƌŝƐƚic 
ŝƐ�ŶŽƌŵĂů͕�ǁŚĂƚ� ŝƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�Ĩ�ĂĐĐĞƉƟŶŐ��ƚŚĞ�ůŽƚƐ�ŚĂǀŝŶŐ�ϯ͘ϳϱй�
non conforming  products with this plan? 



�ŚĂƉƚĞƌ�ϭϯ: /^Kϯϵϱϭ 

ϯϮϬ 

 

 

ͷ͹ǤͺǤ͸Ǥ͸���� ó -method, Double Specification� 
After  deciding on i)the AQL, ii)the level and iii) the severity, the steps 
ĂƌĞ;ĨƌŽŵ�/^Kϯϵϱϭ-ϭ-ϮϬϭϯ�ƉĂŐĞ�ϮϯͿ: 
 
^ƚĞƉϭ͗ZĞĂĚ��஢ĨƌŽŵ�dĂďůĞ�>͘ϭ,  
^ƚĞƉϮ͗ Calculate the maximum allowable value of the process standard 
deviation from ı௠௔௫ ൌ ሺܷ െ ሻܮ ఙ݂  . if ߪ� exceeds this amount( i.e. if 

ı ൐ ı௠௔௫ declare the lot unacceptable, and sampling is pointless until it is 
demonstrated that ߪ has been adequately reduced. 
 If �ı ൑ ı୫ୟ୶��������������������. 
 
^ƚĞƉ�ϯ: If ı ൑ ı୫ୟ୶, read the code based on the inspection level and the 
lot size from Table M. 
 
^ƚĞƉϰ͗ 
Read sample size  n, and acceptability constant k  from : 
 

ó�method 
Double limits 

Type of inspection 

Table  
in this book 

Table  
in 

/^Kϯϵϱϭ-Ϯ͗ϮϬϭϯ�DĂŶƵĂů 

Normal Y͘ϭ �͘ϭ 

Tightened Y͘Ϯ �͘Ϯ 

Reduced Y͘ϯ �͘ϯ 

 
^ƚĞƉ�ϱ͗�Calculate �ഥ୙ ൌ � െ �ɐ�Ƭ�ഥ୐ ൌ � ൅ �ɐ 
Step ϲ͗�dĂŬĞ�Ă� ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ� ƐŝǌĞ� �Ŷ� ĨƌŽŵ�ƚŚĞ� ůŽƚ�ĂŶĚ�ŵĞĂƐƵƌĞ�
the desired characteristic of its products,  and calculate �ഥ 
^ƚĞƉ�ϳ͗ 
Accept  the lot if �ഥ୐ ൑ �ഥ ൑ �ഥ୙ǡ� reject if  �ഥ୙ is negative or �ഥ  is 
outside [�ഥ୐��ǡ �ഥ୙�ሿǤ  

~ ( , )

0.0375 Pr( ) Pr( ) 1.78

1.466
Pr( 1.466) Pr( 1.466 ) Pr( )

9
Pr( 1.466 3 1.78 3) 82.64%

a

a

X N

U U
X U Z

U X U
P X U Z

P Z

 
 

 
 


 
     

   
        

      
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Note : If  �ഥ୐ ൑ �ഥ ൑ �ഥ୙  but ɐ ൐ ͲǤ͹ͷɐ୫ୟ୶   and���ഥ  is close to 
�ഥ୐�����ഥ୙ , the exact method given in ^ĞĐƟŽŶ�ϭϳ͘ϯ�/^K�ϯϵϱϭ-Ϯ�ƐŚall be 
ƉƌĞĨĞƌƌĞĚ�;/^Kϯϵϱϭ-ϭ-ϮϬϭϯ-��ƉĂŐĞ�ϮϯͿŝŶƐƚĞĂĚ� of  the approximate 
procedure given above. 
 
Example ϭϯ͘ϲ  
  The specification for a certain electrical resistance is ͷʹͲ േ ͷͲߗ. In 
the production process, the characteristic is normally distributed 
with the standard deviation of ϭϴ͘ϱ�ŽŚŵƐ͘��dŽ�ŝŶƐƉĞĐƚ��ƚŚĞ lots of size 
ϭϬϬϬ ǁŝƚŚ��Y>�ϭ͘ϱй�Ă ɐ െ�������  with the following steps would 
be appropriate: 
&ƌŽŵ�dĂďůĞ�ů͘ϭ��஢ ൌ ͲǤͳͻͶǤ  

ı୫ୟ୶ ൌ ሺܷ െ ሻܮ ఙ݂ ൌ ͳͻǤͶ; since ı୫ୟ୶ ൐  ,we continue ߪ

-'ŝǀĞŶ�EсϭϬϬϬ��ĂŶĚ�ůĞǀĞů�//��ĨƌŽŵ�dĂďůĞ�D�ůĞƩĞƌ�ĐŽĚĞ�:�ŝƐ�ƌĞĂĚ͕ 

-With AQL сϭ͘ϱй�ĂŶĚ�ŶŽƌŵĂů�ŝŶƐƉĞĐƟŽŶ�͕�dĂďůĞ�Y͘ϭ�ŐŝǀĞƐ�
Ŷсϭϵ͕Ŭсϭ͘ϲϳϳ͕ 

�ഥ୙ ൌ ܷ െ ߪ݇ ൌ ͷ͵ͺǤͻ�,�ഥ୐ ൌ ܮ ൅ ߪ݇ ൌ ͷͲͳǤͳ, 

A  rĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϭϵ�ǁĂƐ͗ 

ϱϭϱ͖�ϰϵϭ͖�ϰϳϵ͖�ϱϭϯ͖�ϱϮϭ͖�ϱϯϲ͖�ϰϴϯ͖�ϱϬϵ͖�ϱϭϰ͖�ϱϬϳ͖�ϰϴϰ͖�ϱϮϲ͖�ϱϯϮ͖�ϰϵϵ͖�
ϱϯϬ͖�ϱϭϮ͖�ϰϵϮ͖�ϱϮϮ͖�ϰϴϴ 
���ฺ ��ഥ ൌ ͷͲͺǤͲ� 

 
Since �ഥ୐ ൑ �ഥ ൑ �ഥ୙�the lot is accepted. 

Notice ƚŚĂƚ�ŝŶ�ƚŚĞ�ĂďŽǀĞ�ĞǆĂŵƉůĞ�;ĨƌŽŵ�/^Kϯϵϱϭ-ϭ-ϮϬϭϯ�ƉĂŐĞ�ϮϯͿ͗ 
Although ı ൐ ሺͲǤ͹ͷሻሺߪ௠௔௫ሻ,��ഥ����������������������ഥ୐�� nor to �ഥ୙, so the 
above  approximate method is acceptable. 

If for example, ı� weƌĞ� ƐĂǇ� ϮϬ� ƚŚĞŶ�ı ൐  ௠௔௫ and , therefore samplingߪ
inspection should not even take place. 
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ϯϮϮ 

 

dĂďůĞ�ϭϯ-ϭ��Some plans of /^K�ϯϵϱϭ for inspecting a normally distributed characteristic 
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 P  R  O  C E D U R E     S T E P S 

Before performing steps decide on the severity ,level  of inspection and  
AQL (if necessary use Table L) 

un
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k 

ϭͿZĞĂĚ�ĐŽĚĞ�ĨƌŽŵ�dĂďůĞ�D��ϮͿZĞĂĚ�Ŷ�Θ<�ĨƌŽŵ�dĂďůĞ�dŽƌ�d͘ϭ�Žƌ�d͘Ϯ 
ϯͿdĂŬĞ��Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�Ŷ��ϰͿ�ĂůĐƵůĂƚĞ��^�Θ�ഥ 

ϱͿ��Ăůculate �୐ ൌ ଡ଼ഥି୐
ୗ  or �୙ ൌ ୙ିଡ଼ഥ

ୗ . 

ϲͿ��ĐĐĞƉƚ����ƚŚĞ�ůŽƚ�ŝĨ��୐����୙ ൒ � �� When �୐����୙�is negative 
OR(�୐����୙ ൏ ݇  ���  conclude the lot does not satisfy your  desired 
quality. 

*p
 

ϭͿZĞĂĚ��ĐŽĚĞ��ĨƌŽŵ�dĂďůĞ�D�Ϯ)  Read n,  כ�� ĨƌŽŵ�dĂďůĞ�E�ŽƌE͘ϭ�Žƌ�E͘Ϯ 

ϯͿdĂŬĞ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�Ŷ�ϰͿ��ĂůĐƵůĂƚĞ ϱͿĐĂůĐƵůĂƚĞ��୙ ൌ ୙ିଡ଼ഥ
ୗ  or  

�୐ ൌ ଡ଼ഥି୐
ୗ  if negative reject ůŽƚ͕�ŝĨ�ƉŽƐŝƟǀĞ��ŐŽ�ƐƚĞƉ�ϲ͘�     ϲͿ�alculate  

�ො୐�α�������ȋǤͷȗȋͳ-��ȗȋ�̰ǤͷȌȀȋ�-ͳȌȌǡȋ�-ʹȌȀʹǡȋ�-ʹȌȀʹȌ 
or 
�ො୙α��������ȋǤͷȗȋͳ-��ȗȋ�̰ǤͷȌȀȋ�-ͳȌȌǡȋ�-ʹȌȀʹǡȋ�-ʹȌȀʹȌ 
ϳͿ�ĐĐĞƉƚ�ƚŚĞ�ůŽƚ�ŝĨ��ො୐�����ො୙ ൑ reject it if �ො୐�����ො୙  ,כ݌ ൐  .כ݌

D
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e 

ϭͿZĞĂĚ��ĐŽĚĞ��ĨƌŽŵ�dĂďůĞ�D�   ϮͿ��ZĞĂĚ�Ŷ͕כ���� ĨƌŽŵ�dĂďůĞ�E�ŽƌE͘ϭ�Žƌ�E͘Ϯ 
ϯͿ�dĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�Žf size n    ϰͿ�ĂůĐƵůĂƚĞ�ƐΘ�ഥ .  Read parameter  fs� 
ĨƌŽŵ͗�dĂďůĞW͘ϭ�ŽƌW͘Ϯ�Žƌ�W͘ϯ�/Ĩ��ഥ� is outside [L,U] or   ݏ ൐ ሺ� െ �ሻ�ୱ, reject the 

ůŽƚ͕�ŽƚŚĞƌǁŝƐĞ�ŐŽ�ƚŽ�ƐƚĞƉϱ͘�      ϱͿ�ĂůĐƵůĂƚĞ��୐ ൌ ଡ଼ഥି୐
ୗ & �୙ ൌ ୙ିଡ଼ഥ

ୗ  

if �୐�� �୙  negative , reject the ůŽƚ͕�ŽƚŚĞƌǁŝƐĞ�ŐŽ�ƚŽ�ƐƚĞƉ�ϲ͘ 
ϲͿ/Ĩݏ� ൑ ܵ௠௔௫ ൌ൐ ሺ� െ �ሻ�ୱ�calculate ෠ܲ௅Ƭ ෠ܲ௎�using MATLAB: 
W>�ŚĂƚсďĞƚĂĐĚĨ;͘ϱΎ;ϭ-Y>Ύ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
WƵ�ŚĂƚ�с�ďĞƚĂĐĚĨ;͘ϱΎ;ϭ-YƵΎ;ŶΔ͘ϱͿͬ;Ŷ-ϭͿͿ͕;Ŷ-ϮͿͬϮ͕;Ŷ-ϮͿͬϮͿ 
ϳͿ��ĐĐĞƉƚ�ƚŚĞ�lot if �୐ ൅ �ො୙ ൌ �ො ൑ p*, reject it  �ො> p*. 
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 ϭͿZĞĂĚ�code fƌŽŵ�dĂďůĞ�D͕� � � ϮͿ�ZĞĂĚ n, and acceptability constant  k  from 

dĂďůĞ�Y͘ϭ�Žƌ�Y͘Ϯ�Žƌ�Y͘ϯ�͘    ϯͿdĂŬĞ�a random sample of size  n 

ϰͿ��ĂůĐƵůĂƚĞ��ഥ  , �୙ ൌ ୙ିଡ଼ഥ
஢ �	���୐ ൌ ଡ଼ഥି୐

஢ Ǥ   ϱͿ Accept  if �୙ݎ݋�����୐ ൒ ݇                  

   Reject if  �୙�������୐������������� or  �୙ݎ݋�����୐ ൏ ݇. 

D
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e 

ϭͿ�ZĞĂĚ��஢ĨƌŽŵ�dĂďůĞ�>͘ϭ͘   ϮͿ/Ĩ��ɐ ൐ ı୫ୟ୶ ൌ ሺܷ െ ሻܮ ఙ݂  reject the lot , 

ŽƚŚĞƌǁŝƐĞ�ŐŽƚ�ƚŽ�ƐƚĞƉ�ϯ͘�   ϯͿ������ı ൑ ı୫ୟ୶, read Code from Table M, 
ϰͿ Read n,  ��� ĨƌŽŵ�dĂďůĞ�Y͘ϭ�ŽƌY͘ϭ�Žƌ�Y͘Ϯ͘��ϱͿ��ĂůĐƵůĂƚĞ��ഥ୙ ൌ � െ �ɐ�
Ƭ�ഥ୐ ൌ � ൅ �ɐ       ϱͿ��ĂůĐƵůĂƚĞ��ഥ୙ ൌ � െ �ɐ�Ƭ�ഥ୐ ൌ � ൅ �ɐǡ 
ϲͿ�dĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ĂŶĚ�ĐĂůĐƵůĂƚĞ��ഥǡ 
ϳͿ��ĐĐĞƉƚ��ƚŚĞ�ůŽƚ�ŝĨ��ഥ୐ ൑ �ഥ ൑ �ഥ୙ǡ�  
Reject  if  ��ഥ୙  is negative or �ഥ  is outside [�ഥ୐��ǡ �ഥ୙�ሿǤ 

��

 

Xs,
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Exercises  
ϭϯ͘ϭ.( 'ƌĂŶƚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϳϱͿ� 
The lower specification limit for the tensile strength of a certain kind of 
ǁŝƌĞ� ŝƐ� >сϮϭϱůď͖� ƚŚĞ� ǀĂƌŝĂďŝůŝƚǇ i.e.ߪ� is unknown.  In order to inspect the 
lots, an s-method of form  p* ŝŶ�/^Kϯϵϱϭ�ǁĂƐ�ƵƐĞĚ�ǁŝƚŚ��Y>сϬ͘ϭϱй͕�ŶŽƌŵĂů��
inspection and sample size code H.  �ĂƐĞĚ� ŽŶ� ƚŚĞ� ĨŽůůŽǁŝŶŐ� ϱ� ƌĂŶĚŽŵ�
ƐƵďŐƌŽƵƉƐ�;ŝ͘Ğ͘�ƚŚĞ�ƌĞƋƵŝƌĞĚ�ƐĂŵƉůĞ�ŽĨ�ϮϱͿ͕�ĚŽ�ƚŚĞ�ƌĞƋƵŝƌĞĚ�ĐĂůĐƵůĂƟŽŶƐ�ƚŽ�
decide on the acceptance/rejection of the lots. 
 

Sample  No. Strength(lb) 
ϭ Ϯϯϭ͕�Ϯϯϴ͕�ϮϮϴ͕�Ϯϯϭ͕�Ϯϯϱ 
Ϯ ϮϮϰ͕�Ϯϰϱ͕�Ϯϲϯ͕�Ϯϯϭ͕�Ϯϰϱ 
ϯ ϮϮϰ͕�ϮϮϴ͕�Ϯϯϱ͕�Ϯϯϴ͕�Ϯϯϱ 
ϰ ϮϮϭ͕�ϮϰϮ͕�ϮϰϮ͕�Ϯϯϱ͕�ϮϮϰ 
ϱ ϮϮϰ͕�ϮϮϰ͕�ϮϰϮ͕�ϮϱϮ͕�ϮϱϮ 

 
ϭϯ͘Ϯ.  ;�'ƌĂŶƚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϳϱͿ 
A ������������ϐ��������� �������ǡ  െmethod , is used to inspect a kind ofߪ
lot given  the upper specification limit. Assuming the frequency distribution 

in the lot is normal and the  ߪ is estimated correctly, compute the 
ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ĂĐĐĞƉƟŶŐ�ůŽƚƐ�ŽĨ�ϯй�ŶŽŶ�ĐŽŶĨŽƌŵŝŶŐ�ƉƌŽĚƵĐƚƐ. 
AnswĞƌ�͗Ϭ͘ϯϮϲ͕����� 
Hint: 

    or  
ϭϰ͘ϯ. ( Based on ϭϳ-ϳ'ƌĂŶƚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϳϳͿ� 
�Ŷ�/^K�Ϯϴϱϵ�ƐŝŶŐůĞ�ƐĂŵƉůŝŶŐ�ƉůĂŶ��ĐĂůůƐ�ĨŽƌ�ŶсϱϬ�ĂŶĚ�ĐсϮ�ĨŽƌ�ĐŽĚĞ�,͕�ĂŶ��Y>�
ŽĨ�ϭ͘ϱй�ĂŶĚ�ŶŽƌŵĂů�ŝŶƐƉĞĐƟŽŶ͘ 
What ɐ െ������  ŽĨ�/^K�ϯϵϱϭ���ǀĂƌŝĂďůĞ-sampling plan corresponds to this 

/^K�Ϯϴϱϵ�ĂƩƌŝďƵƚĞƐ�ƉůĂŶ͍��ƐƐƵŵĞߪ�� is known  and there is a single 
specification limit for this characteristic. 
 

You learn more from failure than from success; 
Don�t let it stop you; 

 Failure builds character 
 

Pr( ) 0.03
U

Z




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U
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��������ͳͶ: Introduction to Reliability & Related 
Subjects 
 
Aims 
 The  final chapter deals with reliability theory and related concepts such 
as, failure rate,  bathtub  curve for failure, RBD(reliability block diagram), 
availability,  various  system  configurations related to reliability, OC curves 
of inspection plans; it  also introduce some tables  in order to design a plan   
for accepting /rejecting a lot,  based on the mean life of the product.  
 
ͳͶǤͳ����ϐ�������s and Basic Concepts 
  To aid understanding of reliability  engineering,  some of the terms and 
basic concepts used in the field are presented here. 
 
14.1.1  Reliability 
   Many definitions have been proposed for reliability by researchers and 
textbook authors. Some these are as follows: 
 
-Reliability of a device, an equipment or a system is  "the capability of it  
not to break down in operation.  When a equipment works well, and works 
whenever called upon to do the job for which it was designed, such  
prodƵĐƚ�Žƌ�ƐǇƐƚĞŵ�ŝƐ�ƐĂŝĚ�ƚŽ�ďĞ�ƌĞůŝĂďůĞΗ;�ĂǌŽǀƐŬǇ�Θ/ŐŽƌ͕ϮϬϬϰͿ͘ 
This capability is often stated in terms of probability or a success ratio, 
ďŽƚŚ�ƋƵĂŶƟĮĞĚ�ĂƐ�Ă�ŶƵŵďĞƌ��ďĞƚǁĞĞŶ�Ϭ�ĂŶĚ�ϭ͘�� 
 
-� The reliability of a system, a device,� is the probability that it will give 
satisfactory performance  for a specified period of time under specified 
ŽƉĞƌĂƟŶŐ�ĐŽŶĚŝƟŽŶƐ͟�;'ƌĂŶƚ�ĂŶĚ�>ĞĂǀĞŶ�ǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϴϮͿ͘� 
 
-�Product reliability is the ability of a unit to perform a required function 
under stated conditions for a stĂƚĞĚ� ƉĞƌŝŽĚ� ŽĨ� ƟŵĞ͟;&ĞŝŐĞŶďĂƵŵ͕ϭϵϵϭ͕�
ƉĂŐĞ�ϱϳϰͿ 
 
  &Žƌ�ĞǆĂŵƉůĞ͕�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ϵϬй�ĨŽƌ�Ă�ƐǇƐƚĞŵ��ŝŶĚŝĐĂƚĞƐ�ƚŚĞ�ƐǇƐƚĞŵ��ǁŝůů�
ŶŽƚ� ďƌĞĂŬĚŽǁŶ� ǁŝƚŚ� Ă� ƉƌŽďĂďŝůŝƚǇ� ŽĨ� Ϭ͘ϵ� � ŝŶ� ƚŚĞ� ƐƉĞĐŝĮĞĚ� ƟŵĞ� Žƌ� ƚŚĞ�
specified number or operations, or number of cycles, �.   When the 
ƉƌŽĚƵĐƚ��ƌĞůŝĂďŝůŝƚǇ�ŝƐ�ũƵƐƚ��ŐŝǀĞŶ��ĂƐ�Ă��ŶƵŵďĞƌ�ŝŶ�ƚŚĞ�ŝŶƚĞƌǀĂů�Ϭ�ƚŽ�ϭ�;ǁŝƚŚŽƵƚ�
specifying time , etc), it is meant the probability of successful  
implementation of  the product equals this number.   This number could be 
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the mean of reliability function.   It is worth knowing  that some 
components where strength and stress interfere, reliability is defined as 
�the probability that the unit is strong enough to overcome the 
ƐƚƌĞƐƐ͟;:ŽŶƐŽŶ͕ϭϵϴϴ͗�dŚƌĞĞ�^ƚƌĞƐƐ-Strength models for reliability); or  
reliability = Probability(Strength or capacity > Stress  or load). 
 
  Reliability is important  in  quality control and has been discussed in 
ǀĂƌŝŽƵƐ�ďŽŽŬƐ�ŝŶĐůƵĚŝŶŐ�<ĂƉƵƌ�Θ�WĞĐŚƚ�;ϮϬϭϰͿ͕�KΖ�ŽŶŶŽƌ &Kleyner � ϮϬϭϮ�,  
Kapur Θ� >ĂŵďĞƌƐŽŶ;ϭϵϳϳͿ͕� >ĞǁŝƐ;ϭϵϵϰͿ͕�  Billinton ĂŶĚ� �ůůĂŶ� ;ϭϵϵϮͿ͕�
ZŽƐƐ;ϭϵϴϱͿ͕���ŚĂƉƚĞƌ�ϵ͕'ƌĂŶƚ�Θ >ĞĂǀĞŶǁŽƚŚ�;ϭϵϴϴͿ�ĐŚĂƉƚĞƌ�ϭϴ�ĂŶĚ��ƌŽǁ�Θ�
&ĞŝŶďĞƌŐ;ϮϬϬϭͿ͘ 
 
14.1.2 Failure 
   In reliability, the term "failure"  is not necessarily  breaking down; it 
means that the system is not capable of performing the required function 
with the desired properties under the stated conditions.   
/Ŷ�ŝŶĚƵƐƚƌǇ͕�Ϯ�ĐĂƐĞƐ�ĐŽƵůĚ�ďĞ�ĚŝƐƟŶŐƵŝƐŚĞĚ�ĨŽƌ��ΗĐŽŶĚŝƟŽŶƐ�Η�ǁŚŝĐŚ�ŝŶĐůƵĚĞ�
the application and operating circumstances under which the product is 
put to use:  
a)In some industries especially military industry , the conditions are set by 
the customer based on his own requirements. 
b)Reliability under unknown conditions:  In many commercial industries, 
the manufacturer does not know what reliability the customer wants; 
however, he tries to decide instead of the customer, based on market, 
psychology, human factors engineering , etc. 
 
14.1.3 
MTTF, MTBF, MTTR,���MTFF ���	MTBR- Explanation of 
Terms: 
MTTF, MTBF, MTTR,� � MTFF,� MTB which  are terms in reliability  
engineering stand for the following terms: 
 
-Mean Time To Failure (MTTF) is time required for a device or system 
to fail; it is a basic measure of reliability.   For repairable systems, MTTF can 
be thought of as the average time between a renewal point and the next 
following failure point. For non repairable systems, the mean time to 
failure is the same as the mean lifetime (I. Eusgeld et al: Hardware 
Reliabilityϭ).  
 

                                                           
ϭ�ŚƩƉƐ͗ͬͬĐŝƚĞŵĂƐƚĞƌ͘ŶĞƚͬŐĞƚͬĐϱϰĚĞďϭĐ-ϲϭĂĐ-ϭϭĞϰ-Ăϲϯϵ-ϬϬϭϲϯĞϬϬϵĐĐϳͬƐĂůĨŶĞƌϬϴŚĂƌĚǁĂƌĞ͘ƉĚĨ 
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-Mean Time Between Failures (MTBF) is a reliability term equivalent to the 
expected number of operating hours before a product fails, or the �service 
life�.   Technically, MTBF should be used only in reference to a repairable 
item, while MTTF should be used for non-repairable items. However, MTBF 
might be used for both repairable and non-repairable items. 
 
-MTTR stands for Mean Time To Repair or Mean Time To Replacement, it is 
the mean time needed to repair or replace a failed hardware module. 
 
- MTFF stands for Mean Time to First Failure. 
- MTBR stands for Mean Time between Repair;  
 In most cases, MTBR could be replaced with  
 MTBF which stands for Mean Time Between Failures. 
 
Time Between Failures is the sum of time to repair and time to failure (Fig. 
ϭϰ-ϭͿ͘ 

 
Fig.  14.1  Differentiating Between failure metrics 

 
Then :  MTBF=MTTR+MTTF 
A way of predicting the MTBF for a component, device, or system is by the 
ŚĞůƉ�ŽĨ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ĨŽƌŵƵůĂ�;dĞƌƐŝŶĞ͕ϭϵϴϱ͕�ƉĂŐĞϮϬϮͿ 
 

���෢	 ൌ �������������
��Ǥ �����������  

 
14.1.4 Reliability Function 
  The reliability function for a product or device etc, R(t), is the probability 
that the lifetime exceeds some time t,  given by 

�ሺ�ሻ ൌ ͳ െ 	ሺ�ሻ ൌ න �ሺ�ሻ��
ஶ

୶ୀ୲
 

where  
f(t) is the probability density function(pdf) of X, the life time  of a certain 
device or system, 
F(t) is the cumulative distribution function(cdf) of X, 
X     is the lifetime of the device or the system. 
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14.1.5 Hazard Function 
   What is called hazard function for a device or system in the subject of 
reliability and also known as the instantaneous failure rate or  
instantaneous hazard function is denoted by such symbols asߣ�ሺݐሻ��� 
 :ሻ and  defined as followsݐሺ݄��ݎ݋

݄ሺݐሻ ൌ ௙ሺ௧ሻ
ଵିிሺ௧ሻ ൌ

௙ሺ௧ሻ
ோሺ௧ሻ  

where 
f(t)      is  the pdf of X, the life time   
F(t)     is the cdf of  X, 
�ሺ�ሻ���is the device reliability function. 
&ŝŐƵƌĞ�ϭϰ-ϲ�ƐŚŽǁƐ�ƚŚĞ�ƐŚĂƉĞ�ŽĨ�ƐĞǀĞƌĂů�ŚĂǌĂƌĚ�ĨƵŶĐƟŽŶƐ͘ 
It is worth knowing, whichever of the functions f(t),F(t), R(t) &h(t) is  
ŬŶŽǁŶ͕�ƚŚĞ�ϯ�ŽƚŚĞƌƐ�ĐŽƵůĚ�ďĞ�ŽďƚĂŝŶĞĚ͘��dŚĞ�ĨŽůůŽǁŝŶŐ�ĨŽƌŵƵůĂ�ŵŝŐŚƚ�ďĞ�
helpful in this regard: 

. 

 
 

14.1.6 Bathtub-shaped Model  for Devices' Failures 
    A well-known  model for the behavior of the device failure rate as a 
function of  time is the so-ĐĂůůĞĚ� ďĂƚŚƚƵď�ŵŽĚĞů;� &ŝŐ� ϭϰ͘ϮͿ͘� � dŚŝƐ� ŵŽĚĞů�
ĂƐƐƵŵĞƐ�ϯ�ƉĞƌŝŽĚƐ�ĨŽƌ�ĨĂŝůƵƌĞ͗ 
ϭͿ�ĂƌůǇ�ŝŶĨĂŶƚ�ŵŽƌƚĂůŝƚǇ�ĨĂŝůƵƌĞ͕ 
 

 
Fig. 14.2 Bathtub Model for devices' Failure Rate 

 
 
 

0
t- h(ô)dôf(t)

R(t)= =e
h(t)


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The first period is the period of decreasing rate of failures, where poor 
components break down, 
ϮͿ�ŽŶƐƚĂŶƚ�&ĂŝůƵƌĞƐ�ƉĞƌŝŽĚ͕ 
The middle phase of the bath-tub curve is the useful stage of lifetime 
where the failure rate is constant. 
ϯͿtĞĂƌ- out  period 
In the last phase of the bath-tub curve, the failure rate increases with time.  
It should be added that it is assumed that for all the ϯ�ƉĞƌŝŽĚƐ�the 
working conditions are the same. 
The middle period of the model is discussed more here.  
Consider the following formula and the histoŐƌĂŵ�ŝŶ�&ŝŐ͘�ϭϰ-ϯ�ƌĞůĂƚĞĚ�
to a samƉůĞ��ŽĨ�ϮϬϬ�ĞůĞĐƚƌŝĐĂů�ƐǁŝƚĐŚĞƐ͖�ǁĞ�ŚĂǀĞ�͗ 

������� ௧ܲ෡ ൌ ෢ሺܺݎܲ ൏ ሻݐ ൌ ݊௧
ܰ  

where 
X         is   a switch life time 

௧ܲ      the probability of failure during period t 

�୲෡         estimate for �୲ , relative frequency of failure during time t 

݊௧       the number of switches which broke down during period t, 

failure frequency 

N        total number of switches in the sample 

 

 
Fig.14.3  Histogram of lifetime of a sample of 200  electrical 
switches. 
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EǆĂŵƉůĞ�ϭϰ͘ϭ� 
  �ŽŶƐŝĚĞƌ�ƚŚĞ�ĚĂƚĂ�ŐŝǀĞŶ�ŝŶ�&ŝŐ�ϭϰ͘ϯ͕�ƚŚĞŶ�ƚŚĞ�ĞƐƟŵĂƚĞ�ĨŽƌ�ƚŚĞ�ůŝĨĞƟŵĞ�ŽĨ�Ă�
ƐǁŝƚĐŚ�ƚŽ�ďĞ�ϭϬϬϬ�ŚŽƵƌƐ�Žƌ�ůĞƐƐ�ǁŽƵůĚ�ďĞ͗ 

෠ܲଵ଴଴଴ ൌ . 

And also 

 

 

. 
Reliability and its relationship to failure frequency 
   Defining the reliability as the probability of the device survival after say T 
hours or T cycles or T kilometer etc; denoted by �்ܴ,then 

 
and given a sample size N of the devices. 

 
where    
X         the product life time 
෠்ܴ      estimate for �்ܴ    
்݊      the number of devices in the sample which break down(failure  
           frequency) during    period T, 
்ܲ      the estimate for the proportion of devices with life time than  T 

N        sample size. 
 
&Žƌ�ĞǆĂŵƉůĞ��ĨŽƌ��dсϲϬϬϬ�Śƌ�ŝŶ�&ŝŐ͘�ϭϰ͘ϯ 

ܶ ൌ ͸ͲͲͲ�������� ்ܲ ൌ ்݊
ܰ ൌ ʹͲ ൅ ͳͺ ൅ ͳ͸ ൅ ͳͶ ൅ ͳ͵ ൅ ͳʹ

ʹͲͲ ൌ ͲǤͶ͸ͷǢ 
dŚĞŶ�ƚŚĞ�ƌĞůĂƟǀĞ�ĨƌĞƋƵĞŶĐǇ�ĨŽƌ�ϲϬϬϬ�Śƌ�ŝƐ�Ϭ͘ϰϲϱ�ĂŶĚ�ƚŚĞ�ĞƐƟŵĂƚĞ�ŽĨ�ϲϬϬϬ-
hr reliability is  

. 
when the probability density function or the cumulative density function of 
product lifetime denoted by ݂ሺݔሻܽ݊݀ܨ�ሺݔሻ is available then, 

்ܴ ൌ ��ሺܺ ൐ ܶሻ ൌ ͳ െ ሺܶሻܨ ൌ න ݂ሺݐሻ݀ݐሻ
ஶ

்
 

20�Pr(0 1000) 0.1 10%
200

X    

%3434.0
200

14161820
)4000r(P� 


X

  12� 5000 6000 0.06 6%
200

Pr X    

4� (16000 17000) 2%
200

Pr X   

)Pr( TXRT 

N

n
PR T

TT  11�

5.53535.0465.016000 R



    Statistical   methods in Quality Control 

ϯϯϭ 

 

ͳͶǤʹ�Introducing some statistical distributions used 
in reliability theory  
  The� random variables TTF ( lifetime) and TTR(repair time ) for a 
device or a system could have various statistical distributions 
including the ones introduced below: 
 
14.2.1Exponential distribution 
  One common distribution used for lifetime of products is exponential 
distribution.  In an exponential  distribution with parameter ɉ ൐ Ͳ� or mean 

Ʌ ൌ ଵ
஛ , the cumulative distribution function and the probability density 

function are: 
 

 
the hazard function  is: 

݄ሺݐሻ ൌ ݂ሺݐሻ
ͳ െ ሻݐሺܨ ൌ

ఒ௧ି݁ߣ
݁ିఒ௧ ൌ  ���ߣ

݄ሺݐሻ ൌ ߣ ൌ ͳ
ɅǤ 

the hazard function  of exponential distribution does not depend on time. 
Therefore the distribution is appropriate for section A-��ŝŶ�&ŝŐ͘�ϭϰ͘Ϯ�ǁŚŽƐĞ�
failure rate is constant over time.   
 
Illustrating the fact that hazard function of exponential distribution 
is constant  
  The following table shows the estimate for the hazard function, pdf, cdf, 
reliability function of the lifetime of the switches related to Fig. ϭϰ͘ϯ͘�Third 
row illustrates that the hazard function is approximately the same over 
time.  
  dŽ�ƚĞƐƚ�ǁŚĞƚŚĞƌ�ƚŚĞ�ůŝĨĞƟŵĞ�ĚĂƚĂ�ŽĨ�&ŝŐ�ϭϰ͘ϯ�ŝƐ�ĞǆƉŽŶĞŶƟĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ 
or not, one can use a goodness of  test such as Bartlet goodness of fit test  
for exponential distribution or Pearson chi-squared test .  To estimate ߣ 
,the distribution parameter, if the number of failures in k subinterval are 
given, either the following formulae could be used: 
 

෠ߣ ൌ
೘
ಿ
் ൌ

௠
ே்   or    ߣ෠ ൌ σ ሺ୰ୣ୪ୟ୲୧୴ୣ�୤୰ୣ୯୳ୣ୬ୡ୳�୭୤�୤ୟ୧୪୳୰ୣୱ�౟ేసభ�

୏ ǡ 
 
 
 

   
1 11

1 1 , 0
t t

t t
X XF t e e f t e e t  


        
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where m is the number of the switches broke down in time T, out of 
sample of size N�  
The following reasoning also proves the distribution of the life time  
is exponential: 
,ĂǀŝŶŐ� ŐŝǀĞŶ� ƚŚĞ� ĂďŽǀĞ� ƚĂďůĞ͕� ƚŚĞ� ϰth row shows the failure rate is 
approximately constant�ĂŶĚ�ĞƋƵĂů�Ϭ͘ϭ͘��KŶ�ƚŚĞ�ŽƚŚĞƌ�ŚĂŶĚ�ƐŝŶĐĞ�� 

 
then �ͳ െ 	ሺݐሻ ൌ �ሺ�ሻ ൌ ׬ି݁ ଴Ǥଵ௧೟

బ ൌ ݁ି଴Ǥଵ௧ ฺ 	ሺݐሻ ൌ ͳ െ ݁ି଴Ǥଵ௧Ǥ 
Therefore the lifetime of the switch follows an exponential distribution 
with parameter ߣ ൌϬ͘ϭ�Žƌ�ŵĞĂŶߠ� ൌ ϭϬ͘ 
 
&ŝŐƵƌĞ�ϭϰ-ϰ�ƐŚŽǁƐ�ƚŚĞ�ƉůŽƚ�ŽĨ�ƌŽǁ�ϱ�ŽĨ�ƚŚĞ�ƚĂďůĞ�ŝŶ�ƚĞƌŵƐ�ŽĨ�ƌŽǁ�ϭ͖�ŝ͘Ğ͘�ƚŚĞ�
proportion  of the switches in the sample which broke down over time that 
is actually መ݂ሺݐሻǡthe estimate of the probability density function(pdf) of the 
switches lifetime (TTF) at time t. 

0
t- h(ô)dôf(t)

R(t)= =e
h(t)



dĂďůĞ�ϭϰ-Ϭ�Estimate of hazard function, pdf, cdf , reliability function of the switch lifetime 
related  ƚŽ�&ŝŐ͘ϭϰ͘ϯ.    
Sub- 
interval 

ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ ϭϬ ϭϭ ϭϮ ϭϯ ϭϰ ϭϱ ϭϲ ϭϳ 

Non- 
defectives 

ϮϬϬ ϭϴϬ ϭϲϮ ϭϰϲ ϭϯϮ ϭϭϵ ϭϬϳ ϵϲ ϴϲ ϳϳ ϲϵ ϲϮ ϱϲ ϱϬ ϰϱ ϰϬ ϯϲ 

defectives ϮϬ ϭϴ ϭϲ ϭϰ ϭϯ ϭϮ ϭϭ ϭϬ ϵ ϴ ϳ ϲ ϲ ϱ ϱ ϰ ϰ 

݄ሺݐሻ ؆ ͲǤͳ 
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Fig. 14.4  Empirical pdf of the switches related to Fig
(extracted from  Feigenbaum,

 
 
 
Reliability Function of Exponential Distribution
  The  Reliability function of an exponentially distributed random variable is 
given by: 

்ܴ ൌ ͳ െ ሺܶܨ
&Žƌ�ĞǆĂŵƉůĞ�ŝĨ�ǁĞ�ǁŽƵůĚ�ůŝŬĞ�ƚŽ�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ϲϬϬϬ

product which has constant failure rate of 
ߣ ൌ ͳͲିସ failures per hour; since the failure rate is constant then the 
distribution is exponential and 
 
  ܴ଺଴଴଴ ൌ ݁ି஛୘ ൌ ݁ି଴Ǥ଴଴଴ଵൈ଺଴଴଴
 i.e. 
 ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ƚŚĂƚ�Ă�ƵŶŝƚ�ƉƌŽĚƵĐƚ�ĚŽĞƐ�ŶŽƚ�ĨĂŝů�ŝƐ�Ϭ͘ϱϱ͖�ŝŶ�ŽƚŚĞƌ�ǁŽƌĚƐ�ϱϱй�
ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ�ƐƵƌǀŝǀĞ�ĂƌĞ�ϲϬϬϬ�ŚŽƵƌƐ͘
�  
/Ĩ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŝƐ�ĞƐƟŵĂƚĞĚ�ĨƌŽŵ�&ŝŐ͘�ϭϰ͘ϯ͕�ƚŚĞ�ϲϬϬϬ
calculated as: 

   
EĞĞĚůĞƐƐ� ƚŽ� ƐĂǇ� � ƚŚĂƚ� ƚŚĞ� ƐƵŵ� ;ϮϬнϭϴнϭϲнϭϰнϭϯнϭϮͿ� ŝƐ� ƚŚĞ� ŶƵŵďĞƌ� ŽĨ�
ƐǁŝƚĐŚĞƐ�ƌĞŵĂŝŶŝŶŐ�ĂŌĞƌ�ϲϬϬϬ�ŚŽƵƌƐ͘
 
Note that 
-It is the exponential distribution that possess a constant hazard function 
over time; the hazard function of ot
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  Empirical pdf of the switches related to Fig.14.3 
(extracted from  Feigenbaum,1991 page 580) 

Reliability Function of Exponential Distribution 
The  Reliability function of an exponentially distributed random variable is 

ܶሻ ՜ �. 
&Žƌ�ĞǆĂŵƉůĞ�ŝĨ�ǁĞ�ǁŽƵůĚ�ůŝŬĞ�ƚŽ�ĐĂůĐƵůĂƚĞ�ƚŚĞ�ϲϬϬϬ-hr reliability of a kind of 

product which has constant failure rate of ĨĂŝůƵƌĞƐ�ƉĞƌ�ϭϬϬϬ�Śƌ�Žƌ��
failures per hour; since the failure rate is constant then the 

 

଺଴଴଴ ൌ ͲǤͷͷ  

ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ƚŚĂƚ�Ă�ƵŶŝƚ�ƉƌŽĚƵĐƚ�ĚŽĞƐ�ŶŽƚ�ĨĂŝů�ŝƐ�Ϭ͘ϱϱ͖�ŝŶ�ŽƚŚĞƌ�ǁŽƌĚƐ�ϱϱй�
ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ�ƐƵƌǀŝǀĞ�ĂƌĞ�ϲϬϬϬ�ŚŽƵƌƐ͘� 

/Ĩ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŝƐ�ĞƐƟŵĂƚĞĚ�ĨƌŽŵ�&ŝŐ͘�ϭϰ͘ϯ͕�ƚŚĞ�ϲϬϬϬ-hr reliability would be 

 
EĞĞĚůĞƐƐ� ƚŽ� ƐĂǇ� � ƚŚĂƚ� ƚŚĞ� ƐƵŵ� ;ϮϬнϭϴнϭϲнϭϰнϭϯнϭϮͿ� ŝƐ� ƚŚĞ� ŶƵŵďĞƌ� ŽĨ�
ƐǁŝƚĐŚĞƐ�ƌĞŵĂŝŶŝŶŐ�ĂŌĞƌ�ϲϬϬϬ�ŚŽƵƌƐ͘ 

It is the exponential distribution that possess a constant hazard function 
over time; the hazard function of other distributions vary with time; 

T
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ϯϯϰ 

 

-Exponential distribution is a special form of  gamma: ŐĂŵŵĂ;ϭ͕ߚሻ and 
two-parameter  Weibull  distribution: �сϭ͘ 
-Given a sample of a statistical distribution, its parameters could be 
estimated with estimation methods such as method of moments or 
maximum likelihood method(MLE);�    MATLAB is able to estimate many 
distributions parameters; e.g. the command  expofit estimates the 
parameter of exponential distributions.  It is worth mentioning that if 

sample is taken from a distribution the sample mean is an 

unbiased estimate for the distribution mean: ߣ෠ ൌ തܺ . 
 
 
�ǆĂŵƉůĞ�ϭϰ͘Ϯ 
  The lifetime of a component is exponentially distributed with 
parameter��Ȝ�Ǥ The component will be replaced either it breaks down or 
works  for a period of T time.  Find the average time to replace this 
component.  
Solution 
Let  
X= component lifetime 
Y= Time elapsed to replace the component 
ܻ ൌ ሺܺǡܶሻ݊݅ܯ ฺ ሺܻሻܧ ൌ  ሺܺǡܶሻሿ݊݅ܯሾܧ
Min (X,T)+Max(X,T)=X+Tฺ 
E[Min (X,T)] =E(X+T)-E[ Max(X,T)] 
ሺܺܧ ൅ ܶሻ ൌ ሺܺሻܧ ൅ ܶ 
ሺܺǡܶሻሽݔܽܯሼܧ ൌ 
ሺܺǡܶሻȁܺݔܽܯሺܧ ൐ ܶሻܲݎሺܺ ൐ ܶሻ ൅ ሺܺǡܶሻȁܺݔܽܯሺܧ ൑ ܶሻܲݎሺܺ ൑ ܶሻ 
 
ሺܺǡܶሻȁܺݔܽܯሺܧ ൐ ܶሻ ൌ ሺܺȁܺܧ ൐ ܶሻ� 
Random variable  X is memory-less because  it is exponentially distributed 

then �ሺ�ȁ� ൐ ܶሻ ൌ � ൅ ଵ
Ȝ
; on the other hand 

ሺܺǡܶሻȁܺݔܽܯሺܧ ൑ ܶሻ ൌ ሺܶሻܧ ൌ ܶ 
Then: 

ܶ�)=ሺܺǡܶሻሽݔܽܯሼܧ ൅ ଵ
ఒሻ ൈ�݁ିఒ் ൅ ܶ ቀͳ െ ݁ିఒ்ቁ ൌ ܶ ൅ ଵ

ఒ ݁ିఒ் 

ሺܻሻܧ ൌ ሺܺǡܶሻሽ݊݅ܯሼܧ ൌ ሺܺܧ ൅ ܶሻ െ ሺܺǡܶሻሿݔܽܯ�ሾܧ
ൌ ͳ
ߣ ൅ ܶ െ ሺܶ ൅

ͳ
ߣ ݁

ିఒ்ሻ ֜ 

ሺܻሻܧ ൌ ଵ
ఒ ሺͳ െ ݁ିఒ்ሻ. 

 
 
 

nXX ,...,1



    Statistical   methods in Quality Control

 
14.2.2 Three- parameter Weibull distribution
ϯ-parameter Weibul distribution is a distribution with:

1
( )( ) ( )

C t AC t A
f t x A

BB B e

   

, ( ) 1F t e t A  

  ��������������

Var(X) =BϮ ;ϭн -BϮ[ ;ϭн

ǁŚĞƌĞ��͕��хϬ�ĂŶĚ��хϬ are called respectively the location parameter, the 
scale parameter and the shape parameters.
 By the way of reminding, it is added that
-ǁŚĞŶ��сϬ�Θ��сϭ�ƚŚĞ�ĚŝƐƚƌŝďƵƟŽŶ�ŝƐ�ĞǆƉŽŶĞŶƟĂů͖
- ǁŚĞŶ� �сϬ� Θ� �сϮ� ƚŚĞ� ĚŝƐƚƌŝďƵƟŽŶ� ŝƐ� ĐĂůůĞĚ� ZĂǇůĞŝŐŚ� ǁŚŝĐŚ� ŝƐ� ƵƐĞĚ� ŝŶ
modeling  sea waves and communication waves. 
 
14.2.3   Two- parameter(
 
A two-ƉĂƌĂŵĞƚĞƌ�ǁĞŝďƵůů�ŝƐ�Ă�ϯ-ƉĂƌĂŵĞƚĞƌ�ǁĞŝďƵůů�ǁŝƚŚ��сϬ͖�ƚŚĞŶ

&ŝŐƵƌĞ�ϭϰ͘ϱ�ƐŚŽǁƐ�ƚŚĞ�ƉĚĨ�ŽĨ�ƐĞǀĞƌĂů�Ϯ

Figure.14.5-a Density function

( )
( )

Ct A
BR t e




  





 

C
BAXE

1
1.

 )
2

C
 1

C

( )( ) ( )1 Ct
B

XR t F t e   

Control 

ϯϯϱ 

 

eter Weibull distribution 
Weibul distribution is a distribution with: 

( )
t A C

f t x A
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
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are called respectively the location parameter, the 
scale parameter and the shape parameters. 
By the way of reminding, it is added that 
ǁŚĞŶ��сϬ�Θ��сϭ�ƚŚĞ�ĚŝƐƚƌŝďƵƟŽŶ�ŝƐ�ĞǆƉŽŶĞŶƟĂů͖ 
ǁŚĞŶ� �сϬ� Θ� �сϮ� ƚŚĞ� ĚŝƐƚƌŝďƵƟŽŶ� ŝƐ� ĐĂůůĞĚ� ZĂǇůĞŝŐŚ� ǁŚŝĐŚ� ŝƐ� ƵƐĞĚ� ŝŶ 

modeling  sea waves and communication waves.  

(2-p) Weibull Distribution 

ƉĂƌĂŵĞƚĞƌ�ǁĞŝďƵůů�ǁŝƚŚ��сϬ͖�ƚŚĞŶ 

,  

&ŝŐƵƌĞ�ϭϰ͘ϱ�ƐŚŽǁƐ�ƚŚĞ�ƉĚĨ�ŽĨ�ƐĞǀĞƌĂů�Ϯ- parameter Weibull distributions. 

 
Density functions of 2-p Weibull with B=1 and several C�s 
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ϯϯϲ 

 

                       ;ĞǆƚƌĂĐƚĞĚ�ĨƌŽŵ�'ƌĂŶƚΘ>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϲϬϱͿ 
 

��
Fig.14.5-b Density functions of 2-p Weibull with B=10 and 2 C�s 
 
It is worth reminding that exponential distribution is the same as a two-
ƉĂƌĂŵĞƚĞƌ��tĞŝďƵůů�ǁŝƚŚ��ƐŚĂƉĞ�ƉĂƌĂŵĞƚĞƌ�сϭ͖�ĂŶĚ�ƚŚĞ�ƐĂŵĞ�ĂƐ�Ă�ŐĂŵŵĂ�
ĚŝƐƚƌŝďƵƟŽŶ�ǁŝƚŚ�ƐŚĂƉĞ�ƉĂƌĂŵĞƚĞƌ�сϭ͘ 
 
 
Parameter Estimate  of  Weibull Distribution 
   Given a random sample  of size n, the parameters of weibull distribution 
could be estimated graphicallyϭ or using such methods as MLE.  The 
ĞƋƵĂƟŽŶƐ�ŝŶ�D>��ŵĞƚŚŽĚƐ�ĂƌĞ�;DƵŝƌ�Θ��ůƐŚĞƌĂǁŝ;ϭϵϴϲͿ͗ 

. 
It is worth knowing that given a sample of size n an appropriate estimate 

ĨŽƌ�ƚŚĞ�ůŽĐĂƟŽŶ��ƉĂƌĂŵĞƚĞƌ�ŝŶ�ϯ- p Weibull distribution is� ��  

The ĞƋƵĂƟŽŶ�ĨŽƌ�Ϯ-Ɖ�tĞŝďƵůů�ĂƌĞ�;DŽŶƚŐŽŵĞƌŝ�Θ�ZƵŶŐĞƌƐ͕�ϭϵϵϰ�ƉĂŐĞ�ϮϵϵͿ͗ 

 
                                                           
ϭ�Graphical estimation method for Weibull distribution is described in references such as 
Ireson ;ϭϵϵϲͿ�Ɖ Ϯϱ-ϯϭ�Žƌ�ŝŶƚĞƌŶĞƚ͘  
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ϯϯϳ 

 

If the shape parameter C is known, B is estimated using   

ሻܤሺܧܮܯ ൌ ෠ܤ ൌ � � �. 

 
A suitable estimate for the location parameter (A)of   ŽĨ� ϯ-paramter 

Weibull is . 

The MATLAB command wďůĮƚ�ĞƐƟŵĂƚĞƐ�ƚŚĞ�ƉĂƌĂŵĞƚĞƌƐ�ŽĨ� �Ă�Ϯ-p Weibull 
distribution i.e. estimates  B&C. 
 
�ǆĂŵƉůĞ�ϭϰ͘ϯ 
 The random sample  
yс΀ϭϭϯ͘Ϭϲϯϰ���ϰϵ͘ϱϰϯϮ���ϱϯ͘ϰϴϳϮ���ϵϯ͘ϳϭϰϳ���ϳϰ͘Ϭϱϵϰ��ϭϭϰ͘ϯϮϭϲ���
ϵϳ͘ϭϬϯϯ���ϲϭ͘ϱϬϲϵ���ϳϰ͘ϳϮϭϲ���ϱϮ͘ϴϴϬϳ΁͖ 
ŝƐ�ŐŝǀĞŶ�ĨƌŽŵ�Ă�Ϯ-p weibull distribution. Write a MATLAB code which 
calculates B and C from the above equations.  Estimate B & C with 
wblfit command in MATLAB as well� 
 
Solution: 
й^ĂŵƉůĞ�yс΀y;ϭͿ͘͘͘͘͘͘y;ŶͿ΁ 
yс΀ϭϭϯ͘Ϭϲϯϰ���ϰϵ͘ϱϰϯϮ���ϱϯ͘ϰϴϳϮ���ϵϯ͘ϳϭϰϳ���ϳϰ͘Ϭϱϵϰ��ϭϭϰ͘ϯϮϭϲ���ϵϳ͘ϭϬϯϯ���
ϲϭ͘ϱϬϲϵ���ϳϰ͘ϳϮϭϲ���ϱϮ͘ϴϴϬϳ΁͖ 
for �с͘Ϭϭ͗Ϭ͘ϬϬϭ͗ϰϬ 
for /сϭ͗ůĞŶŐƚŚ;yͿ 
   LNX(I)=log(X(I)); XIC(I)=X(I)^C;XICLNX(I)=XIC(I)* LNX(I); 
end 
   A= C-(sum(XICLNX)/sum(XIC)-sum(LNX)/length(X))^(-ϭͿ͖ 
   if  ;�ĂďƐ;�Ϳфс�Ϭ͘ϬϬϭ�Ϳ��ϭс�͖�ĚŝƐƉ;ƐƉƌŝŶƞ;Ζ�с��йϲ͘ϰĨ����Ζ͕���ϭͿͿ� 
   end 
end 
 �с;ƐƵŵ;y͘Δ�ϭͿͬ;ůĞŶŐƚŚ;yͿͿͿΔ;ϭͬ�ϭͿ͖ 
disp(sprintf(Ζ�с��йϲ͘ϰĨ����Ζ,  B)) 
 
The above code gives 
�с��ϯ͘ϳϭϱϬ       
�с��ϴϳ͘ϭϱϰϲ 
 
>> wblfit(X) 
ĂŶƐ�с�����ϴϳ͘ϭϱϰϯ����ϯ͘ϳϭϰϵ 

1

n
C
i

C
i

x

n
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

 1
� ,..., nA x x



�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ 

ϯϯϴ 

 

�ǆĂŵƉůĞ�ϭϰ͘ϰ 
  Given the random sample xϭ с�Ϯ͘ϭ�͕�ǆϮ с�Ϯ͘Ϯ�͕�ǆϯ сϬ͘ϵ�ĨƌŽŵ�Ă�ZĂǇůĞŝŐŚ�
distribution, estimate the parameter of the distribution. 
 
Solution  
ZĂǇůĞŝŐŚ�ĚŝƐƚƌŝďƵƟŽŶ�ŝƐ�Ă�Ϯ-Ɖ�tĞŝďƵůů�ǁŝƚŚ��сϮ͖�� 
Since when the shape parameter C is known, B is estimated using  

 �then 

  =ƐƋƌƚ;Ϯ͘ϭΔϮнϮ͘ϮΔϮн͘ϵΔϮͿͬƐƋƌƚ;ϯͿсϭ͘ϴϯϭϮ͘ 

 
Hazard function of Weibull distribution 
  The Instantaneous hazard function of Weibull is given by: 

݄ሺݐሻ ൌ ݂ሺݐሻ
ܴሺݐሻ ൌ

ܥ
ܤ ሺ
ݐ െ ܣ
ܤ ሻ஼ିଵݐ���� ൐  ܣ

ĨŽƌ�Ϯ-parameter weibull: 

݄ሺݐሻ ൌ ஼
஻ ሺ

௧
஻ሻ஼ିଵݐ���� ൐ Ͳ� 

ǁŚĞŶ����хϭ��    h(t) increases as t increases 
 
ǁŚĞŶ���Ϭф�фϭ  h(t) decreases as t increases 
 
 ǁŚĞŶ����сϭ�     h(t) is constant with respect to t. 
;EŽƚĞ�ƚŚĂƚ�ĨŽƌ��сϭ�ƚŚĞ�ĚŝƐƚƌŝďƵƟŽŶ�ƌĞĚƵĐĞƐ�ƚŽ�ĞǆƉŽŶĞŶƟĂůͿ͘ 
 
Reliability function of Weibull distribution 
   The survival probability after time T according to Weibull distribution is 

்ܴ ൌ ݁ିሺ೅షಲಳ ሻ಴ ; 

ǁŚĞŶ�ƚŚĞƌĞ�ŝƐ�ŶŽ�ŵŝŶŝŵƵŵ�ĨŽƌ�ůŝĨĞƟŵĞ�ŝ͘Ğ͘��сϬ�ƚŚĞŶ � 
 dŚĞ�ŝŶƚĞƌƉƌĞƚĂƟŽŶ�ŽĨ��сϬ�ŝƐ�ƚŚĞ�ĨĂĐƚ�ƚŚĂƚ�ƚŚĞ�ĚĞǀŝĐĞ�ŵŝŐŚƚ�ďƌĞĂŬ�ĚŽǁŶ�Ăƚ�
ƚсϬ�ŝ͘Ğ͘�ƚŚĞƌĞ�ŝƐ�ŶŽ�ŵŝŶŝŵƵŵ�ůŝĨĞƟŵĞ�ŐƵĂƌĂŶƚĞĞ�for all products.  
tŚĞŶ��сϭ�ƚŚe reliability function would be the same as that of exponential 
distribution. 
 
�ǆĂŵƉůĞ�ϭϰ͘ϱ 
  The time to failure of a kind of ball bearing follows a Weibull distribution 
ǁŝƚŚ��сϱϬϬϬ�Θ�сϬ͘ϱ͘� 
a)Find mean time to failure: 
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ϯϯϵ 

 

�hours.��� 

Find the probability f ƐƵƌǀŝǀĂů�ĂŌĞƌ�ϲϬϬϬ�Śƌ 

 
dŚĞŶ�ƚŚĞ�ϲϬϬϬ-Śƌ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ� ŝƐ�Ϭ͘ϯϯϰ͖� ŝŶ�ŽƚŚĞƌ�ǁŽƌĚƐ�ϯϯ͘ϰй�
ŽĨ�ƚŚĞ�ďĂůů�ďĞĂƌŝŶŐƐ�ŚĂǀĞ�Ă�ŵŝŶŝŵƵŵ�ůŝĨĞ�ŽĨ�ϲϬϬϬ�ŚŽƵƌƐ͘ 
 
14.2.4 Truncated Normal Distribution 
  The ordinary normal distribution is not that useful for lifetime of products; 
however if its negative section is truncated the distribution of nonnegative 
part is more appropriate.  The 
normal distribution truncated to be positive with parameters ߤƬߪ�has the 
following density function: 

 
The mean and variance of this distribution are no longerߤƬߪଶ �. The mean 
is calculated as follows: 

 

 

 

. 

To calculate the probabilities of a random variable X having this 
distribution with parameters ߪ��݀݊ܽ�ߤ,  one could write: 

 
Where ܽ ൌ ݎܲ ቀܼ ൐ െ ఓ

ఙቁǤ 
LogarithmiĐ�ŶŽƌŵĂů�ĚŝƐƚƌŝďƵƟŽŶ�ǁĂƐ�ŵĞŶƟŽŶĞĚ�ŝŶ�ĐŚĂƉƚĞƌ�ϰ͘ 
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ϯϰϬ 

 

&ŝŐƵƌĞ�ϭϰ͘ϲ  shows some functions of five distributions used in reliability 
theory. 
 
ͳͶǤ͵���������������������������������������������� 
  This section deals with the reliability of a system composed of several 
components. The configuration or arrangement of components in a system 
could be series, parallel, k- out- of- n, star-delta or a�simple or complex 
combination of them.  Some of the configurations are described below.  It 
is worth knowing the reliability of components may vary with time, or may 
does not vary with time.  The former case is called dynamic and the latter 
case is called a static model.  The arrangement of components in a system 
is sometimes referred to as RBDϭ. 
 
 

 
Fig. 14.6 The shape of pdf, hazard function and reliability function  

                     some distributions (after Feigenbaum,1990, Fig.17-5)      
 

                                                           
ϭ�Reliability Block Diagram 
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14.3.1 Series configuration  
   A system of series configuration is such that it works as far as all 
components work.  In other word
the system fails. 

 
Fig. 14.7   m-component 

   ^ƵƉƉŽƐĞ� ƚŚĞ� ƐǇƐƚĞŵ� ŝŶ� &ŝŐ͘� ϭϰ͘ϳ� ŝƐ� ĐŽŵƉŽƐĞĚ� ŽĨ� ŵ� ŝŶĚĞƉĞŶĚĞŶƚ�
components each having T-time reliability  
where Xϭ,�,Xm denote the lifetimes of the components. 
at least one component fails.  
The�reliability of the system, denoted by 
is computed from: 

Where X denotes the lifetime of the system
 
Proof 
Let X denotes the lifetime of the system and

independent lifetimes of the components; then:

End of proof. 
In static case i.e. dependent of time 
components are given as�ܴଵǡǥ ǡ
the product of �ܴ௜Ԣݏ: 

ܴ௦௬௦
It is worth noting in a series configuration 
the less the number of components of the system the more reliable the 
system, and the more reliable the components
system. 
 
�ǆĂŵƉůĞ�ϭϰ͘ϲ 
A system of m components fails when each of the components fails. The 
lifetimes of the components are independent and exponentially distributed 
with parameters� �. 

  
  

   

1 1

1 2

1

min ... min ...

, ,...,

( ) ...

m r r m

r r m

T sys T T m

X X X P X T P X X T

P X T P X T X T X T

R R R

    

    

 

m ,...,, 21

Control 

ϯϰϭ 

 

 
A system of series configuration is such that it works as far as all 

components work.  In other words in this configuration if a component fails 

 

component  series configuration  
 

^ƵƉƉŽƐĞ� ƚŚĞ� ƐǇƐƚĞŵ� ŝŶ� &ŝŐ͘� ϭϰ͘ϳ� ŝƐ� ĐŽŵƉŽƐĞĚ� ŽĨ� ŵ� ŝŶĚĞƉĞŶĚĞŶƚ�
time reliability  ሺ�୘ሻ୧ ൌ ��ሺ ௜ܺ ൐ ܶሻ�  

denote the lifetimes of the components. �The system fails if 

reliability of the system, denoted by ሺ�୘ሻୱ୷ୱ ൌ ��ሺܺ ൐ ܶሻ  

 
X denotes the lifetime of the system. 

s the lifetime of the system and denote the 

independent lifetimes of the components; then: 

 

i.e. dependent of time where the reliabilities of independent 
ǡ �ܴ௡, again the system probability would be 

௦௬௦ ൌ ς ܴ௜௡௜ୀଵ . 
It is worth noting in a series configuration  
the less the number of components of the system the more reliable the 
system, and the more reliable the components, the more reliable the 

A system of m components fails when each of the components fails. The 
lifetimes of the components are independent and exponentially distributed 

 Find the reliability of the system. 

1...XX m

  


1 1

1 2

min ... min ...

, ,...,

m r r m

r r m

X X X P X T P X X T

P X T P X T X T X T

      
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Solution 

 
That is when m components with constant failure rates ߣ௜ǡ ݅ ൌ ͳǡʹǡǥ ǡ ݉� 
constitute a series system,  the system itself also would have a constant 
failure rate equal to σ ௜௠௜ୀଵߣ Ǥ� In other words the lifetime of the system is 
exponentially distributed with parameter σ ௜௠௜ୀଵߣ Ǥ 
 
Example ϭϰ͘ϳ 
    �� ƐǇƐƚĞŵ� ŝƐ� ĂƐƐĞŵďůĞĚ�ĂƐ� Ă� ƐĞƌŝĞƐ� ĐŽŶĮŐƵƌĂƟŽŶ�ŽĨ� ϴ� ƚǇƉĞƐ�ŽĨ� ĞůĞĐƚƌŝĐĂů�
components, shown in the following table.  Each type constitutes a 
subassembly which has a series configuration in turn. All life times are 
independent and follow exponential distribution.  Given the data in the 
ĨŽůůŽǁŝŶŐ�ƚĂďůĞ͕�ƉƌĞĚŝĐƚ�ƚŚĞ�ϭϬ-hour reliability of the system. 
  

O
rd

er
(i)

  
Component 

Name 

Number 
used in 
series in 

the 
system 

(mi) 

 ௜ߣ
Failure 
rate 
(per 

hour) 

 
Failure rate of the subassembly 

per hr 
(miߣ௜) 

ϭ Diode  ϱϮ ϭϮϬîϭϬ-ϲ 

 
Ϯ Motor ϯ ϭϬϬîϭϬ-ϲ 

 
ϯ Relay ϭϴ ϭϰϱîϭϬ-ϲ 

 
ϰ Resistor Ϯϭϯ ϭϬîϭϬ-ϲ  
ϱ Potentiometer Ϯϲ ϳϬîϭϬ-ϲ  
ϲ Switch ϴϮ ϮϱîϭϬ-ϲ  
ϳ Transform motor Ϯϭ ϮϬîϭϬ-ϲ  
ϴ Soldered 

point 
ϯϰϭ ϭϴîϭϬ-ϲ  

Sum ߣ
  

 
The life time distribution of the total assembled product is exponential 
with ߣ ൌ ͲǤͲʹͳ͹Ͳͺ ĨĂŝůƵƌĞͬŚƌ͘� � dŚĞ�ϭϬ-Śƌ� ƌĞůŝĂďŝůŝƚǇ� ŝƐ�Ϭ͘ϴϬϱ�ĂƐ� ĐĂůĐƵůĂƚĞĚ�
below: 

 
 
�ǆĂŵƉůĞ�ϭϰ͘ϴ 
��ƐĞƌŝĞƐ�ƐǇƐƚĞŵ�ĐŽŶƐƟƚƵƚĞƐ�ϯ�ĐŽŵƉŽŶĞŶƚƐ�ŚĂǀŝŶŐ�ƌĞůŝĂďŝůŝƟĞƐ�ZϭсϬ͘ϵ͕�
RϮсϬ͘ϵϱ�ĂŶĚ 

1 1( ) ...

m

i
i

T
m

T T
R e e esysT

 


 
 



36 1024.61012052  
310300.0 
310610.2 
310130.2 

310820.1 
310050.2 
310420.0 
310138.6 

 310708.21

%5.80805.0)10)(0217.0(
10  eR
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RϯсϬ͘ϴϱ͘��dŚĞ�ĨĂŝůƵƌĞ�ƚŚĞ�ƐǇƐƚĞŵ�ŝŵƉŽƐĞƐ�Ă�ĐŽƐƚ�ŽĨ�ΨϱϬϬϬ͘�� 
a) Find the reliability of the system; 
b) Find the mean of incurred cost in the long range; 
c)If a similar systems is added to the system as a standby 
subsystem. Find the reliability of the new system, assuming perfect 
switching. 
d)Calculate the mean of the incurred cost paid for the failure of  the new 
system in the long range.  
 
Solution 

a)�� 

 
 

 
 
b) 
 
probability Cost 

Ϭ͘ϳϯ Ϭ 
Ϭ͘Ϯϳ $ϱϬϬϬ 

 
The averaŐĞ�ĐŽƐƚ�ŝƐ�ϱϬϬϬΎϬ͘ϮϳсΨϭϯϱϬ͘ 
c) 
 

Let the reliabity of the working subsystem be denoted by�ܴଵୗ and the 
reliability of the standby subsystem by �ଶୗǢ then the relaibility of the   
whole system would be given by: 
�ୱ୷ୱ ൌ ͳ െ ሺͳ െ �ଵୗ��ሻሺͳ െ �ଶୗ�ሻ ൌ �ଵୗ ൅ �ଶୗ െ �ଵୗ�ଶୗ

ൌ �ଵୗ ൅ ሺͳ െ �ଵୗሻ�ଶୗ ൌ 
ൌϬ͘ϳϯн;ϭ-Ϭ͘ϳϯͿ;Ϭ͘ϳϯͿсϬ͘ϵϯ 

d) 
Probability cost 

Ϭ͘ϵϯ Ϭ 
Ϭ͘Ϭϳ $ϱϬϬϬ 

 
dŚĞ�ĂǀĞƌĂŐĞ�ĐŽƐƚ�ŝƐ�ϱϬϬϬΎϬ͘ϬϳсΨϯϱϬ͘ 
dŚĞ� ĚŝīĞƌĞŶĐĞ� ŽĨ� ƚŚĞ� ƚǁŽ� ĐŽƐƚƐ� ŝƐ� ϭϬϬϬ� ĚŽůůĂƌƐ͖� ƚŚĞŶ� ŝĨ� ƚŚĞ� ƉƌŝĐĞ� ŽĨ� ƚŚĞ�
ďĂĐŬƵƉ� ŝƐ� ĐŽŶƐŝĚĞƌĂďůǇ� ůĞƐƐ� ƚŚĞŶ�ϭϬϬϬ�ĚŽůůĂƌƐ͕� ŝƚ� ĐŽƵůĚ�ďĞ� ƐĂŝĚ�  the latter 
system is economic. 
 
 

1 2 3 (0.9)(0.95)(0.85) 0.73R R R R  
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14.3.2  Parallel configuration 
   At the outset consider a Ϯ- component
subassemblies A & B are in parallel; i.e. the system works if at least 
one of the two works. 

Fig. 14.8 A 2-subassembly parallel system
 
From the probability theory we know:
The probability that either A or B or both

= 
Let the reliability of system (R) be the probability that either A or B or both
work and denote the probability that A works by 
that B works by ܴଶ; if A and B are independent then
 

dŚĞƌĞĨŽƌĞ�ƚŚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�Ă�Ϯ�ĐŽŵƉŽŶĞŶƚ�ƉĂƌĂůůĞů��ƐǇƐƚĞŵ�ŝƐ�ŐŝǀĞŶ�ďǇ
ܴ ൌ ͳ െ

 
      In the general case where there are 
the system works as far as at least one compon
ĐŽŵƉŽŶĞŶƚ�ƉĂƌĂůůĞů� ƐǇƐƚĞŵ;&ŝŐ�ϭϰ͘ϵͿ͘� ��Ŷ�ĞǆĂŵƉůĞ�ŽĨ� ƚŚŝƐ� ŝƐ� ƚŚĞ�ĐŝƌĐƵŝƚ�ŽĨ�
several parallel resistances, several similar teller in banks, airports.

Fig. 14.9 
  

Pr( ) Pr( ) Pr( ) Pr( )
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Pr( ) Pr( ) Pr( ) Pr( ) Pr( )A B A B A B   

1 2 1 2 1 2 1 2 1 2 2
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Pr( ) 1 1 1
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A B R R R R R R R R R R R
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configuration  
component ƐǇƐƚĞŵ�ŝŶ�&ŝŐ͘�ϭϰ͘ϴ�

in parallel; i.e. the system works if at least 

 
subassembly parallel system 

heory we know: 
The probability that either A or B or both work  = 

      
Let the reliability of system (R) be the probability that either A or B or both 
work and denote the probability that A works by ܴଵ and the probability 

A and B are independent then 

 

dŚĞƌĞĨŽƌĞ�ƚŚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�Ă�Ϯ�ĐŽŵƉŽŶĞŶƚ�ƉĂƌĂůůĞů��ƐǇƐƚĞŵ�ŝƐ�ŐŝǀĞŶ�ďǇ 
െ ሺͳ െ ܴଵሻሺͳ െ ܴଶሻ. 

In the general case where there are m independent components and  
the system works as far as at least one component works, we have an m-
ĐŽŵƉŽŶĞŶƚ�ƉĂƌĂůůĞů� ƐǇƐƚĞŵ;&ŝŐ�ϭϰ͘ϵͿ͘� ��Ŷ�ĞǆĂŵƉůĞ�ŽĨ� ƚŚŝƐ� ŝƐ� ƚŚĞ�ĐŝƌĐƵŝƚ�ŽĨ�
several parallel resistances, several similar teller in banks, airports. 

 
   A Parallel System 

Pr( ) Pr( ) Pr( ) Pr( )A B A B AB   

Pr( ) Pr( ) Pr( ) Pr( ) Pr( )A B A B A B   

1 2 1 2 1 2 1 2 1 2 21 1 1 (1 ) (1 )A B R R R R R R R R R R R              
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Denoting the lifetimes of the components by Xϭ,�,Xm ,in this case we have: 
System Lifetime = �then  

 
Assume  Xϭ,�,Xm are independent and each component has T-time 
reliability  i.e. �୘ሻ୧ ൌ ��ሺ ௜ܺ ൐ ܶሻ.  Denote system reliability by 

 ሺ�୘ሻୱ୷ୱ ൌ ��ሺܺ ൐ ܶሻǡ then 

 ሺ்ܴሻ௦௬௦ ൌ ͳ െ ሾͳ െ ሺ்ܴሻଵሿǥ ሾͳ െ ሺ்ܴሻ௠ሿǤ 
Further more if the reliability of the components of a parallel  system, 
denoted by �ܴଵǡǥ ǡ �ܴ௠ ,are dependent of time then  
 

ܴ௦௬௦ ൌ ͳ െ ሺͳ െ ܴଵሻǥ ሺͳ െ ܴ௠ሻ  

14.3.3   Calculation of reliability when back-up is available 
   �ŽŶƐŝĚĞƌ� Ă� ƐǇƐƚĞŵ� ŝŶ� ǁŚŝĐŚ� ƐƵďƐǇƐƚĞŵ� ϭ� ǁŽƌŬƐ� ĂŶĚ� ŽŶĞ� Žƌ� ŵŽƌĞ�
ƌĞĚƵŶĚĂŶƚ��ƐƵďƐǇƐƚĞŵƐ�ĂƌĞ�ǁĂŝƟŶŐ�ƚŽ�ƌĞƉůĂĐĞ�ƐƵďƐǇƐƚĞŵ�ϭ�ŝŶ case of failure 
by Ă�͞ƐǁŝƚĐŚ͟�ĂƐ�ƐŚŽǁŶ� ŝŶ�&ŝŐ͘� �ϭϰ-ϭϬ͘� �dŚĞ�͞ƐǁŝƚĐŚ͟�ĐŽƵůĚ�ďĞ�Ă�ŵĂŶ�Žƌ�Ă�
device; it could be always�working or be out of order when needed to 
replace the standby component.  The former case is called perfect 
switching and the latter is called imperfect switching.  In addition the 
standby components  themselves might be subject to failure before 
replacing. That is why these cases(reliability of the switch and the failure of 
standby redundant components on replacement) come into effect.    
ZĞĨĞƌĞŶĐĞƐ�ƐƵĐŚ�ĂƐ�<ĂƉƵƌΘ�>ĂŵďĞƌƐŽŶ;ϭϵϳϳͿ�ĂŶĚ�KaƉƵƌΘWĞĐŚƚ;ϮϬϭϰͿ�ĚĞĂů�
with these cases in detail.  Below some cases regarding to standby 
redundancy are briefly dealt. 

 
Fig.14-10  A system with standby redundant subsystems 

 
 
 

 mXXX ...max 1
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ϭ��
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14.3.3.1  Two-component  standby  (imperfect &perfect 
switching system) 
 
  Suppose ƚŚĞƌĞ�ĂƌĞ�Ϯ�ƐƵďƐǇƐƚĞŵƐ� ŝŶ�Ă�ƐǇƐƚĞŵ͕�ŽŶĞ�ǁŝƚŚ�ƌĞliability of Rϭ is 
active(working), the other having a reliability of RϮ� � is standby or backup;  
RϭΘ RϮ are constants rather than functions of time.  In addition suppose, 
when called upon to be used,  the switch is subject to failure but the 
standby component is not subject to failure.  The probability that the 
switch works when it is needed to replace the standby subsystem is a 
constant number Ps (e.g. the mean of the switch reliability function rather 
than the reliability function itself).  Then the reliaďŝůŝƚǇ�ŽĨ�ƚŚŝƐ�Ϯ-component 
system denoted here by  
 

2 sys
R would be ;�ŝůůŝŶƚŽŶΘ��ůůĞŶ͕ϭϵϵϮ): 

 
The simplest case is when we have perfect switching i.e. Psсϭ�ĂŶĚ�ŝƚ�ŝƐ�ŶŽƚ�
probable that the standby  component become out of order during its 
period of being standby. When  the active component fails, the standby 
component replaces it by the help of the perfect switch; in this case since 
Psсϭ�ƚŚĞŶ: 

 
This relationship is similar to that of a  Ϯ-component parallel system when 
both are active. 
 
Example ϭϰ͘ϵ 
  ��ĚĞǀŝĐĞ�ǁŝƚŚ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ϵϬй�ŚĂƐ�Ă�back-ƵƉ�ǁŝƚŚ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ϴϬй͘�
When the device fails it is replaced automatically by a perfect switch.  
Suppose the backup might not be out of order when replaces.  Find 
the reliability of the system composed of the active and stand by. 
^ŽůƵƟŽŶ�ϭ 
Pr(system works)=Pr(the active device works)+Pr(the device fails & the 
backup works)= 
Pr(the device works)+Pr(the active  device fails )ൈ Pr(the backup works)= 
Ϭ͘ϵнϬ͘ϭൈϬ͘ϴсϬ͘ϵϴ 
^ŽůƵƟŽŶ�Ϯ 

  
 
Example ϭϰ͘ϭϬ 

1 2 1 1 22
(1 ) 1 (1 )(1 )s s

sys
R R P R R R P R      

1 22
1 (1 )(1 )

sys
R R R   

1 22
1 (1 )(1 )

sys
R R R      ( ) 1 1 0.9 1 0.8 0.98T sys     
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  Calculate the reliability of a system whose RBD is as follows.  The number 
in each box represent the reliability of the component. BϮ and CϮ are 
backups which replace respectively Bϭ and Cϭ  upon failure by a perfect 
switch. The backups are supposed to be working when replacing. Also 
calculate the reliability of the system if backups were not available. 

 
Solution 
  The A, B and C constitute a series configuration, at the outset �  note the  
reliability of "Bϭ  + its backup BϮ "is��ͳ െ ሺͳ െ ͲǤͻሻሺͳ െ ͲǤͻሻ   
and that of "Cϭ + its backup CϮ" is �ͳ െ ሺͳ െ ͲǤͻͷሻሺͳ െ ͲǤͻʹሻ.  Then the 
reliability of the series  system is given by 
ܴ௦௬௦ ൌ 
ͲǤͻͺሾͳ െ ሺͳ െ ͲǤͻሻሺͳ െ ͲǤͻሻሿሾͳ െ ሺͳ െ ͲǤͻͷሻሺͳ െ ͲǤͻʹሻሿ ൌ ͲǤͻ͸͸  
Ignoring the backups would yield the reliability equal to 
 ͲǤͻͺ ൈ ͲǤͻͲ ൈ ͲǤͻͷ ؆ ͲǤͺͶ. 
 
Exampleϭϰ͘ϭϭ 
  A system has the following RBD. The BϮ�  and CϮ are backups for Bϭ with 
assumption of no failure while they are in standby mode wŚĞŶ��ϭ�ĨĂŝůƐ͕��Ϯ 
replaces it by a perfect switch ; when BϮ fails, Bϯ replaces it by a perfect 
switch. Compute the system reliability. The number in each box represent 
the reliability of the component. 
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ϯϰϴ 

 

Answer  
  It could be shown that the reliability of the middle subsystem is calculated 
ĂƐ�ŝĨ�ŝƚ�ŝƐ�Ă�ϯ- ĐŽŵƉŽŶĞŶƚ�ƉĂƌĂůůĞů�ƐǇƐƚĞŵ͗�ϭ-;ϭ-Ϭ͘ϵͿ;ϭ-Ϭ͘ϵͿ�;ϭ-ͲǤͻʹͿсϬ͘ϵϵϵϮ 
�ୱ୷ୱ ൌ ሺͲǤͻͺሻϬ͘ϵϵϵϮΎሺͲǤͻͷሻсϬ͘ϵϯ�. 
 
Example ϭϰ͘ϭϮ 
dĞƐƚ�ŽĨ�ϭϬϬ�ƵŶŝƚƐ�ŽĨ� Ă�ŬŝŶĚ�ŽĨ� ǀĂůǀĞ͕�ĞĂĐŚ� ĨŽƌ�ϮϬϬϬϬ�ŚŽƵƌƐ͕� resulted in�  ϲ�
failures; 
 
a)find  the proportion failed, 
 
b) the failure rate of each unit valve per year( i.e.no. of failure in a year), 
c)find expected ŶƵŵďĞƌ�ŽĨ�ĨĂŝůƵƌĞƐ�ƉĞƌ�ǇĞĂƌ�ĨŽƌ�ϭϬϬϬ�ƵŶŝƚƐ, 
d) find MTBF. 
 
Solution 
ĂͿϲй 
b)From � ƚŚĞ� ϭϬϬ� ƵŶŝƚƐ� ĚƵƌŝŶŐ� ƚŚĞ� ϮϬϬϬϬ� ŚŽƵƌƐ� ƚĞƐƚ� ͕ϲ� ƵŶŝƚƐ� ĨĂŝůĞĚ� ͘� ŝƚ� ŝƐ�
ƐƵƉƉŽƐĞĚ� ƚŚĂƚ� ĞĂĐŚ� ŽĨ� ƚŚĞƐĞ� ϲ� ĨĂŝůĞĚ� ŝƚĞŵƐ� ǁŽƌŬĞĚ  (

଴ାଶ଴଴଴଴
ଶ ൌ ϭϬϬϬϬ) 

hours on the average before failure.   
The total test time of the units during the test is thenǣ 
ͳͲͲ ൈ ʹͲͲͲͲ െ ͸ ൈ ʹͲͲͲͲʹ ൌ ͳͻͶͲͲͲͲ���Ǥ 
The failure rate(FR) of a unit is equal to  

	� ൌ ͸
ͳͻͶͲͲͲͲ ൌ ͵ǤͲͻ ൈ ͳͲି଺���������������������

ൌ ͵ǤͲͻ��������������ͳͲ଺���Ǥ 
On the other hand 
Failures of a unit per year= Failures of a unit per hourൈ ͵͸ͷ ൈ ʹͶǤ 
Then failure rate for each unit per year is ͵Ǥ͵ ൈ ͳͲି଺ ൈ ͵͸ͷ ൈ ʹͶ ൌ
�ͲǤͲʹͺͻ 
In other words the amount of ĨĂŝůƵƌĞƐ�ĨŽƌ�Ă�ƵŶŝƚ�ƉĞƌ�ǇĞĂƌ�ŝƐ�Ϭ͘ϬϮϵ͘ 
/Ĩ�ϭϬϬϬ�ƵŶŝƚƐ�ĂƌĞ�ŽƉĞƌĂƚĞĚ;  the expected number of failed items per year is  
 Ϭ͘ϬϮϵ�ĨĂŝůƵƌĞƐ�ƉĞƌ�ƵŶŝƚ�ƉĞƌ�ǇĞĂƌൈ ͳͲͲͲ������ сϮϵ�ĨĂŝůƵƌĞ�ƉĞƌ�ǇĞĂƌ 
d) 

MTBF�ൌ ୲୭୲ୟ୪�௧௘௦௧�୲୧୫ୣ�
୬୳୫ୠୣ୰�୤୭୤�୤ୟ୧୪୧୰ୣୱ ൌ

ଵଽସ଴଴଴଴
଺ ൌ ͵ʹ͵͵͵͵Ǥ͵ hr 
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14.3.4  k -out-of -n  configuration  
    A k-out-of-n reliability configuration is a system  with n similar 
components  which fails  if and only if at least k consecutive components 
fail (Fig.ϭϰ-ϭϭͿ�    
 

 
Fig.14-11  A "K out n" configuration. 

 
Needless to say that when k=n, we have a series configuration;  when kсϭ�
we have a parallel system.  The reliability of a k-out-of-n configuration 
consisting n similar components, each with reliability R, is given by the 
ĨŽůůŽǁŝŶŐ�ƌĞůĂƟŽŶƐŚŝƉ�;�ĂƌůŽǁΘWƌŽƐŚĂŶ͕ϭϵϵϲ͕�ƉĂŐĞ�ϮϭϴͿ 
 

ܴ௦௬௦ ൌ σ ቀ௡௝ቁ௡௝ୀ௞ ܴ௜ሺͳ െ ܴሻ௡ି௜ ൌ ݇൫௡௞൯׬ ௞ିଵሺͳݔ െ ோݔሻ௡ି௞݀ݔ
଴ . 

In this system the reliability of the system increases, 
when k reduces and R is constant,  
and 
when R increases and k is constant.  
As an exercise show that 
 for k=n, the above formula gives the reliability of series configuration , and 
 ĨŽƌ�Ŭсϭ͕�ƚhe formula gives the reliability of parallel system.  
 
Example ϭϰ͘ϭϯ 
  dŚĞ� ůŝĨĞƟŵĞ� ŽĨ� ĐŽŵƉŽŶĞŶƚƐ� ϭ͕Ϯ� Θϯ� ĨŽůůŽǁ� Ă� tĞŝďƵůů� ĚŝƐƚƌŝďƵƟŽŶ� ǁŝƚŚ�
ƉĂƌĂŵĞƚĞƌƐ��сϬ͕��сϮϬϬ� �Śƌ�ĂŶĚ��с͘ϱ͘� �sĞƌŝĨǇ� ƚŚĞ� ĨŽůůŽǁŝŶŐ�ĚŝĂŐƌĂŵ which 
ĐŽŶƚĂŝŶ�ŽŶůǇ�ϯ�ĐŽŵƉŽŶĞŶƚƐ�;�ŶŽƚ�ϲ�ĐŽŵƉŽŶĞŶƚƐ) could be regarded as  Ă�Ϯ-
out-of-ϯ�ƐǇƐƚĞŵ͘���ĂůĐƵůĂƚĞ�ƚŚĞ�ϭϬϬ-hour reliability of the system. 
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Solution 
Note that according to the diagram, the system works in the following 
cases: 
/Ĩ�ϭΘϮ�ǁŽƌŬ͖ 
/Ĩ�ϭΘϯ�ǁŽƌŬ͖ 
/Ĩ�ϮΘϯ�ǁŽƌŬ͖ 
/Ĩ�ϭ͕ϮΘϯ�ǁŽƌŬ 
dŚĞŶ�ŝƚ�ŝƐ�Ă�Ϯ-out-of-ϯ�ƐǇƐƚĞŵ͘� 

�ଵ ൌ �ଶ ൌ �ଷ ൌ � ൌ �ିቀ౮షఽా ቁి ൌ
�ୱ୷ୱ ൌ ʹ൬͵ʹ൰න �ଶିଵሺͳ െ

�଴Ǥସଽଷଵ

଴
ൌ ʹ כ ͵න

�଴Ǥସଽଷଵ

଴or  with MATLAB 
 
 ������Ǣ�����ൌ���ሺ͸ȗ�ȗሺͳ-�ሻǡ�ͲǡǤͶͻ͵ͳሻ
 
Rsys = 
 
ʹͶͶͺʹͷ͵ʹͺͷͲͻȀͷͲͲͲͲͲͲͲͲͲͲͲൌ
 
or   

�ୱ୷ୱ ൌ෍ ൬͵�൰
ଷ

୨ୀଶ
ͲǤͶͻ͵ͳ୨ሺͳ െ ͲǤͶͻ͵ͳ

with MATLAB����� 
 �ୱ୷ୱ ൌ ͳ െ �������ሺͳǡ͵ǡ ǤͶͻ͵ͳሻ
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Note that according to the diagram, the system works in the following 

ቁ ൌ �ି��� ൌ �ͲǤͶͻ͵ͳ  
ሺ �ሻଷିଶ��

�ሺͳ െ �ሻ�� ൌ �ͲǤͶͺͻ͹
ସଽଷଵ

 

�ሻǡ�ͲǡǤͶͻ͵ͳሻ 

ʹͶͶͺʹͷ͵ʹͺͷͲͻȀͷͲͲͲͲͲͲͲͲͲͲͲൌ�ͲǤͶͺͻ͹ 

Ͷͻ͵ͳሻଷି୨ 

������ 
ሻ ൌ ͲǤͶͺͻ͹Ǥ 

 0.5100
200
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14.3.5  Star and Delta  configurations 
 
  This section deals briefly  with star and delta  configurations.  The 
following figure  shows a star configuration and a delta configuration.  
These are easily converted into each other, a property which could be 
used to simplify the RBD of a complex 
System whose original reliability  is hard to compute.   
 

 
 

Fig.14-12  Star   and   Delta configurations. 
 

 We now deal with a special case ǁŚĞƌĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ƚŚĞ�ϯ�ĐŽŵƉŽŶĞŶƚƐ�
are the same. 
   Suppose in a delta configuration the reliability of each component is ݎο, 

then   in the  equivalent star configuration is derived from: 

, 

Conversely, if in a star configuration  1 2 3 YR R R R   , then r  

ĂƐ�ƚŚĞ�ƌĞůŝĂďůǇ�ŽĨ�ƚŚĞ�ϯ�ĐŽŵƉŽŶĞŶƚƐ��ŽĨ�ƚŚĞ�ĞƋƵŝǀĂůĞŶƚ�ĚĞůƚĂ�ĐŽŶĮŐƵƌĂƟŽŶ��  
( 1 2 3r r r r   )is a root of the following equation(based on Grosh, 

ϭϵϴϵͿ͗  

 

 
14.3.6  Complex configurations  
  As well as series, parallel and k-out-of-n configurations, there are other 
configurations, some of  which are complex whose reliability cannot be 
calculated easily.  The following RBD is an example of complex systems. 
 

3 2 1, ,R R R

2 3
1 2 3 YR R R r r r R       

yr r r R      3 2 2 0
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Fig. 14.13  An example of a complex RBD 
 

There are some methods, which might be useful in calculating the 
reliability of these kinds of systems, including: 
ϭ-Enumeration Method, 
Ϯ-Path Tracing�Algorithmϭ 
ϯ-Appication of Bayesian Decomposition Theorem 
ϰ- Star-Delta Conversion 
ϱ-The method based on Markov Process 
ϲ-Cut-set and Tie-set Method 
The third method is described here. 
 
ϭϰ͘ϯ͘ϲ͘ϭ�Application of Bayesian Decomposition Theorem 
  A way to calculate the reliability of some complex systems is to apply 
Bayesian decomposition, described below:  
a) 
Search for an element in the RBD of the system, which is a key one such 
that if the it works permanently the RBD reduces to an RBD whose 
reliability can be calculated easily; and if it does not work permanently, the 
system reduces to a system whose reliability can be calculated easily again.   
b) 
Use Bayes' rule of conditioning to compute the original system reliability.  
 
Example ϭϰ͘ϭϰ 
    Find the reliability of a system consisting of subsystĞŵ�ƚǇƉĞƐ�ϭ͕�Ϯ͕ ĂŶĚ�ϯ͕�
with reliabilities Rϭ, RϮ and R3   with ƚŚĞ� ĨŽůůŽǁŝŶŐ�Z��� ;>ĞǁŝƐ͕ϭϵϵϮ�ƉĂŐĞ�
ϮϴϮͿ͘ 
 
 
 
                                                           
˺ From: Primer of Reliability Theory by Doris Lloyd Grosh; John wiley 
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Fig. 14-14  A complex system 
Solution 
   �ŽŵƉŽŶĞŶƚ� ϮĂ� ŝƐ� ƐĞůĞĐƚĞĚ� ĂƐ� ƚŚĞ� ŬĞǇ� ĞůĞŵĞŶƚ� ďǇ� trial and error.  The 
survival of the system is conditŝŽŶĞĚ�ŽŶ�ƚǁŽ�ĞǀĞŶƚƐ�ŝ͘Ğ͘�ĞŝƚŚĞƌ�ƐƵďƐǇƐƚĞŵ�ϮĂ�
fails or operating.�  
Let 
Y  The event denoting successful system operation, 
y��dŚĞ�ĞǀĞŶƚ�ĚĞŶŽƟŶŐ�ĨĂŝůƵƌĞ�ŽĨ�ĐŽŵƉŽŶĞŶƚ�ϮĂ 
�ഥ  dŚĞ�ĞǀĞŶƚ�ĚĞŶŽƟŶŐ�ƐƵĐĐĞƐƐĨƵů�ŽƉĞƌĂƟŽŶ�ŽĨ�ϮĂ͕ 
Rϭ denote the reliability of componeŶƚƐ�ϭĂ�,�ϭď͕ 
RϮ ĚĞŶŽƚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ĐŽŵƉŽŶĞŶƚƐ�ϮĂ�,�Ϯď� 
Rϯ ĚĞŶŽƚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ĐŽŵƉŽŶĞŶƚƐ�ϯĂ�,�ϯď͘ 
Consider the sample space(SS) ĐŽŶƐŝƐƟŶŐ�Ϯ�ĞǀĞŶƚƐ�� ��� ��ഥ ; 
i.e. SS�ൌ ሼ�ǡഥ �ሽǤ   
According to Bayesian theorem we have: 
  
�ሼ�ሽ ൌ ��ሺ�ȁ�ሻ��ሺ�ሻ ൅ ��ሺ�ȁ�ഥሻ��ሺ�ഥሻ 
where 
��ሺ�ȁ�ሻ ൌ �ି  ƚŚĞ� ƉƌŽďĂďŝůŝƚǇ� ŽĨ� ƐƵĐĐĞƐƐĨƵů� ƐǇƐƚĞŵ� ŽƉĞƌĂƟŽŶ� ŝĨ� � ϮĂ� ŚĂƐ�
failed, 
��ሺ�ȁ�ഥሻ ൌ �ା  ƚŚĞ� ƉƌŽďĂďŝůŝƚǇ� ŽĨ� ƐƵĐĐĞƐƐĨƵů� ƐǇƐƚĞŵ� ŽƉĞƌĂƟŽŶ� ŝĨ� � ϮĂ� ŝƐ�
operating, 
��ሺ�ሻ ൌ � =the total probability of successful system operation, 
��ሼ�ഥሽ      dŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ƐƵĐĐĞƐƐĨƵů�ŽƉĞƌĂƟŽŶ�ŽĨ�ĐŽŵƉŽŶĞŶƚ�ϮĂ͕ 
��ሼ�ሽ      dŚĞ�ƉƌŽďĂďŝůŝƚǇ��ƚŚĂƚ�ĐŽŵƉŽŶĞŶƚ�ϮĂ�ĨĂŝůƐ͘� 
Since   ��ሼ�ሽ ൌ ͳ െ �ଶ��������������ሼ�ഥሽ ൌ �ଶ   then 
� ൌ �ିሺͳ െ �ଶሻ ൅ �ା�ଶ. 
 

Calculation  the conditional reliabilities R- and R+ 
a) To compute the probability of successful system operation if 
ĐŽŵƉŽŶĞŶƚ�ϮĂ�ŚĂƐ�ĨĂŝůĞĚ (�ି),   Ăůů�ƚŚĞ�ƉĂƚŚƐ�ƚŚƌŽƵŐŚ�ϮĂ�ŝŶ�&ŝŐ�ϭϰ͘ϭϮ 
are  disconnected (as if ϮĂ�ŝƐ��ƌĞŵŽǀĞĚͿ͖�the result appears in Fig. 
ϭϰ͘/ϯ.a; which is  actually the RBD of a series of compŽŶĞŶƚƐ�ϭď͕Ϯď�

ϯĂ 

ϯď 

ϭĂ 

ϭď 

ϮĂ 

Ϯď��
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ĂŶĚ�ϯď͖�ƐƵďƐǇƐƚĞŵƐ�ϭĂ�ĂŶĚ�ϯĂ�ŶŽ�ůŽŶŐĞƌ�ŵĂŬĞ�ĂŶǇ�ĐŽŶƚƌŝďƵƟŽŶ�ƚŽ�
the value of R-.  Therefore: 
  ��ሺ�ȁ�ሻ ൌ �ି ൌ �ଵ�ଶ�ଷ 

 
 

 
Fig.14.14.a  Component   2a  has failed 

 
b)For computing the probability of successful system operation if 
ĐŽŵƉŽŶĞŶƚ�ϮĂ�ŝƐ�ŽƉĞƌĂƟŶŐ i.e. �ା   , we say :  wŚĞŶ�ϮĂ�ŝƐ�ĂůǁĂǇƐ�ŽƉĞƌĂƟŶŐ�
a line could be plotted instead of it as shown  

 
 

Fig.  4.14.b Component 2a always functioning in Fig 14.14 
 

ŝŶ�&ŝŐ͘�ϭϰ͘ϭϰ͘ď� �Žƌ�&ŝŐϭϰ͘ϭϰ͘c.  Now we have a series combination of two 
ƉĂƌĂůůĞů�ĐŽŶĮŐƵƌĂƟŽŶƐ͕�ϭĂ�ĂŶĚ�ϭď�ŝŶ�ƚŚĞ�ĮƌƐƚ�ĂŶĚ�ϯĂ�ĂŶĚ�ϯď�ŝŶ�ƚŚĞ�ƐĞĐŽŶĚ͖�
ƐŝŶĐĞ� ĐŽŵƉŽŶĞŶƚ� Ϯď� ŝƐ� ĂůǁĂǇƐ� ďǇƉĂƐƐĞĚ͕� ŝƚ� ŚĂƐ� ŶŽ�ĞīĞĐƚ�ŽŶ the value of  
�ା. Therefore  ǁĞ� ŚĂǀĞ� ĂŶ� Z��� ƐŚŽǁŶ� ŝŶ� &ŝŐ� ϭϰ͘ϭϰ͕� ǁŚŽƐĞ� ƌĞůŝĂďŝůŝƚǇ� ŝƐ�
given by 
��ሺ�ȁ�ഥሻ ൌ �ା ൌ 
ሺ�ଵ ൅ �ଵ െ �ଵ�ଵሻሺ�ଷ ൅ �ଷ െ �ଷ�ଷሻ ൌ ሺʹ�ଵ െ �ଵଶሻሺʹ�ଷ െ �ଷଶሻ ֜ 
�ା ൌ ሺͳ െ ሺͳ െ �ଵሻሺͳ െ �ଵሻሻሺͳ െ ሺͳ െ �ଷሻሺͳ െ �ଷሻሻ 

 
 

Fig14.14.c�  RBD of the system of Fig 14.14 when component  
                     2a always functioning 
                        

  Substituting �ା����ି�in the following formula (Bayes� rule) 
� ൌ �ሼ�ሽ ൌ ��ሺ�ȁ�ሻ��ሺ�ሻ ൅ ��ሺ�ȁ�ഥሻ��ሺ�ഥሻ ൌ �ିሺͳ െ �ଶሻ ൅ �ା�ଶ, 

ϯĂ 

ϯď 

ϭa��

ϭď Ϯď 
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We have: 
� ൌ ��ሺ�ሻ ൌ �ଵ�ଶ�ଷሺͳ െ �ଶሻ ൅
 
As an exerciƐĞ�ĐŽŵƉƵƚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ƚŚĞ�ƐǇƐƚĞŵ�ŝŶ�&ŝŐϭϰ͘ϭϭ�ŝĨ�ƚŚĞ�
reliability of each component ŝƐ�Ϭ͘ϵϱ
 
Example ϭϰ͘ϭϱ�;ďĂƐĞĚ�ŽŶ��ŚŝůůŽŶ͕ϮϬϬϲ�ƉĂŐĞϰϳͿ
Find the reliability of a system with  the following RBD.

Solution 
dŚĞ� ĚĞůƚĂ� ĐŽŶĮŐƵƌĂƟŽŶ� ŽĨ� ƌϭсƌϮсƌϯсϬ͘ϵс
ĐŽŶĮŐƵƌĂƟŽŶ�ǁŚŽƐĞ�ϯ�ĐŽŵƉŽŶĞŶƚƐ�ŚĂƐ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�

=

Replacing the delta configuration with its
following RBD whose reliability could be easily calculated. 
 

 
Universal Generating Function(
  In recent years an approach called the
technique has been applied to reliability analysis, especially in systems with 
multi-state components (MSSϭ).
generation function or z-transform. To become acquainted with this 
function and the related technique, there are a lot of references in the
internet. 
 

                                                          
ϭ multi state system 

2 3
1 2 3R R R r r r      

Control 

ϯϱϱ 

 

ሻ ൅ ሺʹ�ଵ െ �ଵଶሻሺʹ�ଷ െ �ଷଶሻ�ଶǤ 
ƐĞ�ĐŽŵƉƵƚĞ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ�ƚŚĞ�ƐǇƐƚĞŵ�ŝŶ�&ŝŐϭϰ͘ϭϭ�ŝĨ�ƚŚĞ�

ŝƐ�Ϭ͘ϵϱ. 

;ďĂƐĞĚ�ŽŶ��ŚŝůůŽŶ͕ϮϬϬϲ�ƉĂŐĞϰϳͿ 
Find the reliability of a system with  the following RBD. 

 

dŚĞ� ĚĞůƚĂ� ĐŽŶĮŐƵƌĂƟŽŶ� ŽĨ� ƌϭсƌϮсƌϯсϬ͘ϵс�୼ has an  equivalent star 
ĐŽŶĮŐƵƌĂƟŽŶ�ǁŚŽƐĞ�ϯ�ĐŽŵƉŽŶĞŶƚƐ�ŚĂƐ�ƚŚĞ�ƌĞůŝĂďŝůŝƚǇ�ŽĨ��ଢ଼  derived from: 

=Ϭ͘ϵϵϬϱ͘ 

tion with its equivalent star results in the 
reliability could be easily calculated.  

 

iversal Generating Function(  UGF) 
In recent years an approach called the universal generating function (UGF) 

technique has been applied to reliability analysis, especially in systems with 
).  UGF is actually an extension of probability 

transform. To become acquainted with this 
function and the related technique, there are a lot of references in the  
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ͳͶǤͶ�Availability 
  For repairable systems a fundamental quantity of interest is the 
availability, defined as follows: 
Availability is the probability that a system is available for use at a given 
ƟŵĞ�;>ĞǁŝƐ͕ϭϵϵϰ�ƉĂŐĞ�ϯϬϬͿ͘ 
 
14.4.1  Availability function 
   The probability that a system is performing satisfactorily at time t is 
referred to as  instantaneous or point availability or  availability function 
denoted by A(t):  
 
A(t) = probability that a system is performing satisfactorily at time t. 
 
14.4.1.1   
Availability function of  a device with exponential life  
  If the lifetime(time to failure) follows an exponential distribution with 
parameter Ȝ and the  time to repair follows another exponential 
distribution with parameter �� , then A(t) 
/Ɛ�ŐŝǀĞŶ�ďǇ�;'ĂƌŽƐŚ͕ϭϵϴϵ͖�<ĂƉƵƌΘ>ĂŵďĞƌƐŽŶ͕ϭϵϳϲ�ƉĂŐĞ�ϮϮϳͿ: 

 
For an irreparable device or equipment whose lifetime is exponentially 
distributed, the function A(t) equals the reliability function i.e. R(t); this is 
easily proved by substituting ߤ ൌ Ͳ in the above relationship. 
 
14.4.1  Interval availability  
   Interval availability is just the value of the availability function 
averaged over some interval of time T. This interval may be the 
design life of the system or the time to accomplish some particular 
mission. The interval availability,כܣሺܶሻ is defined by ;>ĞǁŝƐ͕ϭϵϵϰ͕ƉĂŐĞ�ϯϬϬͿ 

 
14.4.2  Steady- state(Long-term) Availability 
    Long-term availability of the system is the mean proportion of time 
when the system is functioning  ;ZĂƵƐĂŶĚ� ĂŶĚ� ,ŽǇůĂŶĚ͕� ϮϬϬϰͿ� Žƌ� ƚŚĞ�
probability that the system is functioning in the long time.   Limiting or 
Long-term availability,  denoted by A,  is defined as ;ZŽƐƐ͕ϭϵϴϱ͕�ƉĂŐϭ�ϰϬϭ͕�
<ĂƉƵƌ�ĂŶĚ�>ĂďĞƌƐŽŶ͕ϭϵϳϳ�ƉĂŐĞ�ϮϮϴ): 

ܣ ൌ ���௧ืஶ  .ሻݐሺܣ
 

( )( ) 0tA t e t  
   

   
 
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ϯϱϳ 

 

If the life time of the product and also the repair time are exponentially 
distributed with parameters ߤ�݀݊ܽ��ߣ  respectively  the Long-term 
availability would be calculated as follows: 

 
 

 

or 

ܣ ൌ ܨܤܶܯ
ܨܤܶܯ ൅ܴܶܶܯǤ 

       Fortunately, if the repair time follows another continuous distribution 
other than exponential(such a logarithmic normal)with  mean MTTR.  the 
same above  result would be  obtained for the limiting availability A (Kapur 
ĂŶĚ�>ĂŵďĞƌƐŽŶ͕�ϭϵϳϳƉĂŐĞ�ϮϮϴͿ.  
     
Then the less the time to repair a system or equipment the more its 
availability i.e. the more the faction of time that the item performs  the 
required function.  
 
Example  ϭϰ͘ϭϲ 
  Suppose the  lifetime Ă� ĚĞǀŝĐĞ�ĞǆƉŽŶĞŶƟĂůůǇ� ĚŝƐƚƌŝďƵƚĞĚ�ǁŝƚŚ�ŵĞĂŶ�ϭϬϬ�
hours.    What should be  mean of the repair time In order to have the 
steadǇ�ƐƚĂƚĞ�ĂǀĂŝůĂďŝůŝƚǇ�ŽĨ��ϵϴ͘ϱй? 
 

         hr. 

 
ͳͶǤͶǤ͵ Calculation of system availability from mean on 
&off  times 
  If in a system,  the ith component's on &off distributions are arbitrary 

distributions with means 
ଵ
஛౟ � ǡ

ଵ
ρ౟͕�ƌĞƐƉĞĐƟǀĞůǇ� ŝсϭ͕Ϯ͕͙͕Ŷ͖� � ŝt follows from the 

theory of alternating renewal processes, for the limiting  availability of the 
ith ĐŽŵƉŽŶĞŶƚ�ǁĞ�ĐĂŶ�ǁƌŝƚĞ�;ZŽƐƐ͕ϭϵϴϱ�ƉĂŐĞ�ϰϬϮͿ͗ 

( )( ) 0tA t e t  
   

   
 

1

lim ( )
1 1t

A A t


  

  
  


    

 

MTTRMTBF

MTBF
A


 52.1

100

100
985.0 


 MTTR

MTTR
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where  

ଵ
஛౟ �Ƭ��

ଵ
ρ౟� are the mean time that the ith component is on and off 

times. 
The steady state availability of the system is calculated from: 

 
where    

 is  the limiting (steady state)  availability of the ith component, 

��is the reliability function of the n-component system. 

 
For example if the configuration of n components is series, we have: 
 

 

 

) 

 
if the configuration of n-component system is parallel, then: 
 

 

 
The steady-state availability of a non-ƌĞƉĂŝƌĂďůĞ�ƐǇƐƚĞŵ�ŝƐ�ǌĞƌŽ;>ĞǁŝƐ͕ϭϵϵϰ�
ƉĂŐĞϯϬϭͿ 

( )

1

1 1
i

i i

A t Ai i


 

 



1 1

1( , ..., ) ( , ..., )1 1 1 1 1

1 1

nA f A A fn

n n

 

   

 
 

iA

),...,( 1 nRRf

nnsys RRRRfR  ...),...,( 11

( )

1

1 1
i

i i

A t Ai i


 

 



1 11 1

1 1( , ..., ) ( , ..., ) ...1 1 1 1 1 1 1 1 1

1 1 1 1

n nA f A A fn

n n n n

  

       

    
   

)1(...).1(1),...,( 11 nnsys RRRRfR 

) )

1 11 1

1 1( , ..., ) ( , ..., ) 1 (1 ... (11 1 1 1 1 1 1 1 1

1 1 1 1

n nA f A A fn

n n n n

  

       

       
   
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It is worth mentioning that the reliability and availability of a unit, device  
ĞƋƵŝƉŵĞŶƚ� ͕� ƐǇƐƚĞŵ͕�ĞƚĐ͙�ŚĂǀĞ�Ă�ǀĂůƵĞ�ďĞƚǁĞĞŶ�Ϭ�ĂŶĚ�ŽŶĞ͘� � ^ŽŵĞ�ƟŵĞƐ�
for a special product one of them is very low and the other is high e.g. the 
ƌĞůŝĂďŝůŝƚǇ�ŽĨ�Ă�ƐǇƐƚĞŵ�ŵŝŐŚƚ�ďĞ�Ϭ͘ϬϮ�Žƌ�Ϯй�ĂŶĚ�ŝƚƐ�ĂǀĂŝůĂďŝůŝƚǇ�ďĞ�ϵϴй͘ 
 
�ǆĂŵƉůĞ�ϭϰ͘ϭϳ 
   A  system ŝƐ� ĐŽŵƉƌŽŵŝƐĞĚ� ŽĨ� Ϯ� ĚĞǀŝĐĞƐ� ͗Ă� ĐŽŵƉƌĞƐƐŽƌ� ǁŝƚŚ� ĐŽŶƐƚĂŶƚ�
ĨĂŝůƵƌĞ� ƌĂƚĞ� ϴϬ͘ϯϳ� ĨĂŝůƵƌĞƐ� ƉĞƌ� ϭ� ŵŝůůŝŽŶ� ǁŽƌŬŝŶŐ� ŚŽƵƌƐ� ĂŶĚ� DddZ� ϴϵϵ͘ϯ�
hours.  The other device has a ĐŽŶƐƚĂŶƚ� ĨĂŝůƵƌĞ� ƌĂƚĞ� ϰ͘ϳϴ� ĨĂŝůƵƌĞƐ� ƉĞƌ� ϭ�
million hours ĂŶĚ�DddZ�ϴϵϬ͘ϯ�ŚŽƵƌƐ͘��&ŝŶĚ� 
a)The reliability of the components of the system for a mission time of 
ϮϲϮϴϬ�ŚŽƵƌƐ and the corresponding steady �state availability; 
b) The reliability of the series ƐǇƐƚĞŵ�ĨŽƌ�Ă�ŵŝƐƐŝŽŶ�ƟŵĞ�ŽĨ�ϮϲϮϴϬ�ŚŽƵƌƐ�ĂŶĚ�
its steady �state availability. 
 
Solution   
  Constant failure rate imply exponentially distributed lifetime. 
a) 
Compressor: 
 
Dd�&сϭͬ;ϴϬ͘ϯϳൈ ͳͲି଺ͿсϭϮϰϰϮ͘ϰ 

R(t)=exp-(t/MTBF) 

Z;ϮϲϮϴϬͿсĞǆƉ�;-ϮϲϮϴϬൈϴϬ͘ϯϳൈ ͳͲି଺ͿсϬ͘ϭϮϭϬ 

=ଵܣ
ெ்஻ி

ெ்஻ிାெ்்ோ ൌ
ଵଶସସଶǤସ

ଵଶସସଶǤସା଼ଽǤଷс�Ϭ͘ϵϵϮϵ 

The device: 

Dd�&сϭͬ;ϰ͘ϳϴൈ ͳͲି଺Ϳс�ϮϬϵϮϬϱ�Śƌ�� 
Z;ϮϲϮϴϬͿс exp(-ϮϲϮϴϬൈϰ͘ϳϴൈ ͳͲି଺Ϳс�Ϭ͘ϴϴϭϵ 

=ଶܣ
ெ்஻ி

ெ்஻ிାெ்்ோ ൌ
ଶ଴ଽଶ଴ହ���

ଶ଴ଽଶ଴ହ�ା଼ଽǤଷсϬ͘ϵϵϵϱϳ 

b) 

The  system has a series configuration then  

ܴ௦௬௦ ൌ ݂ሺܴଵǡ ܴଶሻ ൌ ܴଵ ൈ ܴଶ� 
�ܴ௦௬௦ ൌ ͲǤͳʹͳͲ ൈ ͲǤͺͺͳͻ ൌ ͲǤͳͲ͸͹ 



�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ 

ϯϲϬ 

 

ܣ ൌ ݂ሺܴଵ ൌ ଵǡܣ ܴଶ ൌ ଶሻܣ ൌ ଵܣ ൈ  ଶܣ

�сϬ͘ϵϵϮϵΎϬ͘ϵϵϵϱϳсϬ͘ϵϵϮϱ͘ 

ͷͺǤͺǤ͸Ǥͷ  Steady- state Availability and Preventive Maintenance 
 

  Maintainability affects availability.  The time required to repair the system  
or run the preventive maintenance makes the system unavailable.   There 
is a close relationship between reliability and  maintainability ; both of the 
affect availability and costs.  In the long-term where the repair and 
preventive maintenance (PM)take place with constant rate after the tran- 
sient period, the steady-state availability is given by 
;KΖ�ŽŶŶŽƌ͕ϮϬϬϰ͕ƉĂŐĞϰϬϭͿ͗ 
 

 
where          
PMcycle     
is the time period required to run the preventive maintenance say every 
ϭϬϯ hours,       
PMtime (total) 
Is the total time required for accomplishing all repair and PM actions. 

ͳͶǤͷ Acceptance sampling based on product lifetime 
    This section introduces some acceptance sampling procedures which 
accept or reject a lot based on lifetime; also a handbook containing such 
procedures will be introduced.  But before dealing with  the procedures,  
you will get acquainted with plotting OC curves in the field of reliability. 
    Operating characteristic (OC) curves are strong tools in quality control; 
they display the discriminatory power of sampling procedures and plans.  
One application of  them is helping to compare acceptance sampling plans 
with each other.  /Ŷ��ŚĂƉƚĞƌ�ϭϬ͕�Ă kind of  OC curve  for a single sampling  
plan n & c was discussed; the curve showed the  probability of acceptance 
as a function of proportion of defective items. The following section deals 
with  those OC curves in which the acceptance probability of a lot of a 
special product is plotted versus a parameter such as the product mean 
lifetime or the product reliability.  
 
 
 
 

( )

MTBF PMcycle
A

MTBF MTTR PMcycle PMtime total
 

 
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14.5.1  OC Curve for Acceptance Sampling Plans based 
on Mean Lifetime 
   To plot the curve a random sample from the lot is taken and tested; if the 
sample meets a special criterion, the lot will be accepted. 
 
 

Example ϭϰ͘ϭϴ  ;ďĂƐĞĚ�ŽŶ�'ƌĂŶƚΘ>ĞĞǀĞŶǁŽƌƚŚ͕ϭϵϴϴ�ƉĂŐĞ�ϱϴϱͿ 
  Consider the following acceptance sampling plan to be taken from a 
largish lot and plot its OC curves using various MTTF. 
The plan is as follows: 
dĂŬĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ϮϮ�ƵŶŝƚƐ� ĨƌŽŵ�ƚŚĞ� ůŽƚ�ŽĨ�ƉƌŽĚƵĐƚ͕�ĂŶĚ�ĂƉƉůǇ� ůŝĨĞ�
test. Whenever an item fails, replace it with another item selected at 
random from the lot.  If the test continues for ϱϬϬ�Śr witŚ�ŶŽ�ŵŽƌĞ�ƚŚĂŶ�Ϯ�
ĨĂŝůƵƌĞƐ͕� ĂĐĐĞƉƚ� ƚŚĞ� ůŽƚ͘� � /Ĩ� ϯ� ĨĂŝůƵƌĞƐ ΀� Žƌ� ŵŽƌĞ΁� ŽĐĐƵƌ� ďĞĨŽƌĞ� ϱϬϬ� Śr of 
testing. Terminate the test and reject the lot. 
Solution   
   We suppose simultaneous tesƟŶŐ�ŽĨ�ϮϮ�ƵŶŝƚƐ�ĨŽƌ�ϱϬϬ�ŚŽƵƌƐ�Žƌ�ϭϭϬ�ƵŶŝƚƐ�
ĨŽƌ�ϭϬϬ�ŚŽƵƌƐ��Žƌ�ϭϭϬϬϬ�ƵŶŝƚƐ�ĨŽƌ�ϭ�ŚŽƵƌ�ŐŝǀĞ�ƚŚĞ�ƐĂŵĞ�ƌĞƐƵůƚƐ͘�dŽ�ƉůŽƚ�ƚŚĞ�
K�� ĐƵƌǀĞ͕� ŶŽƚĞ� ƚŚĂƚ� ƚŽƚĂůůǇ� ǁĞ� ŚĂǀĞ� ϮϮ� ϱϬϬсϭϭϬϬϬ� ŝƚĞŵ-hours with 

ĂĐĐĞƉƚĂŶĐĞ�ŶƵŵďĞƌ�Đс�Ϯ͘��ƐƐƵŵĞ�ƚŚĞ��ĨĂŝůƵƌĞ�ƉƌŽďĂďŝůŝƚǇ�ŝƐ�ƚŚĞ�ƐĂŵĞ�ĨŽƌ�Ăůů�
ϭϭϬϬϬ� ƵŶŝƚ-hours.  Define the problem as a single acceptance sampling 
ƉůĂŶ�ǁŝƚŚ�ŶсϭϭϬϬϬ͕ĂŶĚ�ĐсϮ͕ůĞƚ͗ 
 X�= ŶƵŵďĞƌ�ĨĂŝůƵƌĞƐ�ŝŶ�ϭϭϬϬϬ�ƵŶŝƚ-ŚŽƵƌƐ�ĚƵƌŝŶŐ�ϭ�ŚŽƵƌ�ƚĞƐƚ͕dŚĞŶ 

given 
  The probability of failure of one unit in an hour,  

or 
  the failure rate of one unit per hour or the failure probability of 

one unit-hour 
 or 

  the proportion of binomial distribution p'� 
given 

mean of number of failures in a sample of ϭϭϬϬϬ  
 
Here ߣ�ŚĂƐ�Ă�ǀĂůƵĞ� ůĞƐƐ�ƚŚĂŶ�ϭ�ĂŶĚ� ŝƐ� ŝŶƚĞƌƉƌĞƚĞĚ�ĂƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�ƚŚĞ�
failure of one unit  in an hour. 
The failure rate  ߣ takes the place of  fraction nonconformities(Grant & 
>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ͕ƉĂŐĞ�ϱϴϲͿ͘� � dŚĞŶ� ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ� ƚŚĂƚ� Ă�ƵŶŝƚ� ĨĂŝůƐ� ŝŶ� ĂŶ�
hour is ߣǤ   To plot the OC curve, the exact  value of lot acceptance 
probability corresponding to a particular ݌ᇱ could be calculated from: 
Pa=ďŝŶŽĐĚĨ;Ϯ͕ŶсϭϭϬϬϬ͕p'=ɉ).   
The approximate probability for various ݊݌ᇱmay be calculated from 
Pa؆ƉŽŝƐƐĐĚĨ;Ϯ͕ŶƉΖͿ͘ 

2Pr(  XPa

Pr( 2 |X 
)'11000 np 
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�Ɛ� ƐƚĂƚĞĚ� ĞĂƌůŝĞƌ͕� ŝŶ� ĐŚĂƉƚĞƌ� ϭϬ͕� WĂ� ǁĞƌĞ� ƉůŽƩĞĚ� ǀĞƌƐƵƐ� ƉΖ.  But in this 

chapter the horizontal axis is either the product mean life ( ș ൌ ଵ
஛��� or the 

ƉƌŽĚƵĐƚ� ƌĞůŝĂďŝůŝƚǇ͘� �dĂďůĞ�ϭϰ-ϭ�ƐŚŽǁƐ�ƚŚĞ�ƉƌŽďĂďŝůŝƟĞƐ� ĨŽƌ�ƐŽŵĞ values of  
ș.   &ŝŐƵƌĞ�ϭϰ-ϭϱ�ƐŚŽǁƐ�ƚŚĞ�ĐŽƌƌĞƐƉŽŶĚŝŶŐ�K��ĐƵƌǀĞ͘��� 
      To know how Pa is calculated , suppose ;  ƐŝŶĐĞ� ŶсϭϭϬϬϬ�
then .  The approximate value for Pa from Poisson 
CDF table : � .  The exact value of Pa is 

calculable from MATLAB  : 
ܲܽ ൌ ��ሺ൑ ʹሻ ൌ �������ሺʹǡͳͳͲͲͲǡ ͲǤͲͲͲ͵ሻ ൌ ͲǤ͵ͷͻͶǤ 
 

dĂďůĞ�ϭϰ-ϭ Acceptance probability  of in ExamƉůĞ�ϭϰ͘ϭϱ�ĨŽƌ�
various mean lifetimes ;'ƌĂŶƚ�>ĞĂǀĞŶǁŽƌƚŚ͕ϭϵϴϴ͕WĂŐĞϱϴϲͿ 

 Calculation of OC curve for acceptance sampling plan ƌĞƋƵŝƌŝŶŐ�ϭϭ͕ϬϬϬ�ŝƚĞŵ�
ŚŽƵƌƐ�ŽĨ�ůŝĨĞ�ƚĞƐƟŶŐ�ǁŝƚŚ�ĂŶ�ĂĐĐĞƉƚĂŶĐĞ�ŶƵŵďĞƌ�ŽĨ�Ϯ. Calculation assumes 

that the failure rate is independent of the age of the item tested 

Failure 
rate per 
hour, 

ɉ ൌ  ᇱ݌

Mean life 

hours 

Expected average number 
of failures ŝŶ�ϭϭ͕ϬϬϬ�ƚĞƐƚ�
hours 

( ) 

Probability of acceptance 
;ƉƌŽďĂďŝůŝƚǇ�ŽĨ�Ϯ�or less 
failures) from 
Poisson distribution 

 
Ϭ͘ϬϬϬϬϮ ϱϬϬϬϬ Ϭ͘ϮϮ Ϭ͘ϵϵϵ 
Ϭ͘ϬϬϬϬϱ ϮϬϬϬϬ Ϭ͘ϱϱ Ϭ͘ϵϴϮ 
Ϭ͘ϬϬϬϬϲ ϭϲϲϲϳ Ϭ͘ϲϲ Ϭ͘ϵϳϭ 
Ϭ͘ϬϬϬϬϴ ϭϮϱϬϬ Ϭ͘ϴϴ Ϭ͘ϵϯϵ 
Ϭ͘ϬϬϬϭϬ ϭϬϬϬϬ ϭ͘ϭ Ϭ͘ϵϬϬ 

 Ϭ͘ϬϬϬϭϮϱ ϴϬϬϬ ϭ͘ϯϳϱ Ϭ͘ϴϯϵ 
Ϭ͘ϬϬϬϭϱ ϲϲϲϳ ϭ͘ϲϱ Ϭ͘ϳϳϬ 
Ϭ͘ϬϬϬϮϬ ϱϬϬϬ Ϯ͘Ϯ Ϭ͘ϲϮϯ 
Ϭ͘ϬϬϬϮϱ ϰϬϬϬ Ϯ͘ϳϱ Ϭ͘ϰϴϬ 
Ϭ͘ϬϬϬϯϬ ϯϯϯϯ ϯ͘ϯ Ϭ͘ϯϲϬ 
Ϭ͘ϬϬϬϰϬ ϮϱϬϬ ϰ͘ϰ Ϭ͘ϭϴϱ 
Ϭ͘ϬϬϬϱϬ ϮϬϬϬ ϱ͘ϱ Ϭ͘Ϭϴϴ 
Ϭ͘ϬϬϬϲϬ ϭϲϲϳ ϲ͘ϲ Ϭ͘ϬϰϬ 
Ϭ͘ϬϬϬϴϬ ϭϮϱϬ ϴ͘ϴ Ϭ͘ϬϬϳ 

 
The following MATLAB commands plots the OC curve.  
ƉсϭͬϭϳϬϬϬ͗͘ϬϬϬϬϭ͗ϭͬϭϬϬϬ͖WĂсďŝŶŽĐĚĨ;Ϯ͕ϭϭϬϬϬ͕ƉͿ͖ƉůŽƚ;ϭͬ͘Ɖ͕WĂͿ 

0.0003 
' 11000 3.3np  

Pr( 2) 0.359 0.360aP X   




 1


' 11000np 

Pr( 2)Pa X 
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Fig. 14-15 OC curve  for 
(Probability of acceptance versus 

 
Example ϭϰ͘ϭϵ 
  &ŝŐƵƌĞ� ϭϰ-ϭϲ�  ƐŚŽǁƐ� ƚŚĞ� K�� ĐƵƌǀĞƐ� ĨŽƌ� ƚŚĞ� ĨŽůůŽǁŝŶŐ� Ϯ� ĂĐĐĞƉƚĂŶĐĞ�
sampling plans:  ŶсϭϬ͕�Đсϭ�͕�dсϱϬϬ
The commands used for plotting the curves in M
Ɖсϭ͗-͘ϬϬϬϭ͗͘ϬϬϬϮϬ͖WĂсďŝŶŽĐĚĨ;ϭ͕ϱϬϬϬ͕ƉͿ͖ƉůŽƚ;ϭͬ͘Ɖ͕WĂͿ͖
WĂсďŝŶŽĐĚĨ;ϯ͕ϭϭϬϬϬ͕ƉͿ͖ƉůŽƚ;ϭͬ͘Ɖ͕WĂͿ
 

Fig 14.16   The OC curves of Example 
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 OC curve  for Example 14.15 

robability of acceptance versus mean life). 

ƐŚŽǁƐ� ƚŚĞ� K�� ĐƵƌǀĞƐ� ĨŽƌ� ƚŚĞ� ĨŽůůŽǁŝŶŐ� Ϯ� ĂĐĐĞƉƚĂŶĐĞ�
ŶсϭϬ͕�Đсϭ�͕�dсϱϬϬ,ŶсϮϮ͕�Đсϯ�͕�dсϱϬϬ. 

The commands used for plotting the curves in MATLAB were: 
͘ϬϬϬϭ͗͘ϬϬϬϮϬ͖WĂсďŝŶŽĐĚĨ;ϭ͕ϱϬϬϬ͕ƉͿ͖ƉůŽƚ;ϭͬ͘Ɖ͕WĂͿ͖ hold  on; 

WĂсďŝŶŽĐĚĨ;ϯ͕ϭϭϬϬϬ͕ƉͿ͖ƉůŽƚ;ϭͬ͘Ɖ͕WĂͿ; 

 
   The OC curves of Example 14.16. 

2000 3000 4000 5000

X: 3333
Y: 0.5803

1/p   p=proportion defective

 C=3    n=10  C=1
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The figures could be interpreted according what you have leaned in the 
subject of OC curve in Chapter  ϭϬ͘ 
 
 14.5.2 OC Curve for Acceptance Sampling Plans based  
            on Reliability 
   To plot  Pa versus R for the  OC curve  of a single sampling plan with 
sample size n & acceptance number c, used for inspecting large lots , take a 
random sample of size n and test all the n products for a time period T.  
Each product  has a succeeding probability of R, which is the product 
reliability for time T.  The probability that the number of failures observed 
during the test�time, X, is less than or equal to  c, which is the number of 
allowable failures in n trials is  given by: 

�� ൌ ��ሺ� ൑ �ሻ ൌ෍ ቀ��ቁ
ୡ

୶ୀ଴
ሺͳ െ �ሻ୶�୬ି୶Ǥ 

 This is a relationship for plotting Pa versus R.  
 
Example ϭϰ͘ϮϬ 
  Plot the OC curve  based on reliability for the single sampling plan of 
ŶсϭϬ͕�ĐсϮ͘��dĂŬĞ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ƌĞůŝĂďŝůŝƚǇ�ƉŽŝŶƚƐ�ŽŶ�ƚŚĞ�y-axis: 
Ϭ͘ϭ��Ϭ͘Ϯ��Ϭ͘ϯ��Ϭ͘ϰ���Ϭ͘ϱ��Ϭ͘ϲ��Ϭ͘ϳ��Ϭ�͘ϴ��Ϭ͘ϵ�� 
 
Solution   
  The following  MATLAB commands are used to plot the curve shown in 
&ŝŐ͘ϭϰ͘ϭϳ: 
ZсϬ͗Ϭ͘ϭ͗ϭ͖�WĂс�ďŝŶŽĐĚĨ;Ϯ͕ϭϬ͕ϭ-R); plot(R,Pa) 
The figure shows the probability of accepting the lots versus various 
product reliability. 

 
Fig 14.17  OC curve for Plan n=10 , c=2. 
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ͳͶǤ͸   Acceptance Sampling based on life test 
  This section deals with introducing some tables for designing acceptance 
sampling plans  based on product lifetime . Several types of tables have 
been developed for acceptance sampling plans based on lifetime , with 
distributions such as Weibull and exponential.  
  

,�ϭϬϴ�^ĂŵƉůŝŶŐ�WƌŽĐĞĚƵƌĞƐ�ĂŶĚ�dĂďůĞƐ�ĨŽƌ�>ŝĨĞ�ĂŶĚ�ZĞůŝĂďŝůŝƚǇ�dĞƐƟŶŐ 
 
 is a work in this area based on exponential distribution and provides 
procedures and tables for life and reliability testing. ��The exponential 
distributionϭ is suitable for the portion A-B of bathtub-shaped failure rate 
ŵŽĚĞů�ƐŚŽǁŶ�ŝŶ�&ŝŐ͘�ϭϰ-Ϯ�ǁŚŽƐĞ�ĨĂŝůƵƌĞ�ƌĂƚĞ�ŝƐ�ƐŽŵĞ�constant ߣ.  The 
handbook includes  
-definitions required for the use of the life test sampling plans and 
procedures;  
-general description of life test sampling plans; 
-life tests terminated upon occurrence of pre-assigned number of failures;  
-life tests terminated at pre-assigned time; and 
- sequential life test sampling plans. 
For each test there are Ϯ�ŽƉƟŽŶƐ͗ 
 replacing the failed items during the test time  by new items or  not 
replacing.  
Below the�type �life tests terminated at pre-assigned time�  is used for 
testing the products of the sample. 
 
14.6.1 Acceptance Sampling  with life tests terminated at 
pre-assigned time together with replacement  
   In this procedure a number of products is taken at random from the lot 
and are tested simultaneously.  Whenever a product fails it is replaced by a 
new one.  The test continues for a pre-assigned time (T).  If the 
recorded number of failures at the end of the time point is less than  a 
rejection number (r), the lot will be accepted. 
   It has to be emphasized that If before the end of T- time test, a failure 
occurs it is replaced by  a new one, unless the number of failures before 
time T is equal to rejection number  r.  
  The rest of this section deal with specifying a procedure for accepting or 
rejecting the lot based on lifetime,  from the handbook, given the producer 
and consumer risks(Ƚ�ƬߚሻǤ  The procedures are described for the following 

                                                           
ϭ A goodness of fit test or Q-Q plot could be used to examine whether a 
distribution is exponential or not.  Bartlett�s test described at the end of this 
chapter deals with this. 
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ϯ� ĐĂƐĞƐ͕� ĞĂĐŚ� ŚĂǀŝŶŐ� ĂŶ� ĞǆƉŽŶĞŶƟĂů� ĚŝƐƚƌŝďƵƟŽŶ� ĨŽƌ� ƉƌŽĚƵĐƚ� ůŝĨĞtime and 
any of the following cases: 
െ�������Ƚ�Ƭߚ�together with  a restriction is on the sample size; 
െ�������Ƚ�ǡȾ�ǡ r and n  
െ������Ƚ�ǡȾ�and T  
 
ͷͺǤͼǤͷǤͷ 
����ͷǣ��������� a plan subject to  a restriction on sample size(n) 
given producer risk(ࢻሻ and consumer risk (ࢼሻ 
  In this case, as well as a constraint on sample size,݅�ߙ�Ǥ ݁Ǥ�   the probability 
of type I error for a mean life ߠ଴ǡ�and ߚ i.e.  the probability of type II error 
for mean life  ߠଵǡ ĂƌĞ� ŐŝǀĞŶ� ;ƐĞĞ� &ŝŐ͘� ϭϰ͘ϭϴͿ͘� � dŽ� ƐƉĞĐŝĨǇ� ƚŚĞ� ƉůĂŶ� ĚŽ� ƚŚĞ�
followings 

a)Calculate 
��஘భ
஘బ  , 

ďͿ�ǆƚƌĂĐƚ� ƚŚĞ� ĐŽĚĞ�ŽĨ� ƚŚĞ� ƉůĂŶ� ĨƌŽŵ� dĂďůĞ� ϭϰ-Ϯ͘� � � dŚĞ� ĐŽĚĞƐ� ďĞŐŝŶƐ�ǁŝƚŚ�
letters A,B,C,�.   
c)Extract the rejection number(r) from the table corresponding to the 
ůĞƩĞƌ�ĐŽĚĞ͘���&Žƌ�ĐŽĚĞ�ƵƐĞ���dĂďůĞ�ϭϰ-ϯ��ĂŶĚ�ĨŽƌ�ĐŽĚĞ���ƵƐĞ��dĂďůĞ�ϭϰ-ϰ͘��&Žƌ�
other codes refer to the handbook.   

 
Fig 14.18 the producer and consumer risks(ࢻ�Ƭࢼሻ 

 
d)To specify the test time, having calculated the given the ratio 

��஘భ
஘బ , read  

୘
஘బ  

ĨƌŽŵ�dĂďůĞ�ϭϰ-ϯ   if the code is A &�Ƚ ൌ ͲǤͲͳ and 
 ĨƌŽŵ�dĂďůĞ�ϭϰ-ϰ  if the code is B&�Ƚ ൌ ͲǤͲͷ.  If the exact ratio is not found 
ŝŶ�ƚŚĞ�ƚĂďůĞ͖�ĮŶĚ�ƚŚĞ�ŶĞǆƚ�ŐƌĞĂƚĞƌ�ƌĂƟŽ�ĂǀĂŝůĂďůĞ�ŝŶ�ƚŚĞ�ƚĂďůĞ͘�dĂďůĞ�ϭϰ-ϯ͕�
and TablĞ�ϭϰ-ϰ�ŐŝǀĞ�ĂůƐŽ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�;ĂƐ�Ă�ŵƵůƟƉůŝĞƌƐ�ŽĨ�ƌͿ͘��dhe steps 
are  illustrated below. 
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dĂďůĞ�ϭϰ-Ϯ�Codes of acceptance sampling plans;dĂďůĞ�Ϯ�-ϭŽĨ�,-ϭϬϴͿ 

 Ϭ͘Ϭϭ Ϭ͘Ϭϱ Ϭ͘ϭϬ Ϭ͘Ϯϱ Ϭ͘ϱϬ ࢻ
 Ϭ͘Ϭϭ Ϭ͘ϭϬ Ϭ͘ϭϬ Ϭ͘ϭϬ Ϭ͘ϭϬ ࢼ

code 
 

૚ࣂ
 ૙ࣂ

code 
 

૚ࣂ
 ૙ࣂ

code 
 

૚ࣂ
 ૙ࣂ

code 
 

૚ࣂ
 ૙ codeࣂ

 
૚ࣂ
 ૙ࣂ

A- ϭ Ϭ͘ϬϬϰ B- ϭ Ϭ͘ϬϮϮ C- ϭ Ϭ͘Ϭϰϲ D- ϭ Ϭ͘ϭϮϱ E- ϭ Ϭ͕ϯϬϭ 
A -Ϯ Ϭ͘Ϭϯϴ B- Ϯ Ϭ͘Ϭϵ C- Ϯ Ϭ͘ϭϯϳ D- Ϯ Ϭ͘Ϯϰϳ E- Ϯ Ϭ͕ϰϯϮ 
A- ϯ Ϭ͘ϬϴϮ B- ϯ Ϭ͘ϭϱϰ C- ϯ Ϭ͘ϮϬϳ D- ϯ Ϭ͘ϯϮϱ E- ϯ Ϭ͕ϱϬϮ 
A- ϰ Ϭ͘ϭϮϯ B- ϰ Ϭ͘ϮϬϱ C- ϰ Ϭ͘Ϯϲϭ D- ϰ Ϭ͘ϯϳϵ E- ϰ Ϭ͘ϱϱϬ 
A- ϱ Ϭ͘ϭϲϬ B- ϱ Ϭ͘Ϯϰϲ C- ϱ Ϭ͘ϯϬϰ D- ϱ Ϭ͘ϰϮϭ E- ϱ Ϭ͘ϱϴϰ 
A- ϲ Ϭ͘ϭϵϯ B- ϲ Ϭ͘ϮϴϮ C- ϲ Ϭ͘ϯϰϬ D- ϲ Ϭ͘ϰϱϱ E- ϲ Ϭ͘ϲϭϭ 
A- ϳ Ϭ͘ϮϮ B- ϳ Ϭ͘ϯϭ C- ϳ Ϭ͘ϯϳϬ D- ϳ Ϭ͘ϰϴϯ E- ϳ Ϭ͘ϲϯϯ 
A- ϴ Ϭ͘Ϯϰϳ B- ϴ Ϭ͘ϯϯϴ C- ϴ Ϭ͘ϯϵϲ D- ϴ Ϭ͘ϱϬϲ E- ϴ Ϭ͘ϲϱϮ 
A- ϵ Ϭ͘ϮϳϬ B- ϵ Ϭ͘ϯϲ C- ϵ Ϭ͘ϰϭϴ D- ϵ Ϭ͘ϱϮϲ E- ϵ Ϭ͘ϲϲϳ 
A-ϭϬ Ϭ͕Ϯϵ B-ϭϬ Ϭ͘ϯϴ C-ϭϬ Ϭ͘ϰϯϴ D-ϭϬ Ϭ͘ϱϰϰ E-ϭϬ Ϭ͘ϲϴϭ 
A-ϭϭ Ϭ͘ϯϳ B-ϭϭ Ϭ͘ϰϱϵ C-ϭϭ Ϭ͘ϱϭϮ D-ϭϭ Ϭ͘ϲϬϴ E-ϭϭ Ϭ͘ϳϮϵ 
A-ϭϮ Ϭ͕ϰϮϴ������� B-ϭϮ ϬϱϭϮ C-ϭϮ Ϭ͘ϱϲϭ D-ϭϮ Ϭ͘ϲϱϬ E-ϭϮ Ϭ͘ϳϱϵ 
A-ϭϯ Ϭ͘ϰϳϬ��� B-ϭϯ Ϭ͘ϱϱ C-ϭϯ Ϭ͘ϱϵϳ D-ϭϯ Ϭ͘ϲϴϬ E-ϭϯ Ϭ͘ϳϴϭ 
A-ϭϰ Ϭ͘ϱϬϰ B-ϭϰ Ϭ͘ϱϴ C-ϭϰ Ϭ͘ϲϮϰ D-ϭϰ Ϭ͘ϳϬϯ E-ϭϰ Ϭ͘ϳϵϴ 
A-ϭϱ Ϭ͘ϱϱϰ B-ϭϱ Ϭ͘ϲϮ C-ϭϱ Ϭ͘ϲϲϲ D-ϭϱ Ϭ͘ϳϯϳ E-ϭϱ Ϭ͘ϴϮϭ 
A-ϭϲ Ϭϱϵϭ B-ϭϲ Ϭ͘ϲϱ C-ϭϲ Ϭ͘ϲϵϱ D-ϭϲ Ϭ͘ϳϲϭ E-ϭϲ Ϭ͘ϴϯϴ 
A-ϭϳ Ϭ͘ϲϱϯ B-ϭϳ Ϭ͘ϳϭ C-ϭϳ Ϭ͘ϳϰϯ D-ϭϳ Ϭ͘ϴϬϬ E-ϭϳ Ϭ͕ϴϲϱ 
A-ϭϴ Ϭ͘ϲϵϴ B-ϭϴ Ϭ͘�ϳϰϱ C-ϭϴ Ϭ͘ϳϳϰ D-ϭϴ Ϭ͘ϴϮϰ E-ϭϴ Ϭ͕ϴϴϮ 

 Ƚ =prouder risk, the probability of rejecting the lot if the mean life is a desired life�����Ʌ଴ 
Ⱦ =consumer risk, the probability of accepting the lot if the mean life is a undesired life�Ʌଵ 
 
 
�ǆĂŵƉůĞ�ϭϰ͘Ϯϭ 
   To inspect lots of a kind of electrical resistance, design an accepting 
sampling plan with the following specifications. The life of the resistance is 
exponentially distributed. 
 If the mean life ߠ଴�ŝƐ�ϵϬϬ�ŚŽƵƌƐ͕�ϵϱй�ŽĨ��ƚŚĞ�ůŽƚƐ�ďĞ�ĂĐĐĞƉƚĞĚ͖ 
 If the mean life ߠଵ�ŝƐ�ϯϬϬ�ŚŽƵƌƐ͕�ϭϬй�ŽĨ��ƚŚĞ�ůŽƚƐ�ďĞ�ĂĐĐĞƉƚĞĚ͖ 
Answer 

a)Calculation of 
��ఏభ
ఏబ  : 

Ʌଵ
Ʌ଴ ൌ

���������������������Ⱦ��
���������������������ͳ െ Ƚ ൌ

͵ͲͲ
ͻͲͲ ൌ ͲǤ͵͵ǡ 

b)Reading the code B-ϴ� fƌŽŵ� dĂďůĞ� ϭϰ-Ϯ� ƵŶĚĞƌ� ƚŚĞ� ĐŽůƵŵŶ�Ƚсϱй� Ƭ 
Ⱦ ൌ ͳͲΨǤ 
ĐͿ&ƌŽŵ�dĂďůĞ�ϭϰ-ϰ�ƌĞũĞĐƟŽŶ�ŶŽсƌс�ϴ�ŝŶ�ĨƌŽŶƚ�ŽĨ�ĐŽĚĞ��-ϴ͘� 
ĚͿdŽ�ƐƉĞĐŝĨǇ�ƐĂŵƉůĞ�ƐŝǌĞ;ŶͿ�ĂŶĚ�Ă�ƟŵĞ�ĨŽƌ�ƚŚĞ�ƚĞƐƚ�ŝ͘Ğ͘�d��ĨƌŽŵ�dĂďůĞ�ϭϰ-ϰ͕�
ǀĂƌŝŽƵƐ� Ŷ� ĐĂŶ� ďĞ� ƐĞůĞĐƚĞĚ͘� ^ƵƉƉŽƐĞ� ĨŽƌ� ƐŽŵĞ� ƌĞĂƐŽŶƐ� Ŷсϰƌŝ͘Ğ� ŶсϯϮ� � ŝƐ�
selected.   
&ƌŽŵ�dĂďůĞ�ϭϰ-ϰ��Ăƚ�ƚŚĞ�ŝŶƚĞƌƐĞĐƟŽŶ�ŽĨ��ĐŽůƵŵŶ�ϰƌ�ĂŶĚ�ƌŽǁ���-ϴ�ฺ 



�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ 

ϯϲϴ 

 

୘
஘బ ൌ ͲǤͳʹͶǤฺ � ൌ ͲǤͳʹͶ ൈ Ʌ଴ ൌ ͲǤͳʹͶ ൈ ͻͲͲ ൌ ͳͳͳǤ͸���. 
dŚĞƌĞĨŽƌĞ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ŶсϯϮ�ŝƐ�ƐĞůĞĐƚĞĚ�ĨƌŽŵ�ƚŚĞ�ůŽƚ͖�Ăůů�ŝƚĞŵƐ�
of the sample are put on test; when an item fails, it is replaced by a new 
ŝƚĞŵ͘� /Ĩ�ďĞĨŽƌĞ�ƚŚĞ�ĞŶĚ�ŽĨ�ƚŚĞ�ƚĞƐƚ�ƟŵĞ�dсϭϭϭ͘ϲ�Śƌ� �ƚŚĞ�ƌĞĐŽƌĚĞĚ�ŶƵŵďĞƌ�
ĨĂŝůƵƌĞƐ�ƌĞĂĐŚĞĚ�ϴ�Žƌ�ĞǆĐĞĞĚĞĚ�ŝƚ͕�ƌĞũĞĐƚ�ƚŚĞ�ůŽƚ͖�ŽƚŚĞƌǁŝƐĞ���ŝĨ�ƚŚĞ�ƟŵĞ�dс�
ϭϭϭ͘ϲ�ƉĂƐƐĞĚ�ĂŶĚ�ƚŚĞ�ĨĂŝůƵƌĞƐ�ĚŝĚ��ŶŽƚ�ƌĞĂĐŚ�ϴ͕�ĂĐĐĞƉƚ�ƚŚĞ�ůŽƚ͘ 

      EŽƚĞ�ƚŚĂƚ�ŝĨ�ƌсϴ͕�ĂŶĚ�Ŷсϲϰฺ͕� ்஘బ ൌ ͲǤͲ͸ʹ ฺ ܶ ൌ ͷͷǤͺ ൏ ͳͳͳǤ͸; then a 

factor affecting the sample size is a possible restriction on the test time . 
 
Example ϭϰ͘ϮϮ 

    Given 
஘భ
஘బсϬ͘ϬϮϮ͕�ƐƉĞĐŝĨǇ�Ă�ƐĂmpling plan for inspecting lots containing 

products with  exponential distributed lifetime , Ƚ ൌ ͷΨǡ Ⱦ ൌ
ͳΨ�and�Ʌ଴ ൌ ͳͲͲ�݄ݎ.  Design the test for about ϭϱ�ŚŽƵƌƐ͘ 
 
Solution We would examine some sample sizes by trial and error   
��ఏభ
ఏబ сϬ͘ϬϮϮ�dĂďůĞ�ϭϰ-Ϯ��          code=  B-ϭ�� �ƌ�с�ϭ 

 �n�с�ϲൈƌсϲ�dĂďůĞ�ϭϰ-ϰ������   
்
஘బ сϬ͘ϬϬϵ��� T =��ϵ�Śƌ�  

 �n�с�ϯൈƌсϯ�dĂďůĞ�ϭϰ-ϰ������   
்
஘బ сϬ͘Ϭϭϳ��� T =��ϭϳ�Śƌ� 

 �n�с�ϮൈƌсϮ�dĂďůĞ�ϭϰ-ϰ������   
்
஘బ сϬ͘ϬϮϲ��� T =��Ϯϲ�Śƌ� 

 
The procedure n=ϯ͕�ƌсϭ�ĂŶĚ�dсϭϳ is selected.  That is a random sample of 
size ϯ has to be  selected and the ϯ  products be tested simultaneously.  If 
before the end of  ϭϳ-hr test no failure happens, the lot has to be accepted; 
otherwise, rejected.  /Ĩ�ďĞĨŽƌĞ�ƚŚĞ�ĞŶĚ�ŽĨ�ϭϳ- hr test, a failure occurs it is 
replaced by  a new one, unless the numbĞƌ�ŽĨ�ĨĂŝůƵƌĞƐ�ďĞĨŽƌĞ�ϭϳϲ�Śƌ�ŝƐ�
ĞƋƵĂů�ƚŽ�ƌĞũĞĐƟŽŶ�ŶƵŵďĞƌ��ƌсϭ͘ 








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ϯϲϵ 

 

 

dĂďůĞ�ϭϰ-ϯ��sĂůƵĞƐ�ŽĨ�
܂
�૙
����for code A and �ൌ ૙Ǥ૙૚ 

  life tests terminated at pre-assigned time with replacement 
Master Table for Life Tests Terminated at Pre-assigned Time-Testing with Replacement 
�(Table 2C-2(a) Handbook H108) 

Code r 
Sample Size(n) 

2r 3r 4r 5r 6r 7r 8r 9r 10r 20r 

A-1 1 0.005 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.0005 

A-2 2 .037 .025 .019 .015 .012 .011 .009 .008 .007 .004 
A-3 3 .073 .048 .036 .029 .024 .021 .108 .016 .015 .007 
A-4 4 .103 .069 .051 .041 .034 .029 .026 .023 .021 .010 
A-5 5 .128 .085 .064 .051 .043 .037 .032 .028 .026 .013 
A-6 6 .149 .099 .074 .060 .050 .043 .037 .033 .030 .015 
A-7 7 .166 .111 .083 .067 .055 .048 .042 .037 .033 .017 
A-8 8 .182 .121 .091 .073 .061 .052 .045 .040 .036 .018 
A-9 9 .195 .130 .097 .078 .065 .056 .049 .043 .039 .019 

A-10 10 .207 .138 .103 .083 .069 .059 .052 .046 .041 .021 
A-11 15 .249 .166 .125 .100 .083�� .071 .062 .055 .050 .025 
A-12 20 .277 .185 .139 .111 .092 .079 .069 .062 .055 .028 
A-13 25 .297 .198 . 149 .119 .099 .085 .074 .066 .059 .030 
A-14 30 .312 .208 .156 .125 .104 .089 .078 .069 .062 .031 
A-15�� 40 .335 .223 . 167 .134 .112 .096 .084 .074 .067 .033 
A-16�� 50 .350 .234 .175 .140 .117 .100 .088 .078 .070 .035 
A-17 75 .376 .250 .188 .150 .125 .107 .094 .083 .075 .038 
A-18 100 .391 .261 .196 . 156 .130 .112 .098 .087 .078 .039 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ 

ϯϳϬ 

 

 
 
ͷͺǤͼǤͷǤ͸ 
����͸ǣ��������� a plan, given sample size(n),producer risk(ࢻሻ and 
rejection number(r) 
     To  designing a plan, given n, ࢻ and rejection number  r , at the outset 
ƌĞĂĚ�ƚŚĞ�ĐŽĚĞ��ĨƌŽŵ�dĂďůĞ�ϭϰ-Ϯ�ŐŝǀĞŶࢻ�. Since  n and r  are known, compute 

࢈ ൌ ࢔
࢈ under the column of .࢘ ൈ  �read࢘

ࢀ
 .૙ and then calculate Tࣂ

Example ϭϰ͘Ϯϯ 
    For lots  of products having  a lifetime exponentially distributed, design a 
ƉůĂŶ�ŶсϭϬ�ĂŶĚ ƌсϱ��including  a test terminated at pre-assigned time�with 
replacement� in such a way that for lots of mean life ߠ଴ ൌ ͳʹͲͲ�݄ݎǡ ߙ ൌ
ͲǤͲͷǤ 

dĂďůĞ�ϭϰ-ϰ��salues of 
ࢀ
ી૙����for code B and ࢻ ൌ ૙Ǥ૙૞����� 

life test terminated at pre-assigned time�with replacement� 
ሺ������ʹ�-ʹሺ�ሻ��������������-ͳͲͺ�	�����������������ǡͳ͵͹ʹ������ͷͶ͵ሻ 

Code r Sample size(n) 
Ϯr ϯƌ ϰƌ ϱƌ ϲr ϳƌ ϴƌ ϵr ϭϬr ϭϭr 

B-ϭ ϭ Ϭ͕ϬϮϲ ����� ����� �����  ����� ����� ����� ����� ����� ����� 

B-Ϯ Ϯ Ϭ͕Ϭϴϵ ����� ����� ����� �����  ����� ����� �����  ����� ���� 

B-ϯ ϯ Ϭ͕ϭϯϲ ����� ����� ����� ����� ����� ����� �����  ����� ����� 

B-ϰ ϰ Ϭ͕ϭϳϭ �����  ����� ����� ����� ����� ����� ����� ����� ����� 

B-ϱ ϱ Ϭ͕ϭϵϳ �����  ����� ����� ����� ����� ����� ����� ����� �����  
B-ϲ ϲ Ϭ͘Ϯϭϴ �����  ����� ����� ����� ����� ����� ����� ����� ����� 
B-ϳ ϳ Ϭ͘Ϯϯϱ �����  �����  ����� ����� ���� ����� ����� ����� ����� 

B-ϴ ϴ Ϭ.Ϯϰϵ �����  �����  �����  ����� ���� ����� ����� �����  ����� 

B-ϵ ϵ Ϭ͘Ϯϲϭ Ϭ͘ϭϳϰ Ϭ͘ϭϯϬ ����� ����� ���� ����� ����� ����� ����� 
B-ϭϬ ϭϬ Ϭ͘Ϯϳϭ Ϭ �͘ϭϴϭ Ϭ͕ϭϯϲ Ϭ͘ϭϬϵ 

 
�����  ���� ����� �����  ����� ����� 

B-ϭϭ ϭϱ Ϭ͘ϯϬϴ Ϭ͘ϮϬϱ  Ϭ �͕ϭϱϰ Ϭ͘ϭϮϯ ����� ���� ����� ����� ����� ����� 

B-ϭϮ ϮϬ Ϭ͘ϯϯϭ Ϭ͘ϮϮϭ Ϭ͘ϭϲϲ Ϭ͕ϭϯϯ �����  ���� ����� ����� ����� ����� 
B-ϭϯ Ϯϱ Ϭ͘ϯϰϴ Ϭ͘ϮϯϮ Ϭ �͘ϭϳϰ Ϭ͕ϭϯϵ ����� ���� ����� ����� �����  �����
B-ϭϰ ϯϬ Ϭ͘ϯϲϬ Ϭ͘ϮϰϬ Ϭ͘�ϭϴϬ Ϭ͘ϭϰϰ �����  ����� �����  �����  ����� ����� 

B-ϭϱ ϰϬ Ϭ͕ϯϳϳ ϬϮϱϮ Ϭ͘ϭϴϵ Ϭ͘ϭϲϭ �����  ����� ����� ����� ����� ����� 
B-ϭϲ ϱϬ Ϭ͘ϯϵϬ  Ϭ͘ϮϲϬ  Ϭ͕ϭ�ϵϱ Ϭ͘ϭϱϲ �����  �����  ����� ����� ����� ����� 
B-ϭϳ ϳϱ Ϭ͘ϰϬϬ Ϭ͘Ϯϳϯ  Ϭ͕ϮϬϰ Ϭ͘ϭϲϰ �����  �����  ����� ����� ����� ����� 
B-ϭϴ ϭϬϬ Ϭ͘ϰϮϭ Ϭ͘ϮϴϬ ϬϮϭϬ Ϭ͘ϭϲϴ �����  �����  ����� ����� ����� ����� 
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Solution 
   &ƌŽŵ�dĂďůĞ�ϭϰ-Ϯ�ǁith�Ƚ ൌ ͲǤͲͷ�and�� ൌ ͷ, B-ϱ�ŝƐ�ƌĞĂĚ�ĂƐ�ƚŚĞ�ĐŽĚĞ.  This 
indicate we haǀĞ�ƚŽ�ŐŽ�ƚŽ�dĂďůĞ�ϭϰ-ϰ͕�related to letter B; the sample size is 

Ϯൈr =ϭϬ.  In dĂďůĞ�ϭϰ-ϰ�ƵŶĚĞƌ�ƚŚĞ�ĐŽůƵŵŶ�Ϯƌ, in front of B-ϱฺ ୘
஘బ ൌ ͲǤͳͻ͹. 

The test time is:  dсϬ͘ϭϵϳ;ߠ଴ሻс͘ϭϵϳ;ϭϮϬϬͿ؆ ʹ͵͸.  dŚĞŶ��Ă�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϭϬ�
is taken from the  lot and the items are simultaneously tested.  The failed 
items are replaced by new items.   If before the end of the test time i.e. 
dсϮϯϲŚƌ�� ϱ�ĨĂŝůƵƌĞs occurred, the lot is rejected; if at the end ŽĨ�Ϯϯϲ�ŚŽƵƌƐ�
ůĞƐƐ� ƚŚĂŶ�ϱ� ĨĂŝůƵƌĞƐ�ŚĂƉƉĞŶĞĚ� ƚŚĞ� ůŽƚ� ŝƐ accepted.  It is worth mentioning 
that if the test time has not ended and a failure happens, the failed product 
has to be replaced by a new one unless the number of failures has reached 
the allowed number i.e. r-ϭ͘� 
 
ͷͺǤͼǤͷǤ͹ 
����͹ǣ��������� a plan,  given producer risk(ࢻሻ , consumer risk(ࢼሻ 
and test time(T) 
In this case given  ߙǡߚ  and T, after calculating 

୘
஘బƬ

஘భ
஘బ, read n &r from Table 

ϭϰ-ϱ͘ 
 
Example ϭϰ͘Ϯϯ 
   Design a plan whose test is of type "life tests terminated at pre-assigned 
time "in such a way the test time does not exceed T=ϱϬϬ�Śƌ�. The plan is 
ǁĂŶƚĞĚ�ƚŽ�ĂĐĐĞƉƚ�ϵϬй�ƚŚĞ�ůŽƚƐ�ŚĂǀŝŶŐ�ŵĞĂŶ�ůŝĨĞ�Ʌ଴ ൌϭϬϬϬϬ�Śƌ�;Ƚ ൌ ͲǤͳͲ), 
ĂŶĚ�ƚŽ�ƌĞũĞĐƚ�ϵϱй�ŽĨ�ƚŚĞ�ůŽƚƐ�ǁŝƚŚ�ŵĞĂŶ�ůŝĨĞ�Ʌଵ ൌ ʹͲͲͲ����ሺȾ ൌ ͲǤͲͷሻǤ The 
life is assumed to be exponentially distributed. 
 
 
Solution 

         � ୘஘బ ൌ
ହ଴଴
ଵ଴଴଴଴ ൌ

ଵ
ଶ଴ 

tĞ�ƌĞĂĚ�Ŷсϯϰ�Θ�ƌсϰ�ĨƌŽŵ�dĂďůĞ�ϭϱ-ϰ�ǁŝƚŚ� ୘஘బ ൌ
ଵ
ଶ଴ ǡ

஘భ
஘బ ൌ

ଵ
ହ , 

Ƚ ൌ ͲǤͳͲ�ǡ ����Ⱦ ൌ ͲǤͲͷ͘��dŚĂƚ�ŝƐ�Ă�ƌĂŶĚŽŵ�ƐĂŵƉůĞ�ŽĨ�ƐŝǌĞ�ϯϰ�ŝƐ�ƚĂŬĞŶ�
from lot and its items are tested simultaneously; if before the end of 
ϱϬϬ- hr test, a failure occurs it is replaced by  a new one, unless the 
ŶƵŵďĞƌ�ŽĨ�ĨĂŝůƵƌĞƐ�ďĞĨŽƌĞ�ϱϬϬ�Śƌ�ŝƐ�ĞƋƵĂů�ƚŽ�ƌсϰ͘� 
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dĂďůĞ�ϭϰ-ϱ��ĐĐĞƉƚĂŶĐĞ Sampling Plans for some  હǡ઺ǡ ી૙Ƭ܂
ી૚
ી૙ with a test 

terminated at pre-assigned time�with replacement(Table૛ െ  ૝ ,ϭϬϴͿ࡯
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n  N n n n n n n 
ߙ ൌ ͲǤͲͳǡࢼ ൌ ͲǤͲͳ ߙ ൌ Ͳͷǡߚ ൌ ͲǤͲǤͲͳ 

Ϯ�dŚŝƌĚƐ ϭϯϲ ϯϯϭ ϱϱϭ ϭϭϬϯ ϮϮϬϳ ϵϱ Ϯϯϴ ϯϵϳ ϳϵϱ ϭϱϵϭ 
ϭ�ŚĂůĨ ϰϲ ϵϱ ϭϱϴ ϯϭϳ ϲϯϰ ϯϯ ϳϮ ϭϮϬ Ϯϰϭ ϰϴϯ 
ϭ Third ϭϵ ϯϭ ϱϭ ϭϬϯ ϮϬϲ ϭϯ Ϯϱ ϯϴ ϳϲ ϭϱϯ 

ϭ�&ŝŌŚ ϵ ϭϬ ϭϳ ϯϱ ϳϬ ϳ ϵ ϭϲ ϯϮ ϲϱ 
ϭ Tenth ϱ ϰ ϲ ϭϮ Ϯϱ ϰ ϰ ϲ ϭϯ Ϯϳ 
  Ƚ ൌ ͲǤͲͳǡȾ ൌ ͲǤͲͷ Ƚ ൌ ͲǤͲͷǡȾ ൌ ͲǤͲͷ 
Ϯ�dŚŝƌĚƐ ϭϬϭ Ϯϯϳ ϯϵϱ ϳϵϬ ϭϱϴϭ ϲϳ ϭϲϮ ϮϳϬ ϱϰϭ ϭϬϴϮ 
ϭ�ŚĂůĨ ϯϱ ϲϴ ϭϭϯ ϮϮϳ ϰϱϰ Ϯϯ ϰϳ ϳϴ ϭϱϳ ϯϭϰ 
ϭ Third ϭϱ ϮϮ ϯϳ ϳϰ ϭϰϵ ϭϬ ϭϲ Ϯϳ ϱϰ ϭϬϴ 

ϭ�&ŝŌŚ ϴ ϴ ϭϰ Ϯϵ ϱϴ ϱ ϲ ϭϬ ϭϵ ϯϵ 
ϭ Tenth ϰ ϯ ̊ ϴ ϭϲ ϯ ϯ ϰ ϴ ϭϲ 

ߙ  ൌ ͲǤͲͳǡߚ ൌ ͲǤͳ ߙ ൌ ͲǤͲͷǡߚ ൌ ͲǤͳ 
Ϯ�dŚŝƌĚƐ ϴϯ ϭϴϵ ϯϭϲ ϲϯϮ ϭϮϲϱ ϱϱ ϭϯϬ Ϯϭϲ ϰϯϯ ϴϲϳ 
ϭ�ŚĂůĨ ϯϬ ϱϲ ϵϯ ϭϴϳ ϯϳϰ ϭϵ ϯϳ ϲϮ ϭϮϰ Ϯϰϴ 
ϭ Third ϭϯ ϭϴ ϯϬ ϲϬ ϭϮϭ ϴ ϭϭ ϭϵ ϯϵ ϳϵ 
ϭ�&ŝŌŚ ϳ ϳ ϭϭ Ϯϯ ϰϲ ϰ ϰ ϳ ϭϯ Ϯϳ 
ϭ Tenth ϰ Ϯ ϰ ϴ ϭϲ ϯ ϯ ϰ ϴ ϭϲ 
ߙ  ൌ ͲǤͲͳǡߚ ൌ ͲǤʹͷ ߙ ൌ ͲǤͲͷǡߚ ൌ ͲǤʹͷ 
Ϯ�dŚŝƌĚƐ ϲϬ ϭϯϬ Ϯϭϳ ϰϯϰ ϴϲϵ ϯϱ ϳϳ ϭϮϵ Ϯϱϴ ϱϭϳ 
ϭ�ŚĂůĨ ϮϮ ϯϳ ϲϮ ϭϮϱ Ϯϱϭ ϭϯ Ϯϯ ϯϴ ϳϲ ϭϱϯ 
ϭ Third ϭϬ ϭϮ ϮϬ ϰϭ ϴϮ ϲ ϳ ϭϯ Ϯϲ ϱϮ 

ϭ�&ŝŌŚ ϱ ϰ ϳ ϭϯ Ϯϱ ϯ ϯ ϰ ϴ ϭϲ 
ϭ Tenth ϯ Ϯ Ϯ ϰ ϴ Ϯ ϭ Ϯ ϯ ϳ 

ߙ  ൌ ͲǤͳǡߚ ൌ ͲǤͲͳ ߙ ൌ ͲǤʹͷǡߚ ൌ ͲǤͲͳ 
Ϯ�dŚŝƌĚƐ ϳϳ ϭϵϳ ϯϮϵ ϲϱϵ ϭϯϭϵ ϱϮ ϭϰϬ Ϯϯϰ ϰϲϵ ϵϯϵ 
ϭ�ŚĂůĨ Ϯϲ ϱϵ ϵϴ ϭϵϳ ϯϵϰ ϭϳ ϰϮ ϳϬ ϭϰϬ Ϯϴϭ 
ϭ Third ϭϭ Ϯϭ ϯϱ ϳϬ ϭϰϬ ϳ ϭϱ Ϯϱ ϱϬ ϭϬϭ 
ϭ�&ŝŌŚ ϱ ϳ ϭϮ Ϯϰ ϰϴ ϯ ϱ ϴ ϭϳ ϯϰ 
ϭ Tenth ϯ ϯ ϱ ϭϭ ϮϮ Ϯ Ϯ ϰ ϵ ϭϵ 
 Ƚ ൌ ͲǤͳǡࢼ ൌ ͲǤͲͷ Ƚ ൌ ͲǤʹͷǡࢼ ൌ ͲǤͲͷ 
Ϯ�dŚŝƌĚƐ ϱϮ ϭϮϴ Ϯϭϰ ϰϮϵ ϴϱϵ ϯϮ ϴϰ ϭϰϬ ϮϴϬ ϱϲϬ 
ϭ�ŚĂůĨ ϭϴ ϯϴ ϲϰ ϭϮϴ Ϯϱϲ ϭϭ Ϯϱ ϰϯ ϴϲ ϭϳϮ 
ϭ Third ϴ ϭϯ Ϯϯ ϰϲ ϵϯ ϱ ϭϬ ϭϲ ϯϯ ϲϳ 
ϭ�&ŝŌŚ ϰ ϱ ϴ ϭϳ ϯϰ Ϯ ϯ ϱ ϭϬ ϭϵ 
ϭ Tenth Ϯ Ϯ ϯ ϱ ϭϬ Ϯ Ϯ ϰ ϵ ϭϵ 
 Ƚ ൌ ͲǤͳǡࢼ ൌ ͲǤϭ Ƚ ൌ ͲǤʹͷǡࢼ ൌ ͲǤͳ 
Ϯ�dŚŝƌĚƐ ϰϭ ϵϵ ϭϲϱ ϯϯϬ ϲϲϬ Ϯϯ ϱϴ ϵϴ ϭϵϲ ϯϵϮ 

ϭ�ŚĂůĨ ϭϱ ϯϬ ϱϭ ϭϬϮ ϮϬϱ ϴ ϭϳ Ϯϵ ϱϵ ϭϭϵ 

ϭ Third ϲ ϵ ϭϱ ϯϭ ϲϯ ϰ ϳ ϭϮ Ϯϱ ϱϬ 

ϭ�&ŝŌŚ ϯ ϰ ϲ ϭϭ ϮϮ Ϯ ϯ ϰ ϵ ϭϵ 

ϭ Tenth Ϯ Ϯ Ϯ ϱ ϭϬ ϭ ϭ Ϯ ϯ ϱ 

 Ƚ ൌ ͲǤͳǡ ࢼ ൌ ͲǤʹͷ Ƚ ൌ ͲǤʹͷǡ ࢼ ൌ ͲǤʹͷ 
Ϯ�dŚŝƌĚƐ Ϯϱ ϱϲ ϵϰ ϭϴϴ ϯϳϲ ϭϮ Ϯϴ ϰϳ ϵϱ ϭϵϬ 

ϭ�ŚĂůĨ ϵ ϭϲ Ϯϳ ϱϰ ϭϬϴ ϱ ϭϬ ϭϲ ϯϯ ϲϳ 
ϭ Third ϰ ϱ ϴ ϭϳ ϯϰ Ϯ Ϯ ϰ ϵ ϭϵ 

ϭ�&ŝŌŚ ϯ ϯ ϱ ϭϭ ϮϮ ϭ ϭ Ϯ ϯ ϲ 
ϭ Tenth Ϯ ϭ Ϯ ϱ ϭϬ ϭ ϭ ϭ Ϯ ϱ 
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Exampleϭϰ͘Ϯϰ  
(For designing a plan , having a constraint on the test time ) 
We would like to inspect lots on the basis of the lifetime of their 
ƉƌŽĚƵĐƚƐ͘��/Ĩ�ƚŚĞ�ŵĞĂŶ�ůŝĨĞ�ŝƐ�ϮϮ�Śƌ�ƚŚĞ�ůŽƚ�is supposed to be rejected 
ǁŝƚŚ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�Ϭ͘ϵϱ͖�ŝĨ�ƚŚĞ�ŵĞĂŶ�ůŝĨĞ�ŝƐ�ϭϬϬϬ�Śƌ�ƚŚĞ�ůŽƚ�is 
wanted to ďĞ�ĂĐĐĞƉƚĞĚ�ǁŝƚŚ�ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�ŽĨ�Ϭ͘ϵϱ͘ What plan do 
ǇŽƵ�ƐƵŐŐĞƐƚ�ƚŽ�ĂƉƉůǇ�ǁŚŽƐĞ�ƚĞƐƚ�ƟŵĞ�ŝƐ�ĂďŽƵƚ�ϮϬ�ŚŽƵƌƐ͘ 
 
Solution 
 
tŝƚŚ�ŵĞĂŶ�ůŝĨĞсϭϬϬϬ�������WĂ�сϬ͘ϵϱ�ĺɲ�с�Ϭ͘Ϭϱ͕���� 
tŝƚŚ�ŵĞĂŶ�ůŝĨĞсϮϬ�����������WĂ�сϬ͘Ϭϱ�ĺߚ с�Ϭ͘Ϭϱ͕�� 
଴ߠ ൌ ͳͲͲͲǡ�ɲ�с�Ϭ͘Ϭϱ,ߚ� с�Ϭ͘Ϭϱ ,ߠ�ଵ ൌ ʹͲ 
஘భ
஘బ ൌ ͲǤͲʹʹ ,� ୘஘బ ൌ

ଶ଴
ଵ଴଴଴ ൌ ͲǤͲʹ    

This problem should be solved using dĂďůĞ�ϭϰ-ϱ of ĐĂƐĞ�ϯ in Sec 

ϭϰ͘ϲ͘ϭ͘ϯ, however,  the value of    
஘భ
஘బ ൌ ͲǤͲʹʹ    is not in the table; 

therefore we apply ĐĂƐĞ�ϭ(Sec. ϭϰ͘ϲ͘ϭ͘ϭ) as follows: 

�&ƌŽŵ�dĂďůĞ�ϭϰ-Ϯ�read code B-ϭ�ĨŽƌ�
஘భ
஘బ ൌ ͲǤͲʹʹ ͘��/Ŷ�dĂďůĞ�ϭϰ-ϰ͕�ǁŝƚŚ��

୘
஘బ ൌ ͲǤͲʹ  , in front of code B-ϭ�ƚŚĞ�ŶĞǆƚ�immediate available 

ŶƵŵďĞƌ�ŐƌĞĂƚĞƌ�ƚŚĂŶ�Ϭ͘ϬϮ�ŝƐ�Ϭ͘ϬϮϲ ĨŽƌ�ƌсϭ͘��dŚĞŶ�ƚŚĞ�ƐĂŵƉůĞ�ƐŝǌĞ�ŝƐ�
ŶсϮƌ�сϮ͘ 
The procedure is as follows: 
dĂŬĞ��Ă�ƐĂŵƉůĞ��ŽĨ�ƐŝǌĞ�Ϯ�ƌĂŶĚŽŵůǇ�ĨƌŽŵ�ƚŚĞ�ůŽƚ�ĂŶĚ�ƉůĂĐĞ�ƚŚĞ�Ϯ�
devices on test;  If the during �hr no device 
fails the lot is accepted ; if at least one device fails the lot is rejected.  
Although generally  if during  test time T a device fails it has to be 
replaced by a new one unless the  number of failed items exceeds   
r-ϭ͕ďƵƚ�ŝŶ�ƚŚŝƐ�ĐĂƐĞ�ƐŝŶĐĞ�ƌсϭ͕�ŝĨ�ŽŶĞ�ĨĂŝůƵƌĞ�ŚĂƉƉĞŶƐ�ƚŚĞ�ƚĞƐƚ�ŝs 
terminated. 

 

 

 

 

 

0.026 1000 26T   
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Exercises 
ϭϰ͘ϭ  
An electrical device has a ĐŽŶƐƚĂŶƚ� ƌĂƚĞ� ŽĨ� ĨĂŝůƵƌĞ� Ϭ͘ϬϬϬϬϭ� ƉĞƌ� ŚŽƵƌ� ;ϭ�
ĨĂŝůƵƌĞ� ƉĞƌ� ϭϬϱ ŚƌͿ͘� � �ĂůĐƵůĂƚĞ� ƚŚĞ� ϭϬ͕ϬϬϬ
the device. 
ϭϰ͘Ϯ  
Calculate the reliability of the following RBD.  The number in each box 
indicates the component reliability.

ϭϰ͘ϯϭ   
  The lifetime of a direct current  battery is normally distributed with mean 
ߪ�сϯϬ�Śƌ͕ߤ ൌ Ͷ���. 
 
ĂͿ&ŝŶĚ�Ϯϱ-hr reliability of the battery.
b)When should it replaced to ensure that the probability of  failure at that 
ƟŵĞ�ƉƌŝŽƌ�ƚŽ�ƌĞƉůĂĐĞŵĞŶƚ��ĚŽĞƐ�ŶŽƚ�ĞǆĐĞĞĚ�ϭϬй͘
c)Two batteries are connected in parallel to power a light.  Assuming that 
the light doeƐ�ŶŽƚ�ĨĂŝů͕�ǁŚĂƚ�ŝƐ�ƚŚĞ�ϯϱ
ĚͿ���ƉĂƌƟĐƵůĂƌ�ďĂƩĞƌǇ�ŚĂƐ�ďĞĞŶ�ŝŶ�ĐŽŶƟŶƵŽƵƐ�ƵƐĞ�ĨŽƌ�ϯϬ�ŚŽƵƌƐ͘�tŚĂƚ�ŝƐ�ƚŚĞ�
ƉƌŽďĂďŝůŝƚǇ�ƚŚĂƚ�ƚŚŝƐ�ďĂƩĞƌǇ�ǁŝůů�ůĂƐƚ�ĂŶŽƚŚĞƌ�ϰ�ŚŽƵƌƐ͍
 
ϭϰ͘ϰ� 
  An electronic power system include power source
ĐŽŶŶĞĐƚĞĚ� ŝŶ� ƐĞƌŝĞƐ͘� � dŚĞ�ŵŝƐƐŝŽŶ�ƟŵĞ� ĨŽƌ� ƚŚŝƐ� ƐǇƐƚĞŵ� ŝƐ� ϭϬ
constant failure rates are as follows:

subsystem 
Receiver 
Amplifier 
Power Source 

Calculate the system reliability for the mission time.

                                                          
ϭ�<ĂƉƵƌ�Θ�>ĂŵďĞƌƐŽŶ;ϭϵϳϳͿ�ƉĂŐĞ�ϳϮ

�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ
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ĐŽŶƐƚĂŶƚ� ƌĂƚĞ� ŽĨ� ĨĂŝůƵƌĞ� Ϭ͘ϬϬϬϬϭ� ƉĞƌ� ŚŽƵƌ� ;ϭ�
ŚƌͿ͘� � �ĂůĐƵůĂƚĞ� ƚŚĞ� ϭϬ͕ϬϬϬ-ŚŽƵƌ� ĂŶĚϮϬ͕ϬϬϬ-hr reliability of 

Calculate the reliability of the following RBD.  The number in each box 
indicates the component reliability. 

 

of a direct current  battery is normally distributed with mean 

hr reliability of the battery. 
hen should it replaced to ensure that the probability of  failure at that 

ƟŵĞ�ƉƌŝŽƌ�ƚŽ�ƌĞƉůĂĐĞŵĞŶƚ��ĚŽĞƐ�ŶŽƚ�ĞǆĐĞĞĚ�ϭϬй͘ 
c)Two batteries are connected in parallel to power a light.  Assuming that 

Ɛ�ŶŽƚ�ĨĂŝů͕�ǁŚĂƚ�ŝƐ�ƚŚĞ�ϯϱ-hour reliability for the power source. 
ĚͿ���ƉĂƌƟĐƵůĂƌ�ďĂƩĞƌǇ�ŚĂƐ�ďĞĞŶ�ŝŶ�ĐŽŶƟŶƵŽƵƐ�ƵƐĞ�ĨŽƌ�ϯϬ�ŚŽƵƌƐ͘�tŚĂƚ�ŝƐ�ƚŚĞ�
ƉƌŽďĂďŝůŝƚǇ�ƚŚĂƚ�ƚŚŝƐ�ďĂƩĞƌǇ�ǁŝůů�ůĂƐƚ�ĂŶŽƚŚĞƌ�ϰ�ŚŽƵƌƐ͍ 

An electronic power system include power source, receiver and amplifier, 
ĐŽŶŶĞĐƚĞĚ� ŝŶ� ƐĞƌŝĞƐ͘� � dŚĞ�ŵŝƐƐŝŽŶ�ƟŵĞ� ĨŽƌ� ƚŚŝƐ� ƐǇƐƚĞŵ� ŝƐ� ϭϬϰ hours.  The 
constant failure rates are as follows: 

       Failure rate per hour 
͵Ͳ ൈ ͳͲି଻ 

the system reliability for the mission time. 

                   
<ĂƉƵƌ�Θ�>ĂŵďĞƌƐŽŶ;ϭϵϳϳͿ�ƉĂŐĞ�ϳϮ 
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ϭϰ͘ϱ  Calculate the reliability of 
backup for A. 

ϭϰ͘ϲ  The lifetime of a kind of electrical resistance is  exponentially 
distributed.  Design  an acceptance sampling pl
ĂƌŽƵŶĚ�ϭϬϬ�ŚŽƵƌƐ�for inspecting  lots containing this product in such a way 
that if the mean lifetime ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ��ŝƐ�ϮϮϬ�ŚŽƵƌƐ�͕ƚŚĞ�ůŽƚƐ��ĂĐĐĞƉƚĂŶĐĞ�
ƉƌŽďĂďŝůŝƚǇ�ƐŚŽƵůĚ� �ďĞ�ϭй�ĂŶĚ� ŝĨ�ƚŚŝƐ�ŵĞĂŶ�ŝƐ�ϭϬϬϬ�ŚŽƵƌƐ� � � ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�
wouůĚ� ďĞ� ϵϵй͘ ϭϰ͘ϳ� � �ĂůĐƵůĂƚĞ� ƚŚĞ� ƌĞůŝĂďŝůŝƚǇ� ŽĨ� ƚŚĞ� Ă� ƐǇƐƚĞŵ� ǁŝƚŚ� ƚŚĞ�
following RBD: 

ϭϰ͘ϳ  /Ŷ� Ă� ϱ-component system, if each of the components, having the 
ƌĞůŝĂďŝůŝƚǇ�ŽĨ�Ϭ͘ϴϱ� ĨĂŝůƐ͕� ƚŚĞ� ƐǇƐƚĞŵ�ǁŝůů� ĨĂŝů͘� �ĂůĐƵůĂƚĞ� ƚŚĞ� ƌĞůŝĂďŝůŝƚǇ�ŽĨ� ƚŚĞ�
system. 
ϭϰ͘ϴ  Design a life-based plan for inspecting  lots containing products with 
exponentially distributed lifetime
ŚŽƵƌƐ͕�ϵϱй�ŽĨ�ƚŚĞ�ůŽƚ�ǁŽƵůĚ�ďĞ�ĂĐĐĞƉƚĞĚ
of the lots would be rejected. 
ϭϰ͘ϵ GĞŶĞƌĂƚĞ��ϭϬ�ƌĂŶĚŽŵ�ŶƵŵďĞƌƐ�ĨƌŽŵ�Ă
ߣ ൌ ͲǤͲͲͳ, using a software such as MATLAB. 
stated in Appendix B of �ŚĂƉƚĞƌ�ϰ
mean of the exponential distribution 
ϭϰ͘ϭϬ /Ŷ�Ă�ΗϮ�ŽƵƚ�ŽĨ�ϯΗ�ƐǇƐƚĞŵ͕� �ƚŚĞ�ĐŽŶƐƚĂŶƚ�ĨĂŝůƵƌĞ�ƌĂƚĞ�ŽĨ�ƚŚĞ� ŝŶĚŝǀŝĚƵĂů�
ĐŽŵƉŽŶĞŶƚƐ�ŝƐ�Ϭ͘ϬϬϬϮ�ƉĞƌ�ŚŽƵƌ;Ϯ�ĨĂŝůƵƌĞƐ�ƉĞƌ�ϭϬ͕ϬϬϬ�ŚŽƵƌƐͿ͘��dŚĞ�ŵĞĂŶ�ŽĨ�
the ĚŽǁŶ�ƟŵĞ�ĨŽƌ�ĞĂĐŚ��ŝƐ�ϭϬ�ŚŽƵƌƐ͘��ĂůĐƵůĂƚĞ�ƚŚĞ�ůŽŶŐ
the system. 

Control 

ϯϳϱ 

 

Calculate the reliability of a system with the following RBD; B is a 

 
of a kind of electrical resistance is  exponentially 

distributed.  Design  an acceptance sampling plan with the test time of 
for inspecting  lots containing this product in such a way 

ŽĨ�ƚŚĞ�ƉƌŽĚƵĐƚ��ŝƐ�ϮϮϬ�ŚŽƵƌƐ�͕ƚŚĞ�ůŽƚƐ��ĂĐĐĞƉƚĂŶĐĞ�
ƉƌŽďĂďŝůŝƚǇ�ƐŚŽƵůĚ� �ďĞ�ϭй�ĂŶĚ� ŝĨ�ƚŚŝƐ�ŵĞĂŶ�ŝƐ�ϭϬϬϬ�ŚŽƵƌƐ� � � ƚŚĞ�ƉƌŽďĂďŝůŝƚǇ�

ϭϰ͘ϳ� � �ĂůĐƵůĂƚĞ� ƚŚĞ� ƌĞůŝĂďŝůŝƚǇ� ŽĨ� ƚŚĞ� Ă� ƐǇƐƚĞŵ� ǁŝƚŚ� ƚŚĞ�

 
component system, if each of the components, having the 

ƌĞůŝĂďŝůŝƚǇ�ŽĨ�Ϭ͘ϴϱ� ĨĂŝůƐ͕� ƚŚĞ� ƐǇƐƚĞŵ�ǁŝůů� ĨĂŝů͘� �ĂůĐƵůĂƚĞ� ƚŚĞ� ƌĞůŝĂďŝůŝƚǇ�ŽĨ� ƚŚĞ�

based plan for inspecting  lots containing products with 
time͕�ŝŶ�ƐƵĐŚ�Ă�ǁĂǇ�ƚŚĂƚ�ŝĨ�ƚŚĞ�ŵĞĂŶ�ůŝĨĞ�ŝƐ�ϱϬϬ�

ŚŽƵƌƐ͕�ϵϱй�ŽĨ�ƚŚĞ�ůŽƚ�ǁŽƵůĚ�ďĞ�ĂĐĐĞƉƚĞĚ; ĂŶĚ�ŝĨ�ƚŚĞ�ŵĞĂŶ�ŝƐ�ϮϱϬ�ŚŽƵƌƐ, ϵϬй�

ĞŶĞƌĂƚĞ��ϭϬ�ƌĂŶĚŽŵ�ŶƵŵďĞƌƐ�ĨƌŽŵ�Ăn exponential distribution with 
, using a software such as MATLAB.  Apply the hypothesis test 

�ŚĂƉƚĞƌ�ϰ (with r=n) with ߙ ൌ ͳΨ ,to  verify  the 
exponential distribution  ŝƐ�ϭϬϬϬ͘ 
ŽƵƚ�ŽĨ�ϯΗ�ƐǇƐƚĞŵ͕� �ƚŚĞ�ĐŽŶƐƚĂŶƚ�ĨĂŝůƵƌĞ�ƌĂƚĞ�ŽĨ�ƚŚĞ� ŝŶĚŝǀŝĚƵĂů�

ĐŽŵƉŽŶĞŶƚƐ�ŝƐ�Ϭ͘ϬϬϬϮ�ƉĞƌ�ŚŽƵƌ;Ϯ�ĨĂŝůƵƌĞƐ�ƉĞƌ�ϭϬ͕ϬϬϬ�ŚŽƵƌƐͿ͘��dŚĞ�ŵĞĂŶ�ŽĨ�
ĚŽǁŶ�ƟŵĞ�ĨŽƌ�ĞĂĐŚ��ŝƐ�ϭϬ�ŚŽƵƌƐ͘��ĂůĐƵůĂƚĞ�ƚŚĞ�ůŽŶŐ-term availability of 



�ŚĂƉƚĞƌ�ϭϰ͗�/ŶƚƌŽĚƵĐƟŽŶ�ƚŽ�ZĞůŝĂďŝůŝƚǇ�Θ�ZĞůĂƚĞĚ�^ƵďũĞĐƚƐ 

ϯϳϲ 

 

ϭϰ͘ϭϭ  In three coŶƐĞĐƵƟǀĞ�ϮϬϬϬ-ŚŽƵƌ�ŝŶƚĞƌǀĂů͕�Ă�ƐǇƐƚĞŵ�ŚĂƐ�ŚĂĚ�ϮϱϬ͕�ϮϬϬ͕�
ĂŶĚ� ϮϱϬ� ĨĂŝůƵƌĞƐ� ƌĞƐƉĞĐƟǀĞůǇ͘� �tŝƚŚ� � ϵϬй� ůĞǀĞů� ŽĨ� ĐŽŶĮĚĞŶĐĞ͕� � ĐŽƵůĚ�ǁĞ�
consider the  distribution of the system lifetime  exponential ?  Apply a 
goodness of fit test. 
ϭϰ͘ϭϮ  
   The lifetime of a device is exponentially distributed ǁŝƚŚ�ŵĞĂŶ�ŽĨ� ϱϬϬϬ�
hours͘� &ŝŶĚ� ϭϬϬϬϬ-hr reliability of the device.  Repeat the solution for a 
ƌŽƵŐŚůǇ� ŶŽƌŵĂů� ĚŝƐƚƌŝďƵƟŽŶ� ǁŝƚŚ� ŵĞĂŶ� ϱϬϬϬ� Śƌ� ĂŶĚ� standard deviation 
ϭϱϬϬ hr.  What would be the reliability if the lifetime had a Weibull 
ĚŝƐƚƌŝďƵƟŽŶ�ǁŝƚŚ��сϮϬϬ͕��сϱϬϬϬ�ĂŶĚ��сϭ͘ϱ . 
ϭϰ͘ϭϯ 
  Write a MATLAB code for calculating the parameters A, B, C, of  a Weibull 
from maximum likelihood estimation equations: 

 
 

Three sentences for getting success(WILLIAM SHEAKSPER) 
     ϭ͗�        Know more than other 
     Ϯ:         Work more than other 

  ϯ͗��      Expect less than other 
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Table 1Some  Continuous Distributions(From Ross,1983 

߮ሺݐሻ �MGF Variance Mean Density Function 
Continuous 
Distribution 
Uniform in 
the interval 

(a, b) 

� or

Exponential 
with 

parameters 
or 

Gamma 
with 

parameters 
Integer n 

and 

����
Normal 

with 
parameters 

(ì, óϮ) 

��
Beta with 

parameters 
ĂхϬ�ΘďхϬ 

Table 1 Continuous Distributions   ( continued) 

Variance Mean Cumulative Function Density Function 
Continuous 
Distribution 
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 Table 2  Some Discrete Distributions1

Distribution Probability function p(x) ሻ  MGFܜሺ׎ z-transform Mean Var

Binomial with 
parameters  
n   و 0<p<1 

np np(1-p) 

  Poisson with 
parametrs 
>λ 0 

 
  

Geomertic for 
success with 
parameter

Geometric for 
failures with 
parameter2

Negative 
Binomial with 
parameters r, p  

Table 3  MATLAB Commands for Distributions3 

Parameter  
estimator 

Random Number 
Generator 

Inverse 
Function 

Cumulative 
Function 

Density 
Function 

Distribution 

betafit(X) betarnd(A,B,m,n,o,...) betainv(P,A,B) betacdf(x,A,B) betapdf(x,A,B) Beta 
binofit(X,n) binornd(N,P,m,n) binoinv(Y,N,P) binocdf(x,N,P) binopdf(x,N,P) Bionomial 

chi2rnd(V,m,n) chi2inv(P,V) chi2cdf(x,V) chi2pdf(x,V) Chi square 
expfit(X) exprnd(mu,m,n) expinv(P,mu) expcdf(x, mu) exppdf(x, mu) Exponential 

frnd(V1,V2,m,n) finv(P, V1,V2) fcdf(x, V1,V2) fpdf(x, V1,V2) F 
gamfit(X) gamrnd(A,B,m,n) gaminv(P,A,B) gamcdf(x,A,B) gampdf(x,A,B) Gamma 

geornd(P,m,n) geoinv(Y,P) geocdf(x,P) geopdf(x,P) Geometric 
hygernd(M,K,N,m,n) hygeinv(P,M,K,N) hygecdf(x,M,K,N) hygepdf(x,M,K,N) Hyper 

Geometric 
normfit(X) normrnd(μ, σ,m,n) norminv(P, μ, σ) normcdf(x μ, σ) normpdf(x, μ, σ) Normal 
lognfit(X) lognrnd(μ, σ,m,n) logninv(P, μ, σ) logncdf(x, μ, σ) lognpdf(x, μ, σ) Log Normal 
nbinfit(X) nbinrnd(R,P,m,n) nbininv(Y,R,P) nbincdf(x,R,P) nbinpdf(x,R,P) Negative 

Bionomial 
poissfit(X) poissrnd(ߣ,m,n) poissinv(P, ߣ) poisscdf(x,  Poisson (ߣ,x)poisspdf (ߣ
raylfit(X) raylrnd(B,m,n) raylinv(P,B) raylcdf(x,B) raylpdf(x,B) Rayleigh 

trnd(V,m,n) tinv(P,V) tcdf(x,V) tpdf(x,V) t 
unifit(X) unifrnd(A,B,m,n) unifinv(P,A,B) unifcdf(x,A,B) unifpdf(x,A,B) Uniform 
wblfit(X) wblrnd(B,C,m,n) wblinv(P, B,C) wblcdf(x, B,C) wblpdf(x, B,C) Weibull 
gevfit(X) gevrnd(C,B,A) gevinv (P,C,B,A) gevcdf(x,C,B,A) gevpdf(C,B,A) GEV 

gpfit gprnd gpinv gpcdf gppdf GPD 

1 Extracted from Ross (1983). 
2 Geometric for success: x= number of trials until the 1st success       Geometric for failures: x= number of failures before the 1st success    
3  With thanks to Mr. Mohsen Abbar, former student of college of engineering of Shahid Bahonar University of Kerman, Iran. 

(1 ) , 0,1, ,x n xn
p p x n

x
 

  
 

 [ (1 )] t npe p [ (1 )]npz p 

, 0,1,2,...
!

x

e x
x

   exp[ ( 1)]te  ( 1)e z   

. 1p 

1(1 ) , 1, 2,xp p x  
1 (1 ) 

t

t

pe
p e 1 (1 )

pz
p z 

1
p 2

1 p
p


. 1p 
(1 ) 0,1, 2,xp p x  

,
1 (1 )

ln(1 )

t

p
p e

t p

 
   1 (1 )

p
p z 

1 p
p


2

1 p
p


1
(1 ) , , 1,

1
r x rx

p p x r r
r

 
    


1 (1 )

 
   

rt

t

pe
p e 1 (1 )

r
pz

p z

 
   

2

(1 )r p
p
 r

p

387

Tables of Quality Control By Hamid Bazargan



���� �����		
��
���������
�
��������������� !"#$�� %&'�()�*+� ,� -� .� /� 0� 1� 2� 3� 4� 5� -,� --� -.� -/� -0�,6,-� ,655, -6,,, -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,.� ,654, -6,,, -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,/� ,653, -6,,, -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,0� ,652- ,6555 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,1� ,651- ,6555 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�� � � � � � � � � � � � � � � �,6,2� ,650. ,6554 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,3� ,65/. ,6554 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,4� ,65./ ,6553 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6,5� ,65-0 ,6552 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-,� ,65,1 ,6551 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,��� � � � � � � � � � � � � � � �,6--� ,6452 ,6550 -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-.� ,6443 ,655/ -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-/� ,6434 ,655. -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-0� ,6425 ,655- -6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-1� ,642- ,655, ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,��� � � � � � � � � � � � � � � �,6-2� ,641. ,6544 ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-3� ,6400 ,6543 ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-4� ,64/1 ,6542 ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6-5� ,64.3 ,6540 ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�,6.,� ,64-5 ,654. ,6555�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�-6,,,�   Table 4 Poisson Distribution-Cumulative Probability

Poisson CDF

 1-1Reproduced by MATLAB from HHousyar<19851

1

Example  : λ=0.2     Pr(X≤1)=0.988
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(np)

Table 4 Poisson Distribution-Cumulative Probability (Contined)2
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(np)

Table 4 Poisson Distribution-Cumulative Probability (Contined)2
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λ
(np)

Table 4 Poisson Distribution-Cumulative Probability (Contined)2
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(np)

Table 4 Poisson Distribution-Cumulative Probability (Contined)2
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(np)

Table 4 Poisson Distribution-Cumulative Probability (Contined)2
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Table    5        Normal  Distribution  Cumulative   Probability

CDF values of Normal distribution

Extracted from Grant&Leavenworth (!988)Reproduced  By MATLAB

Standard Normal   CDF
1 Example: Pr(Z≤-3.09)=0.001
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  Table    5   Normal    CDF -continued -continued

Example
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��� !!� "� "#"$� "#"%� "#"&� "#"'� "#"(� "#")� "#"*� "#"+� "#",�"� -./� -./-011� -./-213� -./4412� -./4/1/� -./4115� -./6016� -./621� -./0433� -./0/37�"#$� -./0130� -./503� -./5227� -.//426� -.///72� -.//176� -./70/7� -./7251� -./2456� -./2/0/�"#%� -./2167� -./3042� -./32-7� -./1-1/� -./1530� -./1324� -.7-6/2� -.7-756� -.74-67� -.745-1�"#&� -.74214� -.76426� -.76//6� -.7610� -.700-2� -.70730� -.75-/3� -.75504� -.753-0� -.7/420�"#'� -.7//56� -.7/14� -.77627� -.7775� -.72--0� -.72075� -.72265� -.73-36� -.73501� -.73210�"#(� -.71457� -.71512� -.71352� -.2-415� -.2-/5� -.2-335� -.24667� -.24/77� -.241-5� -.2665�"#)� -.26/2/� -.261-2� -.20602� -.20/7/� -.20314� -.2564/� -.25/02� -.253/2� -.2/42/� -.2/51�"#*� -.2/3-5� -.2744/� -.27565� -.2720� -.22-0/� -.22002� -.22702� -.2210/� -.2360� -.23/65�"#+� -.23345� -.214-0� -.21031� -.21720� -.211//� -.3-605� -.3-/44� -.3-23/� -.34-/2� -.34062�"#,� -.34/15� -.343/1� -.36464� -.36034� -.36701� -.36315� -.30452� -.30013� -.30757� -.30314�$� -.35405� -.3502/� -.35745� -.35351� -.3/-30� -.3/045� -.3//50� -.3/271� -.3/110� -.37645�$#$� -.37500� -.377/� -.37375� -.32-27� -.32637� -.32510� -.32713� -.321� -.334� -.33613�$#%� -.33510� -.33737� -.33322� -.31-7/� -.316/4� -.3150/� -.31742� -.31217� -.31120� -.1-452�$#&� -.1-06� -.1-51� -.1-7/3� -.1-365� -.1-133� -.14451� -.140-1� -.14577� -.14764� -.14225�$#'� -.14165� -.16-20� -.1666� -.16075� -.16/-2� -.16752� -.1623/� -.16166� -.10-/7� -.10431�$#(� -.10041� -.10553� -.10/25� -.10711� -.10366� -.10150� -.15-76� -.15421� -.1561/� -.155-3�$#)� -.15/6� -.1570� -.15203� -.1535/� -.151/� -.1/-/0� -.1/4/5� -.1/6/5� -.1/0/6� -.1/551�$#*� -.1//50� -.1/702� -.1/263� -.1/343� -.1/1-2� -.1/115� -.17-3� -.17475� -.17657� -.17062�$#+� -.175-2� -.1753/� -.17/76� -.17703� -.17246� -.17235� -.173/7� -.17167� -.1711/� -.12-76��z= (x-μ)/σ

Table    5   Normal    CDF-continued
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��� !!" #$##" #$#%" #$#&" #$#'" #$#(" #$#)" #$#*" #$#+" #$#," #$#-"%$-" ./01234� ./01205� ./01361� ./0153� ./01542� ./01772� ./016� ./01664� ./01826� ./0181�&" ./01136� ./01114� ./01452� ./01443� ./01053� ./01043� ./04.5� ./04.11� ./04237� ./04280�&$%" ./04327� ./04361� ./045� ./04572� ./04543� ./04733� ./04782� ./046� ./04651� ./04617�&$&" ./0482� ./04876� ./04810� ./04125� ./04176� ./04114� ./044.0� ./0447� ./0441� ./04400�&$'" ./04034� ./04068� ./04045� ./00.2� ./00.58� ./00.82� ./00.48� ./00222� ./00257� ./00264�&$(" ./0024� ./003.3� ./00337� ./00376� ./00388� ./00348� ./005.6� ./00537� ./00575� ./00582�&$)" ./00510� ./00508� ./00725� ./0075� ./00778� ./00782� ./00711� ./00703� ./006.8� ./0063�&$*" ./00657� ./00671� ./0068� ./00615� ./00646� ./00604� ./008.0� ./00832� ./00853� ./00875�&$+" ./00865� ./00887� ./00817� ./00845� ./00805� ./001.3� ./00122� ./0013� ./00134� ./00158�&$," ./00177� ./00163� ./0018� ./00181� ./00117� ./00142� ./00144� ./00106� ./004.2� ./004.1�&$-" ./00425� ./00420� ./00436� ./00452� ./00458� ./00472� ./00478� ./00462� ./00468� ./00482�'" ./00486� ./00480� ./00417� ./00414� ./00443� ./00448� ./00440� ./00405� ./00408� ./000�'$%" ./000.5� ./000.8� ./0002� ./00025� ./00028� ./00024� ./00032� ./00037� ./00038� ./00030�'$&" ./00052� ./00057� ./00058� ./00054� ./0007� ./00073� ./00077� ./00078� ./00074� ./0006�'$'" ./00063� ./00065� ./00066� ./00061� ./00064� ./0008� ./00082� ./00083� ./00087� ./00086�'$(" ./00088� ./00084� ./00080� ./0001� ./00012� ./00013� ./00015� ./00017� ./00016� ./00018�'$)" ./00011� ./00014� ./00014� ./00010� ./0004� ./00042� ./00042� ./00043� ./00045� ./00045���9
�:��;<����=��� 5/77� ./00012�> ?�� ��z= (x-μ)/σ

Table    5   Normal    CDF-continued

Example

Standard   Normal  CDF-continued
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Table  6    Critical vvalues of Standard Normal Distribution

 :Example
αalpha=0.1   ZZ alpha=1.28

 
Table  6    Critical Values of Standard  Normal Distribution
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 Example : . α=0.05  Zα=1.64
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Example    α=0.01   Z_α=1.33Example    α=0.01   Zα=1.33
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��������������������������	�������	��� !�"�#��$%%&� '()*� '(+'� '('*� '(')*� '('+� '(''*� '('')*� '(''+�� '('''*�,� ,-...� /-.01� 2-/,3� ,4-0.2� /,-14,%% 2/-250� ,40-/4� /,1-/,� 2/2-24�4� -1,2� ,-112� 4-64.� 3-/./� 2-625� 6-645� ,3-.16� 44-/40� /,-561�/� -025� ,-2/1� 4-/5/� /-,14� 3-53,� 5-13,� 0-35/� ,.-4,/� ,4-643�3� -03,� ,-5//� 4-,/4� 4-002� /-030� 3-2.3� 5-561� 0-,0/� 1-2,.�5� -040� ,-302� 4-.,5� 4-50,� /-/25� 3-./4� 3-00/� 5-16/� 2-126�2� -0,1� ,-33.� ,-63/� 4-330� /-,3/� /-0.0� 3-/,0� 5-4.1� 5-656�0� -0,,� ,-3,5� ,-165� 4-/25� 4-661� /-366� 3-.46� 3-015� 5-3.1�1� -0.2� ,-/60� ,-12.� 4-/.2� 4-162� /-/55� /-1//� 3-5.,� 5-.3,�6� -0./� ,-/1/� ,-1//� 4-424� 4-14,� /-45.� /-26.� 3-460� 3-01,�,.� -0..� ,-/04� ,-1,/� 4-441� 4-023� /-,26� /-51,� 3-,33� 3-510�,,� -260� ,-/2/� ,-062� 4-4.,� 4-0,1� /-,.2� /-360� 3-.45� 3-3/0�,4� -265� ,-/52� ,-014� 4-,06� 4-21,� /-.55� /-341� /-6/.� 3-/,1�,/� -263� ,-/5.� ,-00,� 4-,2.� 4-25.� /-.,4� /-/0/� /-154� 3-44,�,3� -264� ,-/35� ,-02,� 4-,35� 4-243� 4-600� /-/42� /-010� 3-,3.�,5� -26,� ,-/3,� ,-05/� 4-,/,� 4-2.4� 4-630� /-412� /-0//� 3-.0/�,2� -26.� ,-//0� ,-032� 4-,4.� 4-51/� 4-64,� /-454� /-212� 3-.,5�,0� -216� ,-///� ,-03.� 4-,,.� 4-520� 4-161� /-444� /-232� /-625�,1� -211� ,-//.� ,-0/3� 4-,.,� 4-554� 4-101� /-,60� /-2,.� /-644�,6� -211� ,-/41� ,-046� 4-.6/� 4-5/6� 4-12,� /-,03� /-506� /-11/� 

Table     7     Critical values of t Distribution

Example  :n=3  α=0.01 ,t(α,n)=1.33

  

7
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Example
n=30    α=0.001 ,t_(α,n)=3.385

1reproduced from  Bowker &Lieberman,(1974)-using MATLAB
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Table    8     Critical values of     chi square   distribution
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Example ∶v=30    α=0.001 ,χ2(α,v)=59.70

403

Tables of Quality Control By Hamid Bazargan



.Table A     Example of Dodge and Romig Single Sampling Lot Inspection Tables

Based on Stated Value of LQL (LTPD) = 5.0 % and Consumer's Risk =β= 0.10.

Process Average (%)

LOT SIZE 0 - 0.05 0.06 - 0.50 0.51 - 1.00 1.01 - 1.50 1.51 - 2.00 2.01 - 2.50

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

1 - 30 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00
31 - 50 30 0 0.49 30 0 0.49 30 0 0.49 30 0 0.49 30 0 0.49 30 0 0.49
51 - 100 37 0 0.63 37 0 0.63 37 0 0.63 37 0 0.63 37 0 0.63 37 0 0.63

101 - 200 40 0 0.74 40 0 0.74 40 0 0.74 40 0 0.74 40 0 0.74 40 0 0.74
201 - 300 43 0 0.74 43 0 0.74 70 1 0.92 70 1 0.92 95 2 0.99 95 2 0.99
301 - 400 44 0 0.74 44 0 0.74 70 1 0.99 100 2 1.00 120 3 1.00 145 4 1.10
401 - 500 45 0 0.75 75 1 0.95 100 2 1.10 100 2 1.10 125 3 1.20 150 4 1.20
501 - 600 45 0 0.76 75 1 0.98 100 2 1.10 125 3 1.20 150 4 1.30 175 5 1.30
601 - 800 45 0 0.77 75 1 1.00 100 2 1.20 130 3 1.20 175 5 1.40 200 6 1.40
801 - 1000 45 0 0.78 75 1 1.00 105 2 1.20 155 4 1.40 180 5 1.40 225 7 1.50

1001 - 2000 45 0 0.80 75 1 1.00 130 3 1.40 180 5 1.60 230 7 1.70 280 9 1.80
2001 - 3000 75 1 1.10 105 2 1.30 135 3 1.40 210 6 1.70 280 9 1.90 370 13 2.10
3001 - 4000 75 1 1.10 105 2 1.30 160 4 1.50 210 6 1.70 305 10 2.00 420 15 2.20
4001 - 5000 75 1 1.10 105 2 1.30 160 4 1.50 235 7 1.80 330 11 2.00 440 16 2.20
5001 - 7000 75 1 1.10 105 2 1.30 185 5 1.70 260 8 1.90 350 12 2.20 490 18 2.40
7001 - 10000 75 1 1.10 105 2 1.30 185 5 1.70 260 8 1.90 380 13 2.20 535 20 2.50

10001 - 20000 75 1 1.10 135 3 1.40 210 6 1.80 285 9 2.00 425 15 2.30 610 23 2.60
20001 - 50000 75 1 1.10 135 3 1.40 235 7 1.90 305 10 2.10 470 17 2.40 700 27 2.70
50001 - 100000 75 1 1.10 160 4 1.60 235 7 1.90 355 12 2.20 515 19 2.50 770 30 2.80

n.n:  Size of Sample;  entry of  “All” indicates that each piece in lot is to be inspected:
c

.c:  Allowable Defect Number for Sample

.AOQL :  Average Outgoing Quality Limit

 from H. F. Dodge and H. .,G. Romig, 1959,"Sampling Inspection Tables—Single and Double Sampling, " John 

Wiley & Sons, Inc., New York
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.Table B         Example of Dodge and Romig Single Sampling Lot Inspection Tables

Based on Stated Value of LQL = 1.0 % and Consumer's Risk=β = 0.10.

PROCESS AVERAGE (%)

LOT SIZE 0 - 0.010 0.011 - 0.10 0.11 - 0.20 0.21 - 0.30 0.31 - 0.40 0.41 - 0.50

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

n c AOQL
(%)

1 - 120 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00 All 0 0.00
121 - 150 120 0 0.06 120 0 0.06 120 0 0.06 120 0 0.06 120 0 0.06 120 0 0.06
151 - 200 140 0 0.08 140 0 0.08 140 0 0.08 140 0 0.08 140 0 0.08 140 0 0.08
201 - 300 165 0 0.10 165 0 0.10 165 0 0.10 165 0 0.10 165 0 0.10 165 0 0.10
301 - 400 175 0 0.12 175 0 0.12 175 0 0.12 175 0 0.12 175 0 0.12 175 0 0.12
401 - 500 180 0 0.13 180 0 0.13 180 0 0.13 180 0 0.13 180 0 0.13 180 0 0.13
501 - 600 190 0 0.13 190 0 0.13 190 0 0.13 190 0 0.13 190 0 0.13 305 1 0.14
601 - 800 200 0 0.14 200 0 0.14 200 0 0.14 330 1 0.15 330 1 0.15 330 1 0.15
801 - 1000 205 0 0.14 205 0 0.14 205 0 0.14 335 1 0.17 335 1 0.17 335 1 0.17

1001 - 2000 220 0 0.15 220 0 0.15 360 1 0.19 490 2 0.21 490 2 0.21 610 3 0.22
2001 - 3000 220 0 0.15 375 1 0.20 505 2 0.23 630 3 0.24 745 4 0.26 870 5 0.26
3001 - 4000 225 0 0.15 380 1 0.20 510 2 0.24 645 3 0.25 880 5 0.28 1000 6 0.29
4001 - 5000 225 0 0.16 380 1 0.20 520 2 0.24 770 4 0.28 895 5 0.29 1120 7 0.31
5001 - 7000 230 0 0.16 385 1 0.21 655 3 0.27 780 4 0.29 1020 6 0.32 1260 8 0.34
7001 - 10000 230 0 0.16 520 2 0.25 660 3 0.28 910 5 0.32 1150 7 0.34 1500 10 0.37

10001 - 20000 390 1 0.21 525 2 0.26 785 4 0.31 1040 6 0.35 1400 9 0.39 1980 14 0.43
20001 - 50000 390 1 0.21 530 2 0.26 920 5 0.34 1300 8 0.39 1890 13 0.44 2570 19 0.48
50001 - 100000 390 1 0.21 670 3 0.29 1040 6 0.36 1420 9 0.41 2120 15 0.47 3150 23 0.50

n :  size of sample;  entry of  “All” indicates that each piece in lot is to be inspected.

c :  acceptance number for sample.

AOQL :  average outgoing quality limit.

Tables of Quality Control By Hamid Bazargan
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.Based on Stated Value of LQL) = 1.0 % and      Consumer's Risk= β = 0.10

PROCESS  AVERAGE (%)

LOT SIZE 0 - 0.010 0.011 - 0.10 0.11 - 0.20
Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL

n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%)

1 - 120 All 0 - - - 0.00 All 0 - - - 0.00 All 0 - - - 0.00
121 - 150 120 0 - - - 0.06 120 0 - - - 0.06 120 0 - - - 0.06
151 - 200 140 0 - - - 0.08 140 0 - - - 0.08 140 0 - - - 0.08
201 - 260 165 0 - - - 0.10 165 0 - - - 0.10 165 0 - - - 0.10
261 - 300 180 0 75 255 1 0.10 180 0 75 255 1 0.10 180 0 75 255 1 0.10
301 - 400 200 0 90 290 1 0.12 200 0 90 290 1 0.12 200 0 90 290 1 0.12
401 - 500 215 0 100 315 1 0.14 215 0 100 315 1 0.14 215 0 100 315 1 0.14
501 - 600 225 0 115 340 1 0.15 225 0 115 340 1 0.15 225 0 115 340 1 0.15
601 - 800 235 0 125 360 1 0.16 235 0 125 360 1 0.16 235 0 125 360 1 0.16
801 - 1000 245 0 135 380 1 0.17 245 0 135 380 1 0.17 245 0 250 495 2 0.19

1001 - 2000 265 0 155 420 1 0.18 265 0 155 420 1 0.18 265 0 285 550 2 0.21
2001 - 3000 270 0 160 430 1 0.19 270 0 300 570 2 0.22 270 0 420 690 3 0.25
3001 - 4000 275 0 160 435 1 0.19 275 0 305 580 2 0.22 275 0 435 710 3 0.25
4001 - 5000 275 0 165 440 1 0.19 275 0 310 585 2 0.23 275 0 565 840 4 0.28
5001 - 7000 275 0 170 445 1 0.20 275 0 315 590 2 0.23 275 0 580 855 4 0.29
7001 - 10000 280 0 320 600 1 0.24 280 0 460 740 3 0.26 280 0 590 870 4 0.30

10001 - 20000 280 0 325 605 1 0.24 280 0 465 745 3 0.27 450 1 700 1150 6 0.33
20001 - 50000 280 0 325 605 1 0.25 280 0 605 885 4 0.30 450 1 830 1280 7 0.36
50001 - 100000 280 0 325 605 1 0.25 280 0 605 885 4 0.30 450 1 960 1410 8 0.38

n1 = size of first sample; n2 = size of second sample; entry of  “All” indicates that each piece in lot is to be inspected. 
c1 = acceptance number for first sample. c2 = acceptance number for first and second samples combined.
AOQL = average outgoing quality limit.

Table C.  Example of Dodge-Romig Double Sampling Lot Inspection Tables.

Refrence www.galitshmueli.com/system/files/Table_DODGE_ROMIG.pdf406
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PROCESS AVERAGE (%)

LOT SIZE 0.21 - 0.30 0.31 - 0.40 0.41 - 0.50
Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL

n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%)

1 - 120 All 0 - - - 0.00 All 0 - - - 0.00 All 0 - - - 0.00
121 - 150 120 0 - - - 0.06 120 0 - - - 0.06 120 0 - - - 0.06
151 - 200 140 0 - - - 0.08 140 0 - - - 0.08 140 0 - - - 0.08
201 - 260 165 0 - - - 0.10 165 0 - - - 0.10 165 0 - - - 0.10
261 - 300 180 0 75 255 1 0.10 180 0 75 255 1 0.10 180 0 75 255 1 0.10
301 - 400 200 0 90 290 1 0.12 200 0 90 290 1 0.12 200 0 90 290 1 0.12
401 - 500 215 0 100 315 1 0.14 215 0 100 315 1 0.14 215 0 100 315 1 0.14
501 - 600 225 0 115 340 1 0.15 225 0 115 340 1 0.15 225 0 205 430 2 0.16
601 - 800 235 0 230 465 2 0.18 235 0 230 465 2 0.18 235 0 230 465 2 0.18
801 - 1000 245 0 250 495 2 0.19 245 0 250 495 2 0.19 245 0 250 495 2 0.19

1001 - 2000 265 0 405 670 3 0.23 265 0 515 780 4 0.24 265 0 515 780 4 0.24
2001 - 3000 270 0 545 815 4 0.26 430 1 620 1050 6 0.28 430 1 830 1260 8 0.30
3001 - 4000 435 1 645 1080 6 0.29 435 1 865 1300 8 0.30 580 2 940 1520 10 0.33
4001 - 5000 440 1 660 1100 6 0.30 440 1 1000 1440 9 0.33 585 2 1075 1660 11 0.35
5001 - 7000 445 1 785 1230 7 0.33 590 2 990 1580 10 0.36 730 3 1190 1920 13 0.38
7001 - 10000 450 1 920 1370 8 0.35 600 2 1240 1840 12 0.39 870 4 1540 2410 17 0.41

10001 - 20000 605 2 1035 1640 10 0.39 745 3 1485 2230 15 0.43 1150 6 1990 3140 23 0.44
20001 - 50000 605 2 1295 1900 12 0.42 885 4 1845 2730 19 0.47 1280 7 2600 3880 29 0.52
50001 - 100000 605 2 1545 2150 14 0.44 885 4 2085 2970 21 0.49 1410 8 3280 4690 36 0.55

n1 = size of first sample; n2 = size of second sample; entry of  “All” indicates that each piece in lot is to be inspected. 
c1 = acceptance number for first sample. c2 = acceptance number for first and second samples combined.
AOQL = average outgoing quality limit..

Table C   -continued

407
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Table C.1   Example of Dodge-Romig LQL(LTPD) Double Sampling Tables
 LQL = 5.0%r  = 0.10. 

Lot Size 
Process average, % 

Reroduced,from Grant and Leavenworth,1988     Table 13.3,  

0-0.05 0.06-0.50 0.51-1.00 1.01-1.50 1.51-2.00 2.01-2.50 
Trial AOQL Trial AOQL Trial AOQL Trial 

1 Ttial2 

AOQL Trial AOQL Trial AOQL 

1 Trial 2 

n1 c1 n2 n1 + n2 C2

% 
1 Trial 2 

n1 c1 n2 n1 + n2 C2

% 
1 Trial 2 

n1 c1 n2 n1 + n2 C2

% 
n1 c1 n2 n1 + n2 C2

% C
2

% 
1 Trial 2 

n1 c1 n2 
n
n

1

2

 +
C2 

% 

1-30 all 0 _ _ _ 0 all 0 _ _ _ 0 all
l

0 _ _ _ 0 all 0 _ _ _ 0 

1 Trial 2 

n1 c1 n2 n1 + n2 
all 0 _ _ _ 0 all 0 _ _ _ 0 

31-50 3l0 0 _ _ _ 0.49 30 0 _ _ _ 0.49 30 0 _ _ _ 0.49 30 0 _ _ _ 0.49 30 0 _ _ _ 0.49 30 0 _ _ _ 0.49 

51-75 38 0 _ _ _ 0.59 38 0 _ _ _ 0.59 38 0 _ _ _ 0.59 38 0 _ _ _ 0.59 38 0 _ _ _ 059 38 0 _ _ _ 0.59 

76-100 44 0 21 65 1 0.64 44 0 21 65 1 0.64 44 0 21 65 1 0.64 44 0 21 65 1 0.64 44 0 21 65 I 0.64 44 0 21 65 1 0.64 

101-200 49 0 26 75 1 0.84 49 0 26 75 1 0.84 49 0 26 75 1 0.84 49 0 51 100 2 0.91 49 0 51 100 2 091 49 0 51 100 2 0.91 

201-300 50 0 30 80 1 0,91 50 0 30 80 1 0.91 50 0 35 105 2 1.0 50 0 55 105 2 1.0 50 0 80 130 3 1.1 50 0 100 150 4 1.1 

301-400 55 0 30 85 1 0.92 55 0 55 110 2 1.1 55 0 55 110 2 1.1 55 0 80 135 3 1.1 55 0 100 155 4 1.2 85 1 105 190 6 1.3 

401-500 55 0 30 85 1 0.93 55 0 55 110 2 1.1 55 0 80 135 3 1.2 55 0 105 160 4 1.3 85 
1 

120 205 6 1.4 85 1 140 225 7 1.4 

501-600 55 0 30 85 1 0.94 55 0 60 115 2 1.1 55 0 85 140 3 1.2 55 0 110 165 4 1.3 85 
1 

145 230 7 1.4 85 1 165 250 8 1.5 
601-800 55 a 35 90 1 0.95 55 0 65 120 2 1.1 55 0 85 140 3 1.3 90 1 125 215 6 1.5 90 1 170 260 8 1.5 120 2 185 305 10 1.6 

55 0 35 90801-1000    1 0.96 55 0 65 120 2 1.1 55 0 115 170 4 1.4 90
1 

150 240 7 1.5 90 
1 

200 290 9 1.6 120 2 210 330 11 1.7 

55 0 35 901001-2000    1 0.98 55 0 95 150 3 1.3 55 0 120 175 4 1.4 90 
1 

185 275 8 1.7 120 2 225 345 11 1,9 175 4 260 435 15 2.0 
2001-3000 55 0 65 120 2 1.2 55 0 95 150 3 1.3 55 0 150 205 5 1.5 120 2 180 300 9 1.9 150 3 270 420 14 2.1 205 5 375 580 21 2,3 
3001-4000 55 0 65 120 2 1.2 55 0 95 150 3 1.3  

1 
140 230 6 1.6 120 2 210 330 10 2.0 150 3 295 445 15 2.3 230 6 420 650 24 2.4 

4001-5000 55 0 65 120 2 1.2 55 0 95 150 3 1.4 90 1 
165 255 7 1.8 120 2 255 375 12 2.1 150 3 345 495 17 2.3 255 7 445 700 26 2,5 

5001-7000 55 0 65 120 2 1 .2 55 0 95 150 3 1.4 90 1 165 255 7 1.8 120 2 260 380 12 2.1 150 3 370 520 18 2,3 255 7 495 750 23 2.6 

7001-10,000 55 0 65 120 2 1.2 55 0 120 175 4 1.5 90 
1 

190 280 8 1.9 120 2 285 405 13 2.1 175 4 370 545 19 2.4 280 8 540 820 31 2.7 

10,001-20,000 55 0 65 120 2 1,2 55 0 120 175 4 1.5 90 1 
190 280 8 1.9 120 2 310 430 14 2.2 175 4 420 595 21 2.4 280 8 660 940 36 2.8 

20.001-50,000 55 0 65 120 2 1.2 55 0 150 205 5 1.7 90 1 215 305 9 2.0 120 2 335 455 15 2.2 205 5 485 690 25 2.5 305 9 745 1050 41 2,9 

50.001-100,000 55 0 65 120 2 1,2 55 0 150 205 5 1.7 90 1 240 330 10 2.1 120 2 360 480 16 2.3 205 5 555 760 28 2.6 330 10 810 1140 45 3.0 

Tables of Quality Control By Hamid Bazargan
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S

Lot Size

Point of Control=Indiffrence Point

all   means whole lot  has to be inspected
in Double  case:  n2=2 n1       Rejection no= c2+1
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2859 2

Lot size

Table   E    Code of  sample size  for    ISO2859

refrence Bestrefield (1990

۴۰۸
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Ac=acceptance number  Ÿě�ŵŶƗƿƁź  ���������� Re=rejection number �ŵŹ�ŵŶƗ�  

ൌ֛ ě�ƶŝ�źĭřǀŵŹƺųźŝ�ƱŚĪƿě�ħƺƳ�ƶƯŚƳźŝ�Żř�Ŷǀ�ƱŚĪ���ƶƳƺưƳ�ƮŬů�ƪƯŚƃRe��ƹAc��ƴĩ�ƵŵŚƠŤſřǀŶ��ŝ�ƶƳƺưƳ�ƮŬů�źĭřǀƷŵ�ƭŚŬƳř�ŶƇŹŵŶƇ�İſŹŻŚŝ�Ţſř�ƶƫƺưŰƯ�ƮŬů�Żř�ƂǀŶ���

id4233828 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Table  F  single sampling Plan Tightened   ISO2859-1   

411 Refrence  Bestrefiled,1990 Table 6.7
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%AQL

Table  G  single sampling Plan   Reduced      ISO2859

Refrence  Bestrefiled,1990 Table 6.7412

AQL)
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N
o

Table 2-A — Single sampling plans for normal inspection (Master table)

L-J I Acoeptanoequalitylimit,AQL, In percentnonconformingitemsand nonconformitiesper 100 items (normal inspection)
‘“...,..,

aim same 0,010 (),()15 0,02!5 0,040 m= 0,10code size
0,15 0,25 0,40 0,66 1,0 1,5 2,5 4,0 G,!j 10 15 25 40 65 100 Iw 250 400 650 Iorl

letter AcFte Ac Re Ac Re Ac Re Ac Re Ac Re AC% AC Re AC Re AC Re AC Re AC Re AC Re AC Rfj AC Re AC Re AC Re AC Re AC Re AC Be AC Re AC F@ AC Re AC Re AC Re Ac R

A 2

B 3

I - .: , - - -

[ ~ ; : ~ : :; :: 34 5’ 76 10’1 14’5 2122 :12 23 34 56 76 10 11 14 15 21 22 30 31 44 4

c 5 76 10 11 14 15 21 22 30 31 44 45
-. -.. -- -. ---

1111--::/1-~1~1n
.---

D 8 01 0 v 12 23 34 56 76 1011 1415 2122 3031 4445 6

E 13 01 0 + 12 23 34 56 7s 1011 1415 2122 3031 4445 0

F 20 01 0 v 12 23 34 56 78 1011 1415 2122 A

- -- -. -.. -- - . . --

G 32 01 6 v 12 23 34 56 78 1011 1415 2122 - ‘- - - -

H 50 01 0 + 12 23 34 56 7s 1011 1415 2122

J 60 01 + + 12 23 34 56 7s 1011 1415 2122
-. - . . --

K 126 01 0 + 12 23 34 56 76 1011 1415 2122 - ‘- - ‘- - - - -

L 200 01 0 + 12 23 34 56 78 1011 1415 2122

M 315 01 6 v 12 23 34 56 78 1011 1415 2, 27. f)
i [ II I -Ill”” I ‘: : “ “ - : :

-. - .- - -

-T,-u_rl,.T,-u-r- .- -. -. - - -. -

I 1 a 1 I ,,, ,,, ,,, s,,

~-il-+-ll-l--

Tu

--lJ 01 0 ~-!
-- -_+-+1-+ -11-l- +ti-i F+-11-t-

N600 12 23 34 56 7s 10 11 14 15 21 22

Peoo 01 6 + 12 23 34 56 78 1011 1415 2122

Q 125001 vv 12 23 34 56 78 1011 1415 2122
--

! vII[1!![---------1. 111111111111111

R 2000 6 12 23 34 56 78 1011 1415 21 22 0
, , , 1 1 1 1 1 1 I 1 1 1 I

+ = Use the firstsamplingplan below the arrow. If sample size equals, or exceeds, lot size, carry out 100% inspection.

6= Ueethe first samplingplan above the arrmv.

Ac = Acceptancenumber

Re = Rejectionnumber

 

Table  H single sampling Plan Normal ISO2859
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PROCESS AVERAGE (%)

LOT SIZE 0.00 - 0.04 0.05 - 0.40 0.41 - 0.80 0.81 - 1.20 1.21 - 1.60 1.61 - 2.00

n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%)

1 - 15 All 0 - All 0 - All 0 - All 0 - All 0 - All 0 -
16 - 50 14 0 13.6 14 0 13.6 14 0 13.6 14 0 13.6 14 0 13.6 14 0 13.6
51 - 100 16 0 12.4 16 0 12.4 16 0 12.4 16 0 12.4 16 0 12.4 16 0 12.4

101 - 200 17 0 12.2 17 0 12.2 17 0 12.2 17 0 12.2 35 1 10.5 35 1 10.5
201 - 300 17 0 12.3 17 0 12.3 17 0 12.3 37 1 10.2 37 1 10.2 37 1 10.2
301 - 400 18 0 11.8 18 0 11.8 38 1 10.0 38 1 10.0 38 1 10.0 60 2 8.5
401 - 500 18 0 11.9 18 0 11.9 39 1 9.8 39 1 9.8 60 2 8.6 60 2 8.6
501 - 600 18 0 11.9 18 0 11.9 39 1 9.8 39 1 9.8 60 2 8.6 60 2 8.6
601 - 800 18 0 11.9 40 1 9.6 40 1 9.6 65 2 8.0 65 2 8.0 85 3 7.5
801 - 1000 18 0 12.0 40 1 9.6 40 1 9.6 65 2 8.1 65 2 8.1 90 3 7.4

1001 - 2000 18 0 12.0 41 1 9.4 65 2 8.2 65 2 8.2 95 3 7.0 120 4 6.5
2001 - 3000 18 0 12.0 41 1 9.4 65 2 8.2 95 3 7.0 120 4 6.5 180 6 5.8
3001 - 4000 18 0 12.0 42 1 9.3 65 2 8.2 95 3 7.0 155 5 6.0 210 7 5.5
4001 - 5000 18 0 12.0 42 1 9.3 70 2 7.5 125 4 6.4 155 5 6.0 245 8 5.3
5001 - 7000 18 0 12.0 42 1 9.3 95 3 7.0 125 4 6.4 185 6 5.6 280 9 5.1
7001 - 10000 42 1 9.3 70 2 7.5 95 3 7.0 155 5 6.0 220 7 5.4 350 11 4.8

10001 - 20000 42 1 9.3 70 2 7.6 95 3 7.0 190 6 5.6 290 9 4.9 460 14 4.4
20001 - 50000 42 1 9.3 70 2 7.6 125 4 6.4 220 7 5.4 395 12 4.5 720 21 3.9
50001 - 100000 42 1 9.3 95 3 7.0 160 5 5.9 290 9 4.9 505 15 4.2 955 27 3.7

n :  size of sample; entry of  “All” indicates that each piece in lot is to be inspected.

c :  acceptance number for sample.

LQL :  limiting quality level corresponding to a consumer’s risk () = 0.10.

Table I. Dodge-Romig Single Sampling      AOQL=2%.Based on Average Outgoing Quality Limit (AOQL) = 2.0%

Refrence www.galitshmueli.com/system/files/Table_DODGE_ROMIG.pdf
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Table J. Dodge-Romig Single Sampling Lot Inspection Table   AOQL=3% .

Based on Average Outgoing Quality Limit (AOQL) = 3.0 %.

PROCESS AVERAGE (%)

LOT SIZE 0.00 - 0.06 0.07 - 0.60 0.61 - 1.20 1.21 - 1.80 1.81 - 2.40 2.41 - 3.00

n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%) n c LQL (%)

1 - 10 All 0 - All 0 - All 0 - All 0 - All 0 - All 0 -
11 - 50 10 0 19.0 10 0 19.0 10 0 19.0 10 0 19.0 10 0 19.0 10 0 19.0
51 - 100 11 0 18.0 11 0 18.0 11 0 18.0 11 0 18.0 11 0 18.0 22 1 16.4

101 - 200 12 0 17.0 12 0 17.0 12 0 17.0 25 1 15.1 25 1 15.1 25 1 15.1
201 - 300 12 0 17.0 12 0 17.0 26 1 14.6 26 1 14.6 26 1 14.6 40 2 12.8
301 - 400 12 0 17.1 12 0 17.1 26 1 14.7 26 1 14.7 41 2 12.7 41 2 12.7
401 - 500 12 0 17.2 27 1 14.1 27 1 14.1 42 2 12.4 42 2 12.4 42 2 12.4
501 - 600 12 0 17.3 27 1 14.2 27 1 14.2 42 2 12.4 42 2 12.4 60 3 10.8
601 - 800 12 0 17.3 27 1 14.2 27 1 14.2 43 2 12.1 60 3 10.9 60 3 10.9
801 - 1000 12 0 17.4 27 1 14.2 44 2 11.8 44 2 11.8 60 3 11.0 80 4 9.8

1001 - 2000 12 0 17.5 28 1 13.8 45 2 11.7 65 3 10.2 80 4 9.8 100 5 9.1
2001 - 3000 12 0 17.5 28 1 13.8 45 2 11.7 65 3 10.2 100 5 9.1 140 7 8.2
3001 - 4000 12 0 17.5 28 1 13.8 65 3 10.3 85 4 9.5 125 6 8.4 165 8 7.8
4001 - 5000 28 1 13.8 28 1 13.8 65 3 10.3 85 4 9.5 125 6 8.4 210 10 7.4
5001 - 7000 28 1 13.8 45 2 11.8 65 3 10.3 105 5 8.8 145 7 8.1 235 11 7.1
7001 - 10000 28 1 13.9 46 2 11.6 65 3 10.3 105 5 8.8 170 8 7.6 280 13 6.8

10001 - 20000 28 1 13.9 46 2 11.7 85 4 9.5 125 6 8.4 215 10 7.2 380 17 6.2
20001 - 50000 28 1 13.9 65 3 10.3 105 5 8.8 170 8 7.6 310 14 6.5 560 24 5.7
50001 - 100000 28 1 13.9 65 3 10.3 125 6 8.4 215 10 7.2 385 17 6.2 690 29 5.4

n :  size of sample; entry of  “All” indicates that each piece in lot is to be inspected.

c :  acceptance number for sample.

LQL :  limiting quality level corresponding to a consumer’s risk () = 0.10.
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Table K   Dodge-Romig Double Sampling Lot Inspection  AOQL=1%
PROCESS  AVERAGE (%)

LOT SIZE 0.00 - 0.02 0.03 - 0.20 0.21 – 0.40
Trial 1 Trial 2 LQL Trial 1 Trial 2 LQL Trial 1 Trial 2 LQL

n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%)
1 - 25 All 0 - - - - All 0 - - - - All 0 - - - -

26 - 50 22 0 - - - 7.7 22 0 - - - 7.7 22 0 - - - 7.7
51 - 100 33 0 17 50 1 6.9 33 0 17 50 1 6.9 33 0 17 50 1 6.9

101 - 200 43 0 22 65 1 5.8 43 0 22 65 1 5.8 43 0 22 65 1 5.8
201 - 300 47 0 28 75 1 5.5 47 0 28 75 1 5.5 47 0 28 75 1 5.5
301 - 400 49 0 31 80 1 5.4 49 0 31 80 1 5.4 55 0 60 115 2 4.8
401 - 500 50 0 30 80 1 5.4 50 0 30 80 1 5.4 55 0 65 120 2 4.7
501 - 600 50 0 30 80 1 5.4 50 0 30 80 1 5.4 60 0 65 125 2 4.6
601 - 800 50 0 35 85 1 5.3 60 0 70 130 2 4.5 60 0 70 130 2 4.5
801 - 1000 55 0 30 85 1 5.2 60 0 75 135 2 4.4 60 0 75 135 2 4.4

1001 - 2000 55 0 35 90 1 5.1 65 0 75 140 2 4.3 75 0 120 195 3 3.8
2001 - 3000 65 0 80 145 2 4.2 65 0 80 145 2 4.2 75 0 125 200 3 3.7
3001 - 4000 70 0 80 150 2 4.1 70 0 80 150 2 4.1 80 0 175 255 4 3.5
4001 - 5000 70 0 80 150 2 4.1 70 0 80 150 2 4.1 80 0 180 260 4 3.4
5001 - 7000 70 0 80 150 2 4.1 75 0 125 200 3 3.7 80 0 180 260 4 3.4
7001 - 10000 70 0 80 150 2 4.1 80 0 125 205 3 3.6 85 0 180 265 4 3.3

10001 - 20000 70 0 80 150 2 4.1 80 0 130 210 3 3.6 90 0 230 320 5 3.2
20001 - 50000 75 0 80 155 2 4.0 80 0 135 215 3 3.6 95 0 300 395 6 2.9
50001 - 100000 75 0 80 155 2 4.0 85 0 180 265 4 3.3 170 1 380 550 8 2.6

 n1 = size of sample; n2 = size of second sample; entry of  “All” indicates that each piece in lot is to be inspected.
. c1 = acceptance number for sample. c2 = acceptance number for first and second samples combined
.LQL = limiting quality level corresponding to a consumer’s risk () = 0.10 Refrence www.galitshmueli.com/system/files/Table_DODGE_ROMIG.pdf
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.% Based on AOQL = 1.0

PROCESS  AVERAGE (%)

LOT SIZE 0.41 - 0.60 0.61 - 0.80 0.81 - 1.00
Trial 1 Trial 2 LQL Trial 1 Trial 2 LQL Trial 1 Trial 2 LQL

n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%) n1 c1 n2 n1 + n2 c2 (%)
1 - 25 All 0 - - - - All 0 - - - - All 0 - - - -

26 - 50 22 0 - - - 7.7 22 0 - - - 7.7 22 0 - - - 7.7
51 - 100 33 0 17 50 1 6.9 33 0 17 50 1 6.9 33 0 17 50 1 6.9

101 - 200 43 0 22 65 1 5.8 43 0 22 65 1 5.8 47 0 43 90 2 5.4
201 - 300 55 0 50 105 2 4.9 55 0 50 105 2 4.9 55 0 50 105 2 4.9
301 - 400 55 0 60 115 2 4.8 55 0 60 115 2 4.8 60 0 80 140 3 4.5
401 - 500 55 0 65 120 2 4.7 60 0 95 155 3 4.3 60 0 95 155 3 4.3
501 - 600 60 0 65 125 2 4.6 65 0 100 165 3 4.2 65 0 100 165 3 4.2
601 - 800 65 0 105 170 3 4.1 65 0 105 170 3 4.1 70 0 140 210 4 3.9
801 - 1000 65 0 110 175 3 4.0 70 0 150 220 4 3.8 125 1 180 305 6 3.5

1001 - 2000 80 0 165 245 4 3.7 135 1 200 335 6 3.3 140 1 245 385 7 3.2
2001 - 3000 80 0 170 250 4 3.6 150 1 265 415 7 3.0 215 2 355 570 10 2.8
3001 - 4000 85 0 220 305 5 3.3 160 1 330 490 8 2.8 225 2 455 680 12 2.7
4001 - 5000 145 1 225 370 6 3.1 225 2 375 600 10 2.7 240 2 595 835 14 2.5
5001 - 7000 155 1 285 440 7 2.9 235 2 440 675 11 2.6 310 3 665 975 16 2.4
7001 - 10000 165 1 355 520 8 2.7 250 2 585 835 13 2.4 385 4 785 1170 19 2.3

10001 - 20000 175 1 415 590 9 2.6 325 3 655 980 15 2.3 520 6 980 1500 24 2.2
20001 - 50000 250 2 490 740 11 2.4 340 3 910 1250 19 2.2 610 7 1410 2020 32 2.1
50001 - 100000 275 2 700 975 14 2.2 420 4 1050 1470 22 2.1 770 9 1850 2620 41 2.0

 n1 = size of sample; n2 = size of second sample; entry of  “All” indicates that each piece in lot is to be inspected.
. c1 = acceptance number for sample. c2 = acceptance number for first and second samples combined
.LQL = limiting quality level corresponding to a consumer’s risk () = 0.10

Table K Continued
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�� � Table�AQL conversion ��
Etracted from MilSTD414 Manual

If your AQL is 
in the interval 

Use
This AQL

 ----------- 0.01

 ----------- 0.015

 ----------- 0.025

 0.050 -    0.069 0.065

 0.070 -    0.109 0.10

 0.110 -    0.164 0.15

 0.165 -    0.279 0.25

 0.280 -    0.439 0.40

 0.440 -    0.699 0.65

 0.700 -     1.09 1.0

 1.10    -     1.64 1.5

 1.65    -    2.79 2.5

 2.80    -    4.39 4.0

 4.40    -    6.99 6.5

 7.00 - 10.9 10. 0

AQL 
% 

0,0107 0,015 0,025 0,04
0 

0,065 0,10 0,15 0,25 0,40 0,65 1,0 1.5 2.5 4 6.5 10 

ఙ݂ ,125 .129 ,132 .137 .141 .147 .152 .157 .165 .174 .184 .194 .206 .223 .243 .273 

id735593 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Table L.1

Table L 

Values of   fe   for calcualting    σmax  =((U-L))/fe  :  σ -Method( 

(Table  E.1  ISO 3951.1)-
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Lot or batch size Special inspection levels General inspection levels 

S-l S-2 S-3 S-4 I II III 

2 to 8 B B B B B B B 
9 to 15 B B B B B B C 
16 to 25 B B B B B C D 
26 to 50 B B B C C D E 
91 to 150 B B C D D F G 

151 to 2 80 B C D E E G H 
281 to 500 B C D E F H J 

501 to 1200 C C E F G J K 
1201 to 3200 C D E G H K L 

3201 to 10000 C D F G J L M 
10001 to 35000 C D F H K M N 

35 001 to 150 000 D E G J L N P 
150001 to 500000 D E G J M P Q 
500 000 and over D E H K N Q R 

id4448218 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

Table  M Sample Size based on lot size and inspection level

         ISO 3951

Refrence:Table A.1 ISO 3951-2
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ISO 3951-2:2013(E)

Code 

letter 

Acceptance quality limit (in percent nonconforming) 

0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

B 
3 

19,25 

4 

25,50 
4 

30,47 

C 
4 

8,600 

6 

14,53 

6 

17,93 

5 

30,74

D 
6 

5,220 

9 

8,717 

9 

10,82 

6 

19,46 

7 

31,49 

E 
9 

3,279 

13 

5,195 

13 

6,466 

9 

11,43 

9 

19,61 

9 

27,43 

F 
11 

1,958 

17 

3,295 

18 

4,144 

13 

7,204 

14 

12,45 

14 

17,61 

14 

27,71 

G 
15 

1,245 

22 

2,011 

23 

2,518 

18 

4,381 

20 

7,627 

21 

10,85 

21 

17,29 

21 

23,62 

H 
18 

,7546 

28 

1,266 

30 

1,592 

24 

2,751 

27 

4,799 

30 

6,857 

32 

10,94 

33 

15,00 

33 

21,09 

J 
23 

,4753 

36 

,7878 

38 

,9814 

31 

1,685 

37 

2,959 

41 

4,241 

46 

6,783 

49 

9,324 

52 

13,11 

53 

18,14 

K 
28 

,3027 

44 

,4976 

47 

,6222 

40 

1,071 

48 

1,876 

54 

2,687 

63 

4,313 

69 

5,935 

75 

8,361 

79 

11,57 

82 

17,22 

L 
34 

,1880 

54 

,3105 

58 

,3872 

50 

,6625 

61 

1,162 

71 

1,667 

84 

2,681 

94 

3,692 

105 

5,204 

115 

7,220 

124 

10,74 

M 
40 

,1180 

64 

,1954 

69 

,2436 

60 

,4150 

76 

,7337 

89 

1,052 

108 

1,694 

124 

2,335 

143 

3,290 

159 

4,571 

178 

6,804 

N 
47 

,07418 

75 

,1217 

82 

,1524 

73 

,2605 

93 

,4595 

110 

,6602 

137 

1,063 

159 

1,467 

186 

2,069 

213 

2,873 

247 

4,286 

P 
55 

,04641 

88 

,07599 

96 

,09473 

86 

,1614

112 

,2852 

134 

,4100 

171 

,6611 

202 

,9127 

239 

1,290 

277 

1,793 

332 

2,668 

Q 
63 

,02960 

101 

,04835 

110 

,06042 

102 

,1034 

132 

,1817 

159 

,2619 

207 

,4220 

244 

,5836 

293 

,8248 

348 

1,146 

424 

1,707 

R 
116 

,03011 

127 

,03762 

120 

,06433 

155 

0,1132 

189 

,1631 

247 

,2634 

298 

,3637 

362 

,5145 

438 

,7143 

541 

1,065 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

﻿
 Table D.1

 Table  N    Single Sampling     S-method   Form  p*p
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Code 

letter 

Acceptance quality limit (in percent nonconforming)

0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

n
100p* 

n
100p*

B 
3 

19,25 

4 

25,50 

C 
4 

8,600 

6 

14,53 

6 

17,93 

D 
6 

5,220 

9 

8,717 

9 

10,82 

6 

19,46 

E 
9 

3,279 

13 

5,195 

13 

6,466 

9 

11,43 

9 

19,61 

F 
11 

1,958 

17 

3,295 

18 

4,144 

13 

7,204 

14 

12,45 

14 

17,61 

G 
15 

1,245 

22 

2,011 

23 

2,518 

18 

4,381 

20 

7,627 

21 

10,85 

21 

17,29 

H 
18 

,7546 

28 

1,266 

30 

1,592 

24 

2,751 

27 

4,799 

30 

6,857 

32 

10,94 

33 

17,03 

J 
23 

,47

53 

36 

,78

79 

38 

,98

14 

31 

1,685 

37 

2,959 

41 

4,241 

46 

6,783 

50 

10,59 

53 

15,63 

K 
28 

,3027 

44 

,4976 

47 

,6222 

40 

1,071 

48 

1,876 

54 

2,687 

63 

4,313 

71 

6,738 

78 

9,963 

82 

14,80

L 
34 

,1880 

54 

,3105 

58 

,3872 

50 

,6625 

61 

1,162 

71 

1,667 

84 

2,681 

99 

4,192 

111 

6,205 

122 

9,224 

M 
40 

,1180 

64 

,1954 

69 

,2436 

60 

,4150 

76 

,7336 

89 

1,052 

108 

1,694 

131 

2,654 

150 

3,936 

170 

5,851 

N 
47 

,07418 

75 

,1218 

82 

,1524 

73 

,2605 

93 

,4595 

110 

,6602 

137 

1,063 

169 

1,666 

201 

2,470 

233 

3,679 

P 
55 

,04641 

88 

,07599 

96 

,09473 

86 

,1614

112 

,2852 

134 

,4100 

171 

,6611 

214 

1,039 

260 

1,540 

312 

2,292 

Q 
63 

,02960 

101 

,04835 

110 

,06042 

102 

,1034

132 

,1817 

159 

,2619 

207 

,4220 

262 

,6640 

323 

,9849 

395 

1,466 

R 
90 

,02165 

116 

,03011 

127 

,03762 

120 

,06433 

155 

,1132 

189 

,1631 

247 

,2634 

320 

,4141 

398 

,6152 

498 

,9152 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

Ref:  ISO 3951-2:2013(E)  Table D.2

Table  N.1  Single Sampling   S-method    form p**p
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﻿

Single sampling plans of Form p* for reduced inspection: s-method —

Code 

letter 

Acceptance quality limit (in percent nonconforming) 

0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

n 
100p* 

B − D 
        3 

19,25 

4 

21,67 

4 

25,50 
4 

30,47 
7 

41,88 

E 
4 

8,600 

6 

12,09 

6 

14,53 

6 

17,93 

5 

30,74 

9 

43,83 

F 
6 

5,220 

8 

7,090 

9 

8,717 

9 

10,82 

6 

19,46 

7 

31,49 

8 

41,30 

G 
9 

3,279 

11 

4,162 

13 

5,195 

13 

6,466 

9 

11,43 

9 

19,61 

9 

27,43 

12 

40,88 

H 
11 

1,958 

15 

2,670 

17 

3,295 

18 

4,144 

13 

7,204 

14 

12,45 

14 

17,61 

14 

27,71 

13 

32,84 

J 
15 

1,245 

19 

1,613 

22 

2,011 

23 

2,518 

18 

4,381 

20 

7,627 

21 

10,85 

21 

17,29 

21 

20,45 

21 

26,75 

K 
18 

,7546 

24 

1,016 

28 

1,266 

30 

1,592 

24 

2,751 

27 

4,799 

30 

6,857 

32 

10,94 

33 

12,96 

33 

17,03 

33 

21,09 

L 
23 

,4753 

30 

,6246 

36 

,7878 

38 

,9814 

31 

1,685 

37 

2,959 

41 

4,241 

46 

6,783 

48 

8,059 

50 

10,59 

52 

13,11 

M 
28 

,3027 

37 

,3976 

44 

,4976 

47 

,6222 

40 

1,071 

48 

1,876 

54 

2,687 

63 

4,313 

66 

5,129 

71 

6,738 

75 

8,361 

N 
34 

,1880 

44 

,2451 

54 

,3105 

58 

,3872 

50 

,6625 

61 

1,162 

71 

1,667 

84 

2,681 

90 

3,182 

99 

4,192 

105 

5,204 

P 
40 

,1180 

52 

,1540 

64 

,1954 

69 

,2436 

60 

,4150 

76 

,7336 

89 

1,052 

108 

1,694 

117 

2,012 

131 

2,654 

143 

3,290 

Q 
47 

,07418 

61 

,09633 

75 

,1217 

82 

,1524 

73 

,2605 

93 

,4595 

110 

,6602 

137 

1,063 

149 

1,264 

169 

1,666 

186 

2,069 

R 
71 

,05982 

88 

,07599 

96 

,09473 

86 

,1614

112 

,2852 

134 

,4100 

171 

,6611 

187 

,7874 

214 

1,039 

239 

1,290 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

﻿


  Table N.2  S-method    form p**p
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ࡸ Table O Estimates of Nonconforming Percentࢁ ISO3951     S Method   form p
Qu or QL n=5 n=7 n=10 n=15 n=20 n=30 n=40 n=50 n=100 Qu or QL n=5 n=7 n=10 n=15 n=20 n=30 n=40 n=50 n=100 

� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� � ����� ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � ������ ������ ������ ������ ������ ������ ������ ������
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���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � ������ ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������� ������ ������� ������� ������� ������� ������� ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������

���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � ������ ������ ������ ������ ������ ������
���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� � ������ ������ � ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� � ������ ������ � ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� � ������ ������ � ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� � ������ ������ � ������ ������ ������ ������ ������ ������ � � � � ������ ������ ������ ������ ������
���� � ������ ������ � ������ ������ ������ ������ ������ Phat=(100*betacdf(.5*(1-Q*(n^.5)/(n-1)),(n-2)/2,(n-2)/2) 
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Table P.1  Values of   fs   in S--Method Double Specification
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Code Acceptance quality limit (in percent nonconforming) 

letter 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf

 B 0,475 0,447 

 C 0,365 0,366 0,388 

 D 0,303 0,312 0,328 0,399 

 E 0,265 0,274 0,285 0,333 0,395 

 F 0,241 0,248 0,257 0,292 0,334 0,375 

 G 0,221 0,227 0,234 0,260 0,290 0,318 0,371 

 H 0,206 0,211 0,216 0,237 0,260 0,280 0,316 0,367 

 J 0,192 0,197 0,201 0,218 0,236 0,251 0,277 0,312 0,354 

 K 0,182 0,185 0,189 0,203 0,218 0,230 0,250 0,276 0,305 0,347 

0,172 0,175 0,179 0,190 0,203 0,212 0,229 0,248 0,269 0,298 

 M 0,164 0,167 0,170 0,180 0,190 0,199 0,212 0,227 0,244 0,265 

 N 0,157 0,160 0,162 0,171 0,180 0,187 0,198 0,210 0,224 0,240 

 P 0,151 0,153 0,155 0,163 0,171 0,177 0,186 0,196 0,207 0,221 

 Q 0,145 0,147 0,149 0,156 0,163 0,168 0,176 0,185 0,195 0,206 

 R 0,140 0,142 0,144 0,150 0,156 0,161 0,168 0,175 0,183 0,192 

﻿



Table P.2  Values of   fs   in S-Method Double Specification
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Code Acceptance quality limit (in percent nonconforming) 

letter 0,010 0,015 0,025 0,040 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf sf

 B-D 0,475 0,426 0,447 0,479 0,602 

 E 0,365 0,350 0,366 0,388 0,484 0,632 

 F 0,303 0,303 0,312 0,328 0,399 0,494 0,598 

 G 0,265 0,267 0,274 0,285 0,333 0,395 0,458 0,599 

 H 0,241 0,243 0,248 0,257 0,292 0,334 0,375 0,461 0,510 

 J 0,221 0,223 0,227 0,234 0,260 0,290 0,318 0,371 0,397 0,452 

 K 0,206 0,207 0,211 0,216 0,237 0,260 0,280 0,316 0,333 0,367 0,401 

L 0,192 0,194 0,197 0,202 0,218 0,233 0,251 0,277 0,289 0,312 0,333 

 M 0,182 0,183 0,185 0,189 0,203 0,218 0,230 0,250 0,259 0,276 0,291 

 N 0,172 0,173 0,175 0,179 0,190 0,203 0,212 0,229 0,235 0,248 0,259 

 P 0,164 0,165 0,167 0,170 0,180 0,190 0,199 0,212 0,217 0,227 0,236 

 Q 0,157 0,158 0,160 0,162 0,171 0,180 0,187 0,198 0,202 0,210 0,217 

 R 0,151 0,153 0,155 0,163 0,171 0,177 0,186 0,190 0,196 0,202 

﻿


Table P.3  Values of   fs   in S--Method Double Specification

Reduced
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Code 

letter 

Acceptance quality limit (in percent nonconforming) 

0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

B 
3 

0,709 

4 

0,571 
3 

0,417 

C 
3 

1,115 

5 

0,945 

5 

0,821 

4 

0,436 

D 
4 

1,406 

6 

1,240 

6 

1,128 

5 

0,770 

5 

0,431 

E 
4 

1,595 

7 

1,506 

8 

1,419 

7 

1,115 

7 

0,792 

7 

0,555 

F 
5 

1,845 

8 

1,720 

9 

1,635 

8 

1,366 

10 

1,094 

9 

0,877 

11 

0,564 

G 
5 

2,006 

9 

1,934 

10 

1,856 

9 

1,610 

12 

1,370 

13 

1,186 

13 

0,906 

15 

0,694 

H 
6 

2,218 

10 

2,122 

11 

2,046 

10 

1,820 

13 

1,599 

16 

1,439 

16 

1,191 

19 

1,009 

23 

0,786 

J 
7 

2,401 

11 

2,302 

12 

2,234 

11 

2,025 

15 

1,823 

19 

1,677 

21 

1,456 

24 

1,293 

29 

1,102 

34 

0,897 

K 
7 

2,541 

12 

2,468 

13 

2,401 

13 

2,210 

17 

2,018 

21 

1,882 

27 

1,683 

29 

1,533 

35 

1,361 

42 

1,182 

53 

0,937 

L 
8 

2,710 

13 

2,629 

15 

2,573 

14 

2,387 

19 

2,209 

24 

2,083 

32 

1,900 

34 

1,761 

42 

1,606 

52 

1,446 

66 

1,231 

M 
8 

2,844 

14 

2,780 

16 

2,726 

15 

2,550 

21 

2,382 

27 

2,264 

36 

2,092 

39 

1,963 

50 

1,821 

61 

1,674 

79 

1,481 

N 
9 

2,996 

15 

2,929 

17 

2,874 

17 

2,709 

24 

2,550 

30 

2,437 

40 

2,274 

45 

2,155 

57 

2,022 

72 

1,887 

94 

1,710 

P 
10 

3,141 

17 

3,069 

19 

3,023 

19 

2,865 

26 

2,711 

33 

2,603 

45 

2,450 

51 

2,337 

65 

2,212 

82 

2,086 

110 

1,923 

Q 
11 

3,275 

18 

3,207 

20 

3,155 

20 

3,002 

28 

2,856 

35 

2,752 

49 

2,607 

57 

2,500 

72 

2,381 

92 

2,262 

125 

2,110 

R 
19 

3,339 

21 

3,289 

22 

3,145 

30 

3,002 

38 

2,903 

54 

2,764 

64 

2,663 

81 

2,550 

105 

2,438 

142 

2,294 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

﻿


Table  Q.1  Single sampling    σ-Method   form k

  Normal 
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Code 

letter 

Acceptance quality limit (in percent nonconforming) 

0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

B 
3 

0,709 

4 

0,571 

C 
3 

1,115 

5 

0,945 

5 

0,821 

D 
4 

1,406 

6 

1,240 

6 

1,128 

5 

0,770 

E 
4 

1,595 

7 

1,506 

8 

1,419 

7 

1,115 

7 

0,792 

F 
5 

1,845 

8 

1,720 

9 

1,635 

8 

1,366 

10 

1,094 

9 

0,877 

G 
5 

2,006 

9 

1,934 

10 

1,856 

9 

1,610 

12 

1,370 

13 

1,186 

13 

0,906 

H 
6 

2,218 

10 

2,122 

11 

2,046 

10 

1,820 

13 

1,599 

16 

1,439 

16 

1,191 

20 

0,929 

J 
7 

2,401 

11 

2,302 

12 

2,234 

11 

2,025 

15 

1,823 

19 

1,677 

21 

1,456 

25 

1,223 

32 

0,994 

K 
7 

2,541 

12 

2,468 

13 

2,401 

13 

2,210 

17 

2,018 

21 

1,882 

27 

1,683 

31 

1,471 

39 

1,267 

49 

1,035 

L 
8 

2,710 

13 

2,629 

15 

2,573 

14 

2,387 

19 

2,209 

24 

2,083 

32 

1,900 

37 
1,705 

47 
1,521 

61 
1,316 

M 
8 

2,844 

14 

2,780 

16 

2,726 

15 

2,550 

21 

2,382 

27 

2,264 

36 

2,092 

43 
1,912 

55 
1,742 

72 
1,556 

N 
9 

2,996 

15 

2,929 

17 

2,874 

17 

2,709 

24 

2,550 

30 

2,437 

40 

2,274 

49 
2,106 

65 
1,950 

85 
1,779 

P 
10 

3,142 

17 

3,076 

19 

3,023 

19 

2,865 

26 

2,711 

33 

2,603 

45 

2,450 

55 
2,291 

74 
2,145 

99 
1,987 

Q 
11 

3,275 

18 

3,207 

20 

3,155 

20 

3,002 

28 

2,856 

35 

2,752 

49 

2,607 

61 
2,456 

83 
2,318 

112 
2,169 

R 
14 

3,391 
19 

3,339 

21 

3,289 

22 

3,145 

30 

3,002 

38 

2,903 

54 

2,764 

68 
2,621 

92 
2,490 

126 
2,350 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

﻿


Table Q.2  Single sampling    σ-Method   Form k
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Code 

letter 

Acceptance quality limit (in percent nonconforming) 
0,01 0,015 0,025 0,04 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 10,0 

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n
k 

n
k

n
k

n  

k 

B − 

D 

           3 

0,709 

4 

0,679 

4 

0,571 

3 

0,417 

6 

0,187 

E 
3 

1,115 

5 

1,047 

5 

0,945 

5 

0,821 

4 

0,436 

8 

0,145 

F 
4 

1,406 

5 

1,314 

6 

1,240 

6 

1,128 

5 

0,770 

5 

0,431 

7 

0,204 

G 
4 

1,595 

6 

1,581 

7 

1,506 

8 

1,419 

7 

1,115 

7 

0,792 

7 

0,555 

11 

0,220 

H 
5 

1,845 

7 

1,788 

8 

1,720 

9 

1,635 

8 

1,366 

10 

1,094 

9 

0,877 

11 

0,564 

11 

0,424 

J 
5 

2,006 

7 

1,982 

9 

1,934 

10 

1,856 

9 

1,610 

12 

1,370 

13 

1,186 

13 

0,906 

14 

0,796 

16 

0,601 

K 
6 

2,218 

8 

2,171 

10 

2,122 

11 

2,046 

10 

1,820 

13 

1,599 

16 

1,439 

16 

1,191 

18 

1,096 

20 

0,929 

23 

0,786 

L 
7 

2,401 

9 

2,355 

11 

2,302 

12 

2,234 

11 

2,025 

15 

1,823 

19 

1,677 

21 

1,456 

22 

1,369 

25 

1,223 

29 

1,102 

M 
7 

2,541 

10 

2,518 

12 

2,468 

13 

2,401 

13 

2,210 

17 

2,018 

21 

1,882 

27 

1,683 

26 

1,601 

31 

1,471 

35 

1,361 

N 
8 

2,710 

10 

2,669 

13 

2,629 

15 

2,573 

14 

2,387 

19 

2,209 

24 

2,083 

32 

1,900 

31 

1,825 

37 

1,705 

42 

1,606 

P 
8 

2,844 

11 

2,822 

14 

2,780 

16 

2,726 

15 

2,550 

21 

2,382 

27 

2,264 

36 

2,092 

38 

2,024 

43 

1,912 

50 

1,821 

Q 
9 

2,996 

12 

2,969 

15 

2,929 

17 

2,874 

17 

2,709 

24 

2,550 

30 

2,437 

40 

2,274 

45 

2,212 

49 

2,106 

57 

2,022 

R 
13 

3,113 

17 

3,076 

19 

3,023 

19 

2,865 

26 

2,711 

33 

2,603 

45 

2,450 

50 

2,390 

55 

2,291 

65 

2,212 

There is no suitable plan in this area; use the first sampling plan below the arrow. 
If the sample size equals or exceeds the lot size, carry out 100 % inspection.

There is no suitable plan in this area; use the first sampling plan above the arrow.

﻿


Table  Q.3  Single sampling    σ-Method   form k
Reduced
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 Table   T  Single Sampling S-Method form k 
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Table   T.1 Single Sampling S-Method form K
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 Table   T.2 Single Sampling S-Method form k
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Table  V
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Table U  Coefficients  for     , S & R Control Charts

nControl ChartRControl ChartSControl Chartn
D4D3D2D1d2B6B5B4B3B2B1 C4A3A2A 

23.26703.686 0 1.1282.60603.26701.8430 0.7979 2.659 1.880 2.121 2 

32.57504.358 0 1.6932.27602.56801.8580 0.8862 1.954 1.023 1.7323

42.28204.698 0 2.0592.08802.26601.8080 0.9213 1.628 0.729 1.5004  

52.11404.918 0 2.3261.96402.08901.7560 0.9400 1.427 0.577 1.3425

62.00405.078 0 2.5341.8740.0291.9700.031.7110.026 0.9515 1.287 0.483 1.2256

7 1.9240.0765.204 0.204 2.7041.8060.1131.8820.1181.6720.105 0.9594 1.182 0.419 1.1347

81.8640.1365.306 0.388 2.8471.7510.1791.8150.1851.6380.167 0.9650 1.099 0.373 1.0618

91.8160.1845.393 0.547 2.9701.7070.2321.7610.2391.6090.219 0.9693 1.032 0.337 1.0009

101.7770.2235.469 0.687 3.0781.6690.2761.7160.2841.5840.262 0.9727 0.975 0.308 0.94910

111.7440.2565.535 0.811 3.1731.6370.3131.6760.3211.5610.299 0.9754 0.927 0.285 0.90511

121.7170.2835.594 0.922 3.2581.6100.3461.6460.3541.5410.331 0.9776 0.886 0.266 0.86612

131.6920.3075.647 1.025 3.3361.5850.3741.6180.3821.5230.359 0.9794 0.850 0.249 0.83213

141.6710.3285.696 1.118 3.4071.5630.3991.5940.4061.5070.384 0.9810 0.817 0.235 0.80214

151.6520.3475.741 1.203 3.4721.5440.4211.5720.4281.4920.406 0.9823 0.789 0.223 0.77515

161.6360.3635.782 1.282 3.5321.5260.4401.5520.4481.4780.427 0.9835 0.763 0.212 0.75016

171.6210.3785.820 1.356 3.5881.5110.4581.5340.4661.4650.445 0.9845 0.739 0.203 0.72817

181.6080.3915.856 1.424 3.6401.4960.4751.5180.4821.4540.461 0.9854 0.718 0.194 0.70718

191.5960.4035.891 1.487 3.6891.4830.4901.5030.4971.4430.477 0.9862 0.698 0.187 0.68819

201.5850.4155.921 1.549 3.7351.4700.5041.4900.5101.4330.491 0.9869 0.680 0.180 0.67120

211.5750.4255.951 1.605 3.7781.4590.5161.4770.5231.4240.504 0.9876 0.663 0.173 0.65521

221.5660.4345.979 1.659 3.8191.4480.5281.4660.5341.4150.516 0.9882 0.647 0.167 0.64022

231.5570.4436.006 1.710 3.8581.4380.5391.4550.5451.4070.527 0.9887 0.633 0.162 0.62623

24 1.5480.4516.031 1.759 3.8951.4290.5491.4450.5551.3990.538 0.9892 0.619 0.157 0.61224  

25 1.5410.4596.056 1.806 3.9311.4200.5591.4350.5651.3920.548 0.9896 0.606 0.153 0.60025  

404.3221.3320.6551.3410.6591.310.65 0.9936 0.477 0.110 0.474 40 

504.4981.2970.6931.3040.6961.280.68 0.9949 0.426 0.094 0.424 50 

604.6391.2710.7201.2780.7231.260.71 0.9958 0.389 0.084 0.387 60 

804.8541.2350.7591.2390.7611.230.75 0.9968 0.337 0.069 0.335 80 

1005.0151.2100.7851.2140.7861.200.78 0.9975 0.300 0.060 0.300 100 
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