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Symbols and abbreviations 

A 
� 

The increase in price from a 
future dats 

A The current level of inventory., 
the level of inventory  before 
ordering at  the period 

APP Accumulated Part-Period 
ANN Artificial Neural Networks 

B 
B Maximum back-ordered demand� 
�തAverage shortage  per unit time 
 Optimal value of  b כ�

�ሺ�ሻ Amount of the shortage during 
the period 

�തሺ�ሻ Average of shortage in each 
cycle in (r , Q) model 

�ഥሺ�ሻAnnual Average of shortage  in 
(r , Q) model 

( )b RAverage of shortage in each 
cycle in (R , T) model 

( )B RAnnual Average of shortage  in 
(R , T) model 

C 
Ch Cost of holding per unit product 

per unit time       

CO Cost of Each Order or setup 

�୓ƍEstimated  cost of order 

�୦ƍEstimated  Ch 

(Ch)i 
Cost of holding per unit product 
per unit time   for ith product      

(CO)i 
Setup Cost  for ith product 

ሺ�୭ሻ୲ Setup/order cost for period t 
(�୦ሻ୲ Per unit cost of holding for 

period t(at the end of period). 
(�୦ሻ୲ for each t might be 
different  

Symbols and abbreviations 

D 
� a temporary special 

reduction of price d per unit. 
D Amount of demand or 

requirement 
DThe average of deviation 

between observed and predicted 
values 

�୲�Demand for period t�  (t=1,2,�T) 
D' Estimated  amount  of demand 
Di Annual demand for ith product 

diൌ ୈ౟
୒

Daily rate of consumption for 
product i 

�୐�consumption during lead time ��
TL� 

�୘ା୐�consumption during �� T+L ��  

E 

EOQ Economic  Order  Quannty 

EOI Economic Order Interval 
EPQ Economic Production Quantity 
��Economic Part Period 

E Desired  maximum of inventory 

et Forecast error of time t 

F 
FOS Fixed  order size 

��A fraction of  time(year ) no 
shortage  happens 

FOI Fixed order Interval 
FOP Fixed Order Period 
FOQ Fixed order quantity 
FPR Fixed Period Requirement 

f(x)Ύϳ
( )Df xDemand probability 

density function 

�ୈైሺ�ሻ Probability density  of DL 
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Symbols and abbreviations 

F(x) 
Cum. dist func. 

	ଡ଼ሺ�ሻ Cum. dist func. Of variable X at 
point x 

G  ,  H 
G Saving in Sale Model 


 Optimal value of  Gכ

୙ሺ�ሻNormal Loss integral 
gStockout cost per outage 

H� Per unit disposal cost at the end 
of period 

H Actual cost of holding one unit 
available  at the end of the period 

I 
I Holding cost rate, per unit  cost 

of holding  $1in unit time 

�ҧ Average inventory in the 
warehouse 

୲The amount of inventory at the 
end of the period 

୑ୟ୶Maximum of inventory 
ሺ�୑ୟ୶כ ሻ The optimal value of ୑ୟ୶

iI  
Average inventory in the 
warehouse for ith product 

IPP Incremental  Part- Pperiods 
IPPA Incremental Part Period 

Algorithm 

K , L 
K Average cost during period T' if 

a special order of size Q' is not 
placed.   

K' average cost during period T' if a 
special order of size Q' is  placed. 

L Lead  time 
L Salvage value of one unit 
LFL Lot for Lot 
LPC Least period cost 
LTC Least Total cost 
LUC Least Unit Cost 

Symbols and abbreviations 

M ,  N 
� Number of  setups//orders or 

cycles  per unit time(usually one 
year 

 Optimal value of  m כ�
M Safety stock 

N 

1)Number working days in a year
2) Total number of periods in

time horizon (dynamic lot sizing) 
3) number periods used in

moving average method 
4) number periods in a cycle in
ratio-to- trend method 

�ୠ Annual average number of 
cycles having shortage 

P 
pProbability of shortage, service 

level 
P Unit price/cost 

Pi  Cost of producing 1 unit of ith 
product  

�୲Purchase cost of 1 unit  in period t 

POQ  Period order Quantity 
POS Periods Of Supply 
PP Part-Period 
PPA Part Period Algorithm 
PPB Part Period Balancing 

Q 

Q Amount of each  order 
 Optimal amount of  orderכ�
�୨כOptimal amount of  ordering 

product  no.  j each time 

���୛ Economic order quantity in 
Wilson Model 

Q� Amount of ordering at time of 
temporary reduction of price  

� stock position  on 
the expiration date in special 
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Symbols and abbreviations 

sale price� Model 
�ƍכ Optimum ܳᇱ 
�ୟכ

The economic order quantity 
with unit price P+a  in known 
increase in price Model 

�୲The amount ordered at the 
beginning of period t 

�୫Desired  maximum of inventory 
�୲ୣThe sum of demands for Period  t 

through e in Wagner_wittin 
Algorithm 

R 
� 1)the inventory at reorder point

in terms of on-hand and on-order 
quantities 2)reorder point in FOS 
model 

R 1)production rate in EPQ model
2)Maximum of inventory in
periodic review model 

Ri Annual production rate for ith 
product 

RL Reorder Level 
�୓ The ratio between estimated and 

actual �୓ 
�୦ 1)The ratio between estimated 

and actual �୦ 
2)on-hand inventory at the time
ordering 

�ୈ The ratio between estimated and 
actual  demand 

ROP Reorder point 

כ�
Optimal value of the maximum 
of inventory in periodic review 
model 

Rt The ratio of the observed 
value(ݕ௜)to the predicted

value �( )ty  Period  t in Rato-

to-trend Forecasting method 
Root Measn Squared Error 

Symbols and abbreviations 

RMSE 

=
 

n

n

i iyiy



1

2�

S 
S Standard deviation of a sample 
SS Safety Stock��

Si 
Machine setup time required for 
producing ith product in 
multiple-item EPQ model 

SEE standard error of estimate 
SSE Sum of Squared Errors 

T 
T Time interval between  2 

successive orders, the time 
interval between 2  order arrivals 
,The time for consumption in 
classic  EOQ model,  number of 
periods ( month, day, week,,,)in 
the time horizon considered for 
dynamic lot sizing 

 Optimal value of Tכ�
T� The time required to consume 

Q'=
୕ǯ
஽  

�୔୧כ
The optimal value of the time 
required to produce ith product in 
each run 

(tp)i The time required to produce ith 
product in each cycle 

TL Lead  Time 
TC Total Cost of  inventory system 
TVC Total Variable Cost 
TVC* Optimal value  of TVC 
TCw Optimal value  of TVC in 

Classic EOQ  Model 

*
0T

the cycle time when the setup 
times are negligible in multiple-
item EPQ model 

��୧The total cost for ith product in 
inventory system 
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Symbols and abbreviations 

�୫୧୬
σ ^ũ

Ŷ
ũୀϭ

ϭ െ σ �ũ

Zũ
Ŷ
ũୀϭ

ൌ 

�ୠ
The time interval between 2 
successive  cycles in which 
shortage happen  

U ,  V 
U 

Income during the period (in 
Single period model) 

VNS Income during the period (in 
Single period model) 

���ሺ�ሻ Variable Neighborhood Search 
V Thee variance of demand 

X  ,Y  ,  Z 
X demand 

iyobserved value for the ith element 
of the data 

� iyPredicted value for the ith

element of the data 

Y 
Cost(of production /purchase , 
holding , shortage)during the 
period (in Single period model) 

Z 
profit during the period (in 
Single period model) 

Z1-p=k Coefficient of confidence 

હǡ઺ǡǥ ǤǤ 
Į 1)

ds�

d�ǁ
ൌ Ƚ , 2)The idle time of the 

station in multiple EPQ 

modelߙ ൌ ϭ െ σ �ŝ
Zŝ

Ŷ
ŝୀϭ   3) a

coefficient in exponential 
smoothing 

ȕ The ratio of the amount ordered 

to the ܳ௪  �ൌ �� ୕୕౭

Symbols and abbreviations 

The parameter in Poisson and 
exponential  distributions 

ʌ The fixed cost of shortage per 
unit 

ȝୈMean of demand 

ȝ୐Mean of lead time 

ȝ୐ା୘Mean of  T+L 

ʌ෠
The cost of one unit shortage  in 
1 unit of time say 1 year 

ʌ�The cost of one unit shortage 

Total cost of one unit shortage 

0The cost of one unit shortage 
(except the lost profit) 

ϪΘϓέ�ΖγΩ�ί΍�ΩϮγί΍� ıୈଶVariance of demand΍ 

ı୐ଶVariance of  the lead time 

ȝୈMean of the demand 

ı୐ା୘ଶVariance of  the lead time plus 
the cycle time 

L TD 

Standard deviation of 
consumption �during lead time��

LDStandard deviation of 
consumption �during lead time�� 
End of example 

End of example or proof 

 

 

 
 

 
Prayer is the meeting 

between 
God as such 

and 
man as such 
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ͳǤͳ�Definition of  inventory control systems  

A system of inventory control is compromised of people, devices, 
softwares and  procedures for controlling inventories and orders in an 
institution.  There are several items in an institution and each item has 
several units.  The system is designed to decide which items (i),  how 
much (Qi)  and when to place the orders.  

ͳǤʹ The purpose of holding inventory 

The purpose of holding inventory in an organization could be the 
followings: 
a)For finished products: 

To cope with demand fluctuations, 
To satisfy customers demand immediately, 
To cope with production variations and halt 

b)For In-Process Goods 
To cope with production halt, 

c)For raw materials 
To cope with production halt, 
Using the vendor's discount. 

Chapter ͳ 

Introduction  and Basic  Concepts 

Aims of the chapter 

     This chapter deals with definitions and basic concepts needed in 
inventory control.  The chapter also describes ABC analysis.  
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ͳǤ͵���������������� 

Inventory costs are associated with the operation of an inventory 
system and result from action or lack of action on the part of manag- 
ement in establishing the system (Tersine,1994 p13).  The costs are 
classified as fixed and variable.  The former class is independent of 
the level of output and the latter changes in proportion to production 
output. The costs could be itemized as follows (Tersine,1994 p13): 

1.Cost of ordering goods from outside or cost of machine setup for
internal production. 

2.The holding(carrying)cost which subsumes the costs associated
with investing the inventory and maintaining the  physical invest- 
ment in storage.  This costs includes such ones as insurance, tax, 
theft, fire, rent, heating, cooling and lighting. Carrying(holding ) 
costs are  expressed as a proportion (I) of the total value of inventory. 
The cost of holding one unit per unit time (usually 1 year), denoted by 
Ch, is obtained by multiplying I times the unit price (P). Sometimes a 
fixed cost (C) is added to  � ൈ �, therefore: 

Ch = IP+C,  0< I< 1  (1-1) 
where 

Ch� Cost of holding one unit per unit time (usually 1 year) 
P unit price 
C Fixed cost of holding for one unit per unit  time 
I Holding cost rate, cost of carrying $1 of inventory for one unit of 

time.(e.g. 1 year) 

For example, if the annual fixed cost for unit product is $30 is 
incurred as well as the holding cost rate of 2%  and the price is  $400 
per ton then ��୦ �ൌ ͵Ͳ ൅ ͲǤͲʹ ൈ ͶͲͲ ൌ ͵ͺǤ 

It is worth knowing that: Depreciation and salvage values are 
frequently incorporated in the  insurance cost. However, if important 
they may be modeled mathematically .  Moreover holding cost 
sometime is incorporated in �୦as a function of the stored inventory 
and not as ܫ ൈ ܲǤ   
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3.The purchase cost(P) is either the cost of purchase from external
sources or the cost  of production internally plus any freight cost 
(Terine,1994, page 13). 

4.The stockout or depletion cost occurs when a customer's order is
not filled. In some models presented for inventory systems the 
stockout is not allowed and in some it is allowed as backorder or lost 
sale.  

5. The cost of data processing and updating the information
It should be added that some textbooks itemize the cost as follows 

(Hajji, 2012): 
a. costs related to the warehouse(Electricity, heating, cooling, rent,

depreciation), 
b. handling and transportation cost,
c. deterioration cost in inventory
d. cost of the obsolete inventory
e. The cost of money or capital held by the  inventory
f. cost of insurance and tax
g. shortage cost
h. cost of purchase of materials
i. order/setup cost

ͳǤͶ�Calculation  of  inventory average  

Average inventory level in a warehouse and the average amount of 
shortages play important roles in mathematical models developed for 
inventory systems.  Here a way to calculate the average amount of 
inventory is described. Suppose the function ܫሺݐሻ describe the 
inventory of an item in a warehouse in terms of time (Fig 1.1).  The 
inventory average during time interval (0,T) , ܫ ҧ,is given by:

ܫ ҧݒ݊ܫ���ݎ݋����തതതതത ൌ ଵ
் ׬� ்ݐሻ݀ݐሺܫ

଴                               ;ϭ-ϮͿ 
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Fig. 1.1 A time-related function of 
inventory 

Fig.1.2 The average of inventory 

Figure 1.2 shows the average as the width of a rectangle having the 
same area as the function inv(t) has  from 0 to T. 

The calculation of the average amount of shortages during a period 
is calculated in a similar way.   

Example 1.1 

If the amount of the inventory of an item in a store in terms of time 
(in month)is described by the function ݁௧, calculate the average 
inventory for the interval (0-4) months 

Solution  ܫ����� ҧ ൌ ଵ
ସ ׬� ݁୲�݀ݐ ൌ ͳ͵ǤͶǤସ

଴ �� End of example

Example 1.2 

The inventory of an item changes as shown in the following figure. 

Calculate the average of inventory during of the cycles i.e. from 0 to T. 
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Solution 

Let variable y denote the inventory and x denote the time, then the 
equation of line AB could be written as: 

ݕ െ ஻ݕ
ݔ െ ஻ݔ ൌ

஺ݕ െ ஻ݕ
஺ݔ െ ஻ݔ �����������ฺ�������� ݕ െ Ͳݔ െ ܶ ൌ

ܳ െ Ͳ
Ͳ െ ܶ  

ฺ ݕ� ൌ െͳ
ܶ ܳሺݔ െ ܶሻ 

Therefore the equation of line ܤܣ isݕ� ൌ ܳ െ ொ
்  and the , ݔ

inventory average is calculated as follows: 

ܫ ҧ ൌ ଵ
் ׬ ቀܳ െ ொ

் ቁݔ ݔ݀ ൌ
ଵ
் ሺܳݔሻ ቚ

ܶ
Ͳ� െ

ொ
ଶ்మ ଶݔ

்
଴ ቚܶͲ� ൌ

ொ
ଶ ܫ ҧ ൌ

ொ
ଶ.

 

A simple way to  calculate the average in this example  is to note 
that the average is to  divide  the surface of the triangle by T  i.e. 

ܳ� ்ଶ�ൈ
ଵ
் ൌ ொ

ଶ� The answer is equivalent to the calculation of the 

average of the maximum  and minimum of inventory i.e.�଴ାொଶ ൌ ொ
ଶ.

Example 1.3 
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If the holding cost of one dollar of an item as inventory is �I dollars 
per year, the  unit price of the item is P and ܩሺݐሻ in the following 
figure is a function that gives the inventory stock level awaiting for 
use or marketing,  

Find the average inventory in one year , annual holding cost and 
the holding cost for some finite time period like T (in year). 

Solution 

������������������������ ൌ ׬ 
ሺ�ሻ��ଵ
଴ , 

annual holding costൌ ܲܫ ׬ ଵݐሻ݀ݐሺܩ
଴ , 

The average holding cost for a time T is: ܶ ൈ ሺܲܫ ׬ ଵݐሻ݀ݐሺܩ
଴ ሻ 

Example 1.4 

The following figure shows the inventory and shortage of an item 
(in  tons).  Find the annual average inventory and the related cost if 
the holding cost of one tone is $100. 
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Solution 

������������������������ ൌ ͵ ቀ ʹͳʹቁ ൅ ͲǤͷ ቀ
ͳ
ͳʹቁ ൅ ʹ ቀ

ʹ
ͳʹቁ ൅

͵
ʹ ቀ

͵
ͳʹቁ

ͳ ൌ
ͳͷ
ͳʹ
ͳ ൌ ͳͷ

ͳʹ
Holding cost =ൌ ଵହ

ଵଶൈ ͳͲͲ ൈ ͳʹ ൌ ͳͷͲͲ   

ͳǤ ͷ�Calculation of shortage average  

Shortage average is needed to calculate shortage cost. Suppose b(t) 
is a function of time denoting  the shortage of an item at time t. The 
average amount of shortage during the time interval (0 T) is given by  

തܾ ൌ ͳ
ܶ�න ܾሺݐሻ݀ݐ

்

଴
��������������������ሺͳ െ ͵ሻ 

In Fig. 1-3 the negative inventory is indicative of shortage. 

 

Fig.1.3 shortage during a time period T 
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Note that ܫሺݐሻ െ ܾሺݐሻ is sometimes called the net inventory, where 
 .ሻ� is the level of inventory at time tݐሺܫ

Example 1.5 

In Example 1.4 find the average shortage per year 

Solution 

������������������������� ൌ ͵ ቀ ʹͳʹቁ ൅ ͳ ቀ
Ͷ
ͳʹቁ

ͳ ൌ
ͳͲ
ͳʹ
ͳ ൌ ͳͲ

ͳʹ

End of example  

ͳǤͷǤͳ  Unit normal  loss integral 

Since the calculation of the average shortages in some stochastic 
inventory models discussed in chapter 5 uses the so-called unit normal 
loss integral; this integral is introduced below  

Let  ܵ ൌ ׬ ሺݔ െ ܽሻ�
௫ୀ௔ ݂ሺݔሻ݀ݔ� �where a is a constant and ݂ is the 

probability density function of a normal distribution with mean  ߤ� and 
standard deviation  ó, then: 

ܵ ൌ න ሺݔ െ ܽሻ
ஶ

௫ୀ௔
ͳ

ɐξʹߨ ݁
ିሺ௫ିఓሻమଶఙమ Ǣݔ݀�

S is easily computed by the loss integral developed by Robert 
Schlaifer, described below. 

Let ݑ ൌ ௫ିఓ
ఙ ݔ�ฺ ൌ ߤ ൅ ߪݑ ����ϭ ݔ݀ ൌ  For  x=a, the value of u �ݑ݀ߪ

would be �ୟିఓఙ , which is denoted here it by k then: 

௔ିఓ
ఙ �=k� ฺ  ܽ ൌ ߤ ൅ ฺ   �ߪ݇ ݔ� െ ܽ ൌ ሺݑ െ ݇ሻߪǤ 

Since ݑ ൌ ݇��is equivalent to ݔ ൌ ܽ then 
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ܵ ൌ ׬ ሺݑ െ ݇ሻሺߪሻ�
௨ୀ௞

ଵ
ఙξଶగ ݁ି���

ೠమ
మ ሺݑ݀ߪሻ       ฺ� 

ܵ ൌ ׬ ߪ ሺݑ െ ݇ሻ ௘ష
ೠమ
మ

ξଶగ ݑ݀
ஶ
௨ୀ௞ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ୋೆሺ௞ሻ

Let ܩ௎ሺ݇ሻ ൌ ׬ ሺݑ െ ݇ሻஶ
௞

ଵ
ξଶగ ݁ି���

ೠమ
మ  then ݑ݀

ܵ ൌ ݇ ௎ሺ݇ሻܩߪ ൌ ௔ିఓ
ఙ �  (1-4) 


୙ሺ�ሻ as given above is called the unit normal loss integral and its 
values are given in Table A at the end of the book.  It is worth 
knowing that it can also be calculated using the  MATLAB command: 

exp(-k^2/2)/sqrt(2*pi)-k*(1-normcdf(k)) 

ͳǤ͸��Some points on statistical distributions used in 
inventory control 

Normal or Gaussian distribution is frequently used in inventory 
control for demand, lead time,...; however some other such as Poisson, 
uniform, lognormal and empirical distributions are also used.  
It is worth mentioning that 

The distribution of the sum of  several independent Poisson  
distributions is Poisson, however the product of a  constant and a 
Poisson random variable does not have a Poisson distribution 

The product of a  constant and an exponential random variable  
has an exponential distribution, however the distribution of the sum of 
several exponential  distribution is not exponential 

ͳǤ͸Ǥͳ The distribution of the sum and the product of two 
independent normal distribution 

In probability theory, it is proved that the sum of two normally 
distributed independent random variables is normally distributed. 
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Distribution of the product 
   The product of two normally distributed independent random 

variables X� &ܻ is not normally distributed, however, using Taylor 
series of ��ሺ�ǡ �ሻ ൌ �� expanded about the mean of the variables 
i.e.ߤ���௑ϭߤ�௒ we have: 
� ൌ �ሺ�ǡ �)�؆ �ሺ�ρ୶ǡ ρଢ଼)+[(x-െ�ρଡ଼ሻρଢ଼+(�െ�ρଡ଼ሻρଡ଼]  
�ሺ�ρ୶ǡ ρଢ଼)=�ρଡ଼ ൈ �ρଢ଼ ฺ �� ؆ ሺρଢ଼ሻ� ൅ ሺ�ρଡ଼ሻ� െ�ρଡ଼ ൈ �ρଢ଼

Now W has been approximated by a linear combination of ܺ����ܻ�
�When X and Y are independent normal variables, this combination 
follows a normal distribution; that is why in some inventory books the 
product of 2 independent normal variables is assumed normal.   

 Seijas-Mac´ýas &Oliveira(2012) showed that for two uncorrelated 
normally distributed ܺƬܻǡ�  the more  

ఓ೉
ı౔
� � and 

ఓೊ
ıౕ

, the better fits the 

normal approximation to  the distribution of ܺ ൈ ܻǤ� 
As an illustration, if annual demand( ܦ�ሻ for a product�is normally 

distributed variable  with mean 1000 and standard deviation 40, and 
variable the time needed for  an order of the product to receive ( L) is 
a variable which has normal  distribution  with mean 1 week and 

standard deviation 
ଵ
ସ���� , the product ܦ ൈL  is the demand during 

time L. 
 The following figure shows the histogram of the product of 100 

random number from�ܰሺͳͲͲͲǡͶͲሻ and 100 random number from 

ܰሺ ଵହଶ ��ǡ
଴Ǥଶହ
ହଶ yr) prepared using the following MATLAB commands:

D=normrnd(1000,40,100,1);L=normrnd(1/52,.25/52,100,1);W=D.*L;hist(W) 

Fig. 1.4 The histogram of the product of 2 normal distributions 
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The histogram indicates that the  consumption during time L  is 
well approximated by a normal distribution. 

ͳǤ͹��Pareto Principle  and ABC Analysis 

   Since the so-called ABC analysis is ABC is useful for analyzing the 
inventories in an institution, it is deal with  below.  

    ABC analysis is a categorization method in which inventory is 
classified into A, B and C category with A being the lowest quantity, 
highest value.  C being the highest quantity  and  lowest value. The 
purpose of this analysis is to help the managers identify those items 
that represent the large segment of the inventory costs in order to 
better manage these resources. It allows different inventory manage- 
ment techniques to be applied to different segments of the inventory in 
order to increase revenue and decrease costs. 

   Although the ABC analysis has had some modifications from the 
date it was developed, but the steps of the conventional method is 
described here after stating a related principle i.e. the Pareto principle. 

Pareto Principle 

   The Pareto principle, named after esteemed scientist Vilfredo Pareto 
(1848-1923) specifies that within any system or organization a small 
portion of input  has the highest value and output.  Actually ABC 
analysis could be considered an application of this principle.  The 
criterion for categorization might be such things as delivery time as 
well as dollar value. The following is a sample categorization in a 
company: 

     'A' items include the materials or components are necessary for 
production and have a long delivery time or a high value. The lot 
containing these items is delivered to the warehouse from which they 
are delivered to  the production and repair departments with sealed or 
signed official sheets. 
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     'B' items include the production materials or components which 
have a medium delivery time or value. The control of these items� is 
done by the direct supervisor of the department.  

'C' items include regular standard components or materials whose 
delivery time is short or their value is low.  When the order is receiv- 
ed, they are submitted to the warehouse or the department depending 
on the type. When the inventory of the item reaches a small amount, 
an order is placed. A very low control is applied in these items  

In the ABC analysis described below, the inventory items are listed 
and the annual consumption value of each item (Annual unit usage ൈ 
unit cost/price). Very important items(A) items, medium important 
items and relatively unimportant items(C) could be identified after 
prepar ing the table and the graph for the ABC analysis. 

The proportion of A, B and C items can be identified from a graph 
similar to Fig 1-4 and more control and energy applied on important 
items. 

1.7.1  Steps in conduction ABC Analysis 

1.Enlist items. 
2. Estimate annual consumption � Unit wise. 
3.Determine unit price of each item � . 
4. Multiply the results of steps( 2) &( 3) to obtain annual usage 

value  
5. Arrange in descending order. 
6. Calculate cumulative usage value percentages. 
7. Graph cumulative usage value percentage against cumulative 

item percentage. 

Note that A,B and C categories are identified according the higher-
level management viewpoints.  For example one manager may place 
the items with 8o% of value in category A, the items with 15% of 
value in category B, the items with 5% of value in category C; the 
other one  might choose the percents 70, 20 and 10  for this purpose. 
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Fig 1-4 item classification in ABS analysis 

Example 1.6 

Perform an ABC analysis on the  products given following table 

Product 
no. Ͷͺ͵͹ ͻʹ͸ͳ Ͷ͵ͻͷ ͵ͷʹͳ ͷʹʹ͵ ͷʹͻͶ ͸Ͳͺͳ Ͷ͵ʹͳ ͺͲͶ͸ 
Annual 
usage ͸ͺͷ ͵͹ͳ ͳʹͻǤʹ ͸ʹ ͳʹ͸͸Ǥ͹ ͻ͸ʹǤͷ ͳͺʹʹǤ͸ ͷͳͲͲ ʹͷǤͺ 
Unit 
price ͳʹ ͺǤ͸ ͳ͵ͳǤͺ ͻͳǤͺ ͵ʹ ͳͲͳǤͺ ͶǤͺͺͶ͸ ͲǤͺͺ ͸ʹʹǤͷ 

Solution 

The result of  performing  Step 4 of ABC analysis is seen in Row 4 of 
Table 1.1. 

������ͳǤͳ������������������������������������� 
 ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ 
Product 
no. Ͷͺ͵͹ ͻʹ͸ͳ Ͷ͵ͻͷ ͵ͷʹͳ ͷʹʹ͵ ͷʹͻͶ ͸Ͳͺͳ Ͷ͵ʹͳ ͺͲͶ͸ 
Annual 
usage ͸ͺͷ ͵͹ͳ ͳʹͻǤʹ ͸ʹ ͳʹ͸͸Ǥ͹ ͻ͸ʹǤͷ ͳͺʹʹǤ͸ ͷͳͲͲ ʹͷǤͺ 
Unit 
price ͳʹ ͺǤ͸ ͳ͵ͳǤͺ ͻͳǤͺ ͵ʹ ͳͲͳǤͺ ͶǤͺͺͶ͸ ͲǤͺͺ ͸ʹʹǤͷ 
Annual 
value ͺʹʹͲ ͵ͳͻͲǤ͸ ͳ͹ͲʹͺǤͷ͸ ͷ͸ͻͳǤ͸ ͶͲͷ͵ͶǤͶ ͻ͹ͻͺʹǤͷ ͺͻͲʹǤ͹ ͶͶͺͺ ͳ͸Ͳ͸ͲǤͷ 

Product no. ͻͷͷͷ ʹͻʹ͸ ͳʹͻ͵ 
Annual  usage ͺ͸ʹ ͳͻͶͲ ͻ͸͹ 
Unit  price ͳͺǤͳ ͲǤ͵ͺ ʹ.ʹ 
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Table 1-2 shows the result of performing Steps 5&6: 

������ͳ-ʹ 
Rank 
(J) 

NO. in 
������ͳ-ͳ 

Product 
NO. 

Annual Value 
����  

Cum. Annual 
Value($) 

Cum. Annual 
Value(%) 

Cum Item 
NO.(%) �
ͳʹ ൈ ͳͲͲ 

ͳ 
͸ 

ͷʹͻͶ ͻ͹ͻͺʹǤͷ ͻ͹ͻͺʹǤͷ 
ͻ͹ͻͺʹǤͷ
ʹʹͲͷ͸ͷǤ͸͸ �ൈ ͳͲͲ 
ൌ  ͶͶǤͶʹ͵ 

ͳ
ͳʹ �ൌ ͺǤ͵ 

ʹ 
ͷ 

ͷʹʹ͵ ͶͲͷ͵ͶǤͶ ͳ͵ͺͷͳ͸Ǥͻ 
ͳ͵ͺͷͳ͸Ǥͻ
ʹʹͲͷ͸ͷǤ͸͸ �ൈ ͳͲͲ 
ൌ  ͸ʹǤͺͲͳ 

ʹ
ͳʹ �ൌ ͳ͸Ǥ͸ 

͵ ͵ Ͷ͵ͻͷ ͳ͹ͲʹͺǤͷ͸ ͳͷͷͷͶͷǤͶ͸ ͹ͲǤͷʹͳ ͵
ͳʹ �ൌ ʹͷ 

Ͷ ͻ ͺͲͶ͸ ͳ͸Ͳ͸ͲǤͷ ͳ͹ͳ͸ͲͷǤͻ͸ ͹͹ǤͺͲ͵ ͵͵Ǥ͵ 
ͷ ͳͲ ͻͷͷͷ ͳͷ͸ͲʹǤʹ ͳͺ͹ʹͲͺǤͳ͸ ͺͶǤͺ͹͸ ͶͳǤ͹ 
͸ ͹ ͸Ͳͺͳ ͺͻͲʹǤ͹ ͳͻ͸ͳͳͲǤͺ͸ ͺͺǤͻͳ͵ ͷͲ 
͹ ͳ Ͷͺ͵͹ ͺʹʹͲ ʹͲͶ͵͵ͲǤͺ͸ ͻʹǤ͸͵ͻ ͷͺǤ͵ 
ͺ Ͷ ͵ͷʹͳ ͷ͸ͻͳǤ͸ ʹͳͲͲʹʹǤͶ͸ ͻͷǤʹʹ ͸͸Ǥ͹ 
ͻ ͺ Ͷ͵ʹͳ ͶͶͺͺ ʹͳͶͷͳͲǤͶ͸ ͻ͹Ǥʹͷͷ ͹ͷ 
ͳͲ ʹ ͻʹ͸ͳ ͵ͳͻͲǤ͸ ʹͳ͹͹ͲͳǤͲ͸ ͻͺǤ͹Ͳͳ ͺ͵Ǥ͵ 
ͳͳ ͳʹ ͳʹͻ͵ ʹͳʹ͹ǤͶ ʹͳͻͺʹͺǤͶ͸ ͻͻǤ͸͸͸ ͻͳǤ͹ 
ͳʹ ͳͳ ʹͻʹ͸ ͹͵͹Ǥʹ ʹʹͲͷ͸ͷǤ͸͸ ͳͲͲ ͳͲͲ 
Sum   ʹʹͲͷ͸ͷǤ͸͸    

The management of the company decides to place the first 2 items 
of Table 1-2 with cumulative annual value  63% in Category A, the ne 
xt 3 others with cumulative annual value 22% in Category B and the 
rest in Category C with cumulative annual value 15%.    Table 1-3 and 
Fig. 1-6 shows the categories A , B, and C . 

������ͳ-͵ the categories A , B, and C for Example  1-6. 

Category Product No from  
Tableͳ- ͳ 

x-axis 
number of products in the  
category ȀͳʹሺΨሻ 
 

Y-axis 
Annual  value(%) 

A ͷʹʹ͵�,ͷʹͻͶ ʹ
ͳʹ �ൈ ͳͲͲ ൌ ͳ͸Ǥ͸ ͸ʹǤͺͲͳ 

B Ͷ͵ͻͷ , ͺͲͶ͸ 
,ͻͷͷͷ 

͵
ͳʹ ൈ ͳͲͲ� ൌ ʹͷ ͺͶǤͺ͹͸-   ͸ʹǤͺͲͳൌ 

ʹʹǤͲ͹ 

C 
Ͷ͵ʹͳ ,͵ͷʹͳ , 
Ͷͺ͵͹, ͸Ͳͺͳǡͻʹ͸ͳǡ 
ͳʹͻ͵ǡʹͻʹ͸ 

͹
ͳʹ �ൈ ͳͲͲ ൌ ͷͺǤ͵ ͳͲͲ-ͺͶǤͺ͹͸ൌ 

ͳͷǤͳʹ 
 

������ͳǤͳ����������� 
 ͳͲ ͳͳ ͳʹ 
Product no. ͻͷͷͷ ʹͻʹ͸ ͳʹͻ͵ 
Annual  usage ͺ͸ʹ ͳͻͶͲ ͻ͸͹ 
Unit  price ͳͺǤͳ ͲǤ͵ͺ ʹ.ʹ 
Annual value ͳͷ͸ͲʹǤʹ ͹͵͹Ǥʹ ʹͳʹ͹ǤͶ 
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Fig.1-5 Cumulative percentage of inventory products for 
Example 1-6 

Therefore 

   16.66% of the 12 items (Products  No. 5223 and 5294) having 
62.8% of the annual value constitutes category A. 

   25% of the 12 items (3 products i.e. 4395, 8046 and 9555)having 
22.07% of the annual value constitutes category B 

    58.3% of the 12 items (seven products i.e. 4321 ,3521 , 4837, 
6081,9261, 1293ϭ2926)  having 15.12% of the annual value 

constitutes category C. End of example

1.7.1  Control activities on different categories 

Some of the control activities on the 3 categories are  listed below: 
Control on Category A 

Evaluation of forecasting methods and improving forecasts 
accuracy, 

Updating the inventories of the items, 
Frequent reviewing of demand, order quantity, safety stock to 

reduce the order quantity, 
.attempt to reduce  lead times. 
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Control on Category B 
The activities needed to perform on the items of Category B are 

similar to those applied on the previous group, but with with less 
frequent review and less accuracy. 

Control on Category C 
Keeping a relatively large number of units on hand, 
Simple inventory record of the items or periodic review of the items  
Making the inventory of the items easily accessible to the operators. 

At the end of this section, it is worth knowing that  recent 
researchers on inventory control  analysis, do not necessary categorize 
the inventory of  a firm into 3 categories.  For example Ameri (2016) 
performed the analysis in a copper steel mill and suggested a four-
category inventory control.   

ͳ-ͺ������������������������ϐ�������� 

Many models have been developed for controlling the inventories 
in firms and organizations. These models are classified based on the 
decision  conditions governing the inventory systems i.e. a)  complete 
certainty b) uncertainty including complete uncertainty and risk.   

In certainty conditions, parameters such as the amount of product 
demand, the waiting time to receive the ordered goods(lead time) are 
approximately constant; in other words regardless of small 
fluctuations,  the parameters are almost constant and independent of 
time. 

In day-today conversation, usually the two terms �risk� and �uncer- 
tainty� are used synonymously meaning �a lack of certainty�. Let us 
divide the uncertainty conditions into complete uncertainty conditions 
and risk condition:   

In complete uncertainty conditions there in no record of past data; 
therefore calculation of the occurrence probabilities for model 
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parameters is not possible.  The decision under this condition is done 
using criteria such as Minmin and Mini-max. 

In risk conditions, we have a record of past data which make it 
possible to calculate the probability of occurrence of alternative values 
of parameters such as demand and lead time. 

Models such as Wilson-Harris model,  safety stock, total discount 
model are used for certainty conditions.  

Models such as single period model, periodic review model are 
used for uncertainty conditions.  

It is worth mentioning that sometimes the inventory models are 
classified in two categories: deterministic and probabilistic inventory 
models. 

It is advised, now at the end of this chapter, to make the data  of a 
problem, when using a formula, have the same dimension; e.g. if the 
amount of daily demand and the annual holding cost  are given, make 
both of them have the same time interval, say calculate annual demand 
to the same dimension as the holding cost has. 

 

Exercises 

1-1 The following figure shows the amount of the inventory of a 
product in a warehouse. The per unit  monthly shortage cost is $ 10. 
Find the average shortage during the past 6 months, and the shortage 
cost during this period. 
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1-2. If the functions I(t) and D(t) denote the inventory and the 
demand for a product at time t.           (answer choice a.) 

a)ܫ��ሺݐሻ ൌ Ͳ��ϭܦ��ሺݐሻ ൐ Ͳ ����b) ሻݐሺܫ ൐ Ͳ��ϭܦ���ሺݐሻ ൐ Ͳ
c) ሻݐሺܫ ൏ Ͳ��ϭܦ���ሺݐሻ ൏ Ͳ������d)ܫ�����ሺݐሻ ൐ Ͳ�ϭܦ��ሺݐሻ ൏ Ͳ

1-3 If the inventory of an item follows the following function, 

�ሺ�ሻ ൌ ሾͲǤʹ ൈ ��ሺͲǤͳݐሻ ൅ ͲǤʹሿ݁ଶሺ଴Ǥଵ௧ሻ୪୬�ሺ଴Ǥଵ௧ሻ 
Find the average inventory from t=3 through t=6. 

1-4 Regarding the ABC analysis which of the following 4 choices is 
correct? 

a) The items in Category A has the largest percent of items.

b) The items in Category C has the lowest percent of items.c) The
items in Category C has the largest percent of total annual 
consumption (in dollar). 

d) The items in Category A has the largest percent of  the total
annual consumption (in dollar). 

1-5 For which of the following cases,  inventory control and planning 
is performed? 
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a)production equipment and tooling, raw materials, final products, 
in-process products 

b)production equipment and tooling, raw materials, final products, 
tooling for services 

c)tooling for services, raw materials, final products 

 

If the doors of heavens and earth 
are closed to someone, then he 
chooses piety, God shall relieve him  
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ʹ-ͳEconomic Order Quantity(EOQ) model 

Here the classic Economic  Order  Quantity  (EOQ) model, which 
is the  best known  and   the most ideal  and fundamental inventory 
decision  model, is described. 

2-1-1Assumptions of Classic EOQ model 

The following assumptions are present in the  formulation of  the 
classic EOQ model, in other words without these assumptions, 
the EOQ model cannot work to its optimal potential. 

Assumptions 
-The conditions of certainty governs our inventory system.  This 

mean that parameters such as demand rate (D), the lead time(TL), 
price(P) are constants  and not random variables. 

-Orders placed arrive  all at once. 
-Price(P) is fixed and does not change with the order quantity(Q), 

Chapter ʹ  

Deterministic Inventory Models 

Aims of the chapter 

This chapter introduces several models for  inventory 
management  under  conditions of certainty: Economic order 
quantity model, Safety stock model Back -order model, lost 
sale model,� 
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-No shortage occurs(replenishments arrive  when the inventory 
level reaches zero. 

-There is no constraint and restriction on capital, order quantity, 
warehouse space,� 

-The goods have a largish lifetime and could be stored for a long 
time without deterioration, or the rate of deterioration is ignorable. 

It is worth knowing that the purpose of inventory model is to plan 
the orders in such a way that  the total cost of the inventory system is 
minimized. The output of the planning is to answer the following 
questions: 

What is the quantity of each order ? 
 When to place an order? Every T-time period ?or  when the 

inventory reaches a specified amount? 

List of Symbols 
Ch Carrying (holding) costs, the cost of holding one unit per unit 

�����ሺ��������ͳ�����ሻ 
CO Cost of placing an order 
D Demand rate, demand per unit time 
EOQ Economic Order Quantity, amount of economic order   
I a proportion of the total value of inventory, the cost of holding 

one dollar ��������������ሺ��������ͳ�����ሻ 
I  Average inventory 
m Number or orders placed per unit time 
P Price 
Q Order quantity 
 Optimal quantity for orders כ�
���୛ Optimal quantity for orders derived from Wilson formula 
ROP Re-order Point 
T Order interval, time between placing ʹ����������������������

between  arrival of ʹ������������orders, the time required for  
L=TL Lead time 
TC Total  cost of inventory system per unit of time 
TVC Total variable  cost of inventory system per unit of time 

The total cost of inventory systems is the sum of the ordering, 
holding, and purchase costs.  By multiplying the average annual 
inventory and the annual holding cost per unit product (Ch) , the 
annual holding cost is calculated on the average.  Figure 1-2 shows the 
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level of inventory based on the above assumptions for the  EOQ 
model. 

It could easily be shown (see Example 1-2) that the average 
inventory per cycle is the quotient of the area of the triangle and its 
base leg ;here it will be equal to: 

ܳ
ʹ ൌ

ܳ ൅ Ͳ
ʹ ൌ ������������� ൅ �������������

ʹ Ǥ 

Given the annual demand ( D)for a product with unit price P, order 
quantity(Q) and cost of placing each order( �୓), the annual order cost 

would be 
ୈ
୕�୓ and the annual total cost of the inventory system is:

�� ൌ �୓ �ୈ୕ ൅��୦
ሺ୕ା଴ሻ
ଶ ൅ ������������������  (2-1) 

Note that stockout cost is not included here, because it was 
assumed that stockouts are not permitted in this model.  If the order 

quantity (Q) is a continuous variable, since 
2

2 3
CoD

Q

d TC

dQ
 0, the function

TC has a minimum.  The optimal  Q, is derived from �ௗ்஼ௗொ ൌ Ͳ�. 

ܥܶ ൌ ைܥ�� ܳܦ� ൅ܥ�௛
ܳ
ʹ ൅ �ǡܦܲ

ܥܶ݀
݀ܳ ൌ Ͳ כܳ�ฺ ൌ ඨʹܥܦைܥ௛
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Then in the classic Inventory model, the optimal order quantity 
 which is also called economic order quantity and denoted by  (כܳ)
ܳௐܱܳܧ���� is equal to:  

ܳௐ ൌ ටଶ஽஼ೀ=ܱܳܧ
஼೓  (2-2) 

Thi is also called Wilson inventory formula or Wilson-Harris formula. 

 

Fig.2-2 The components of annual total cost of an inventory system 

The total inventory cost per year (TC) and its 3 components are 
depicted by Fig. 2-2 .  As the figure shows the minimum of TC occurs 
at the intersection of  the holding cost and the order cost i.e. at  the 

intersection of  ܥை ஽
ொ ௛ܥ������

ொ
ଶ: 

ைܥ ஽
ொ ൌ ௛ܥ ொଶ �

����������������������ሳልልልልልሰ �ܳ ൌ ටଶ஽஼ೀ
஼೓ ൌ ܳௐ. 

Note that, 

1)As it is evident from Fig. 2-2, 
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when ܳ ൏ ܳௐǡ� the annual order cost(�Ǥ �Ǥ ���୓ �ୈ୕) will exceed the 

annual holding cost (�Ǥ �Ǥ �୦ ୕ଶ) 

when Q =ܳௐǡthe order cost will be equal to  the annual holding cost. 

when�ܳ ൐ ܳௐǡthe order cost  will be greater than the annual carrying 

cost  (�Ǥ �Ǥ �୦ ୕ଶ). 

2)The optimal order quantity in this model i.e. ܳௐ�is the point 
where the annual holding cost and the annual order cost are equal. 

Now substituting Q=ܳௐ in relationship 2-2 results in: 

כܥܶ ൌ ඥʹܥܦைܥ௛ ൅ ܦܲ ൌ ௛×ܳௐܥ ൅ ܦܲ ����������������������������������  

Denoting the first part of this relationship by ܶܥௐ, we would have 

ௐܥܶ ൌ ඥʹܥܦைܥ௛ ൌ ௛ܥ ൈ ܳௐ�������(2-3) 

Optimal number of orders placed each year (m) would be: 

כ݉ ൌ ܦ
כܳ ������������������������������������ሺʹ െ Ͷሻ� 

and the interval time between successive orders (T) in its optimum  

state is    ܶכ ൌ ଵ
௠כ ൌ ொכ

஽ ฺ�� 

כܶ ൌ ඨʹܥைܥܦ௛ ���������������������������ሺʹ െ ͷሻ 

In this model ܶכ is also one cycle time  in the optimum state and 
also the time required for consumption of כ�. 
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2-1-2 The maximum and the average of Inventory in EOQ 
model 

In the EOQ model when the quantity of each order is ܳௐǡ  the 
maximum inventory in the warehouse (Imax) would be ܳௐ and the 

average inventory( I )would be 
ொೈ
ଶ . 

 optimal� * 0

2 2
w

h

Q C D
I I

C
    (2-6) 

2-1-3 The reorder point(ROP) in EOQ model 

If the time interval between placing an order until receipt of the 
products by the customer , known as  the lead time and  denoted here 
by TL,  is less than cycle time T(see Fig 2-3), the reorder point (ROP)   

 

 
Fig. 2-3 Reorder point in the classic EOQ model ( ௅ܶ ൏ ܶሻ 

is calculated as follows: 

ߙ��� ൌ ܦ ൌ ஺஻
஻஼ �ฺ ܦ� ൌ � ோை௉்ಽ �ฺ ܴܱܲ ൌ ܦ ௅ܶ  .

When ௅ܶ ൒ ܶ,as shown in Fig. 2-4, the orders arrive at points A, B, 
C,� 
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Fig. 2-4 Reorder point in the classic EOQ model ( ௅ܶ ൒ ܶሻ 
When the order arrives at B, then ROP equals demand times the 
time interval PA which is equal to ௅ܶ െ ܶ; therefore 

ܴܱܲ ൌ ሺܦ ௅ܶ െ ܦ�=( ܶ ௅ܶ െ ܶܦ ൌ ܦ ௅ܶ െ ܳ  

and in the optimal case * *DT Q  and *
LROP DT Q  . 

Generally *
LROP DT KQ   

where K is K=[
୘ై
୘ ] i.e. the biggest integer number equal to 

or less than��୘ై୘   (Patel,1986). 

Then in the classic EQQ model: 

ܴܱܲ ൌ ቊ ܦ ௅ܶ����������������������������������������������� ௅ܶ ൏ �����כܶ
ܦ ௅ܶ െ ௐܳܭ ���ቀܭ ൌ ቂ �்ಽ்כቃ � ൑ ௅ܶቁ���� ௅ܶ ൒  (2-7)   ������������כܶ

where 

 .is the integer part of the ratio of lead time and cycle time ܭ 
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Note that: 

-When replacing the parameters in formulas, their dimensions 
must agree; e.g. if D is given per month and Ch is given in year, 
both must have the same time interval. 

-If the amount of D in is dollars, the amount of Q will be in 
dollars.  

-In this model the cycle time T,  which is equal to the time 
interval between placing  two successive orders, is equal to the 
time required to consume the amount ordered  Q. 

Example 2-1 

An item may be purchased for $20 per unit.  The order cost is 
$100.  The annual holding cost fraction is 10% and the monthly 
demand for the item is 500.  There is 265 working days and 12 
month  in a year. 

a)Calculate the economic order quantity , total annual cost,
the time interval between 2 successive orders, the annual number 
of orders and also the reorder point if the lead time is 25 days. 

b) Calculate the reorder point if the lead time is 40 days.

Solution 

a) 

ௐܳ�ݎ݋��ܱܳܧ ൌ ඨʹܥܦைܥ௛ ൌ ඨʹ כ ͷͲͲ כ ͳʹ כ ͳͲͲͲǤͳ כ ʹͲ ൎ ͹͹ͷ 

כܥܶ ൌ ܦܲ ൅ ඥʹܥܦைܥ௛ ܦܲ�=�� ൅ ௛ܥ ൈ ܳௐ ൌ ʹͲ ൈ ͸ͲͲͲ ൅
ʹ ൈ ͹͹ͷ ൌ ͳʹͳͷͷͲ 
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* 775
T = =0/13yr=0/13 265days=35days

12×500
  

כ݉ ൌ ͳ
כܶ ൌ

ͳʹ ൈ ͷͲͲ
͹͹ͷ ؆ ͺ 

*
LTT   �ܴܱܲ ൌ ܦ ௅ܶ ൌ ଺଴଴଴

ଶ଺ହ כ ʹͷ ൌ ͷ͸͸; 

That is when the inventory reaches 566 units, an order off 775 
has to be placed. 

b) *
LTT   �ܴܱܲ ൌ ܦ ௅ܶ െ ௐܳܭ ൌ ଺଴଴଴

ଶ଺ହ כ ͶͲ െ ቂ �
்ಽ
�ቃכ் ܳௐ ฺ 

�ܴܱܲ ൌ ͻͲ͸ െ ቂ �ସ଴ଷହቃ� כ ͹͹ͷ ؆130.End of example

2-1-4   Sensitivity Analysis for EOQ Model 

Sensitivity analysis in a model determines how target variables are 
affected by changes or errors  in input variables.  It is a way to predict 
the outcome of a decision given a certain range of input variables.  If 
while keeping the rest of inputs constant, a vast range of an input 
variable does not change the amount of output variable significantly, it 
is said the model is not insensitive to the input variable.  If any change 
in the  input variable changes the amount of output variable 
significantly, it is said the model not sensitive to the variable. 

The EOQ model assumes that annual demand D, holding cost Ch 
and order cost Co are deterministic and without variation; however this 
section will analyze the impact of errors in determining the parameters 
D, Ch and Co in EOQ model. 
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ʹ-ͳ-Ͷ-ͳ������������������������O ��ˬ Ch and�D on Q and total cost 

Definition 

The quotient of estimated Co (ࡻ࡯ƍ ) to actual Co is denoted by ࡻ࢘ 
and called the error factor of order cost: 

�୓ ൌ �����������୓
��������୓�� ൌ �୓ᇱ

�୓
Similarly 

௛ݎ ൌ ܐ�۱܌܍ܜ܉ܕܑܜܛ܍
��ܐ�۱ܔ܉ܝܜ܋܉ ൌ

஼೓ᇲ
஼೓ݎ���������஽ ൌ

�۲܌܍ܜ܉ܕܑܜܛ܍
��۲ܔ܉ܝܜ܋܉ ൌ ஽ᇲ

஽ . 

If error occurs in estimating or determining D�,�CO� and �Ch then to 
determine the order quantity  D�,�CO �  and��ܿ௛ƍ  replace D,�CO� and �Ch: 

ܳ ൌ ටଶ�஽ᇲ஼ೀᇲ
஼೓ᇲ

ൌ ටଶሺ஽�௥ವሻሺ஼ೀ�௥ೀሻ
஼೓��௥೓ ൌ ܳௐට௥ವ௥ೀ

௥೓  (2-8) 

If no error occurs in estimating, then   rO�=�rh � � rD=1. 

The error fraction in order quantity is as follows 

������������������ܹܳ ൌ ܳെܹܳ
ܹܳ

ൌ ටܱݎܦݎ
݄ݎ െ ͳ  (2-9) 

When the order quantity in this model  is as much as  ܳௐ, the 
variable cost totally is denoted here by ��୵ .  When the order 
quantity is less or more than the economic order quantity (Q ് ܳௐሻ , 
the total variable cost denoted by ܸܶܥሺܳሻ could be calculated from 

ሺܳሻܥܸܶ ൌ  ௛  (2-10)ݎைݎ஽ݎ௪ඥܥܶ�
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The error in the total variable cost is equal to ���ሺ୕ሻ െ ��୵ and
the error fraction in then the  optimal cost is as follows: 

Error fraction in ܶܥௐ �ൌ ்௏஼ሺೂሻି்஼ೢ
்஼ೢ ൌ ඥݎ஽ݎைݎ௛ െ ͳ  (2-11) 

Note that: 

The error in only one parameter results in the same error fraction in 
 .ௐܥܶ

Example 2-2    If 90% of the actual holding cost is inserted in the 
Wilson formula for order quantity, calculate the fraction of error 
in QW and ܶܥௐ. 

Solution 

������������������ܳௐ ൌ ඨݎ஽ݎைݎ௛ െ ͳ ൌ ඥሺͳ כ ͳሻȀͲǤͻ െ ͳ ൌ െͲǤͲͷͶͳ 

That is inserting  90%  of the holding cost in the Wilson formula 
will cause 5.41% reduction in optimal order quantity.  This will cause 
the error fraction in ���  to be: 

Error fraction in ܶܥௐ �ൌ ඥݎ஽ݎைݎ௛ െ ͳ ൌ ξͳ כ ͳ כ ͲǤͻ െ ͳ ൌ ͲǤͻͶͻ െ ͳ ൌ െͲǤͲͷͳ 

End of example

The following table, shows the error fractions calculated for several 
error factors .  (Error has occurred in only one and only one 
parameter: in D�� or�Ch�or�CO).  According to this table, if for example

. ,D O hr r r  0 9 1, the error  fraction in wTC would be -5.1% 

which coincides with Eq.2-11: 

Error fraction in ܶܥௐ ൌ�ඥݎ஽ݎைݎ௛ െ ͳ ൌ ξͲǤͻ െ ͳ ൌ െͲǤ051  = ���  5.1% 
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According to the table if the error fraction in only one of the 
parameters D�� or�Ch� or�CO occurs between 0.9-1.1% and  the 2 others 
are free of error, the error fraction in TVC* would be as small as -5.1 
%  to + 4.9 %. 

͸-ͷ-ͺ-͸   Impact of Errors in Qw on total  variable cost 

To deal with the impact of error in QW on total variable cost notice 
that 

ܥܶ ൌ ைܥ �஽ொ ൅ܥ�௛
ொ
ଶ ��� and �� כܳ     ൌ ܳ௪ ൌ ටଶ஽஼ೀ

஼೓

כܥܸܶ ൌ ௪ܥܶ ൌ ඥʹܥܦைܥ௛
Now let Ⱦ ൌ ୕

୕౭ then it could be shown that 

Error factor (related  
to D��or �Ch�or�CO ) 

Error fraction  
(%)in ��୛ 

ͲǤͳ -͸ͺǤͶ 
ͲǤʹ -ͷͷǤ͵ 
ͲǤ͵ -ͶͷǤʹ 
. . 
. . 
. . 
ͲǤͻ -ͷǤͳ 
ͳ Ͳ 
ͳǤͳ ͶǤͻ 
ͳǤʹ ͻǤͷ 
ͳǤͶ ͳͺǤ͵ 
ͳǤ͸ ʹ͸Ǥͷ 
ʹ ͶͳǤͶ 
͵ ͹͵Ǥʹ 
Ͷ ͳͲͲ 
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������������������������ ൌ ்௏஼ሺொሻି்஼ೢ
்஼ೢ ൌ ்௏஼ሺொሻ

்஼ೢ െ ͳ ฺ
������������������������ ൌ ଵ

ଶ ቀ
ଵ
ఉ ൅ ቁߚ െ ͳ ൐ Ͳ  (2-12) 

Proof: 

ߙ ൌ ሺܳሻܥܸܶ
௪ܥܶ ൌ

ܳܦைܥ ൅ ʹ௛ܳܥ
ඥʹܥܦைܥ௛

ൌ ඩ
ைଶܳଶܥଶܦ
௛ܥைܥܦʹ ൅

ܳ
ʹ ඨ ௛ଶܥ

௛ܥைܥܦʹ

ൌ
ටʹܥܦைܥ௛
ʹܳ ൅ ܳ

ʹ ටʹܥܦைܥ௛
ൌ ܳ௪
ʹܳ ൅

ܳ
ʹܳ௪ ൌ

ͳ
ʹ ൬
ܳ௪
ܳ ൅ ܳ

ܳ௪൰ฺ 

ฺ ߙ ൌ�� ்௏஼ሺொሻ்஼ೢ ൌ ଵ
ଶ ቀ

ଵ
ఉ ൅  ቁ   thenߚ

்௏஼ሺொሻି்஼ೢ
்஼ೢ =

ଵ
ଶ ቀ

ଵ
ఉ ൅ ቁߚ െ ͳ. 

Since ܶݓܥ is the minimum of TVC then ܸܶܥሺܳሻ െ ௪ܥܶ ൐ Ͳ and 

hence the relative increase in TVC i.e. 
்௏஼ሺொሻି்஼ೢ

்஼ೢ ൐ Ͳ for ܳ ് ܳ௪. 

End of proof. 
The following table shows some �୵ error factors and their 

corresponding  relative increase in TVC. According to this table the 
error factors in the range 0. 5  �୵  to 2 times �୵ ,cause at most 25% 
increase in TVC. 

�୵ 
Error factor ͲǤͳ ͲǤʹ ͲǤ͵ ͲǤͶ ͲǤͷ ��� ͳ ͳǤʹ ͳǤͶ ��� ʹ 
Relative increase 
in TVC(%) 

ͶͲͷ ͳ͸Ͳ ͺͳ Ͷͷ ʹͷ  Ͳ ͳǤ͹ ͷǤ͹ ��� ʹͷ 

As a sample  computation, suppose ߚ ൌ ொ
ொೢ ൌ ʹǡ then relative increase 

in the total variable cost is equal to ଵ
ଶ ቀ

ଵ
ఉ ൅ ቁߚ െ ͳ ൌ

ଵ
ସ ൌ Ψʹͷ. 

Example 2-3 

Using the data of the following table, find 
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a)Simultaneous effects of error in D� and� CO on ܳ௪ and 
simultaneous effects of  error in the 3 parameters  on  it, 

b)The effect of error in holding cost Ch on �୵�and���୵. 

parameter Actual value Estimated value 
D ʹͲͲͲ ͳͲͲͲ 
Ch ʹͲ ͳͲ 
Co ʹͷ ͷͲ 

Solution 
a) 

௛ݎ� ൌ ௛ƍܥ
௛ܥ ൌ

ͳͲ
ʹͲ ൌ

ͳ
௢ݎ�������ʹ ൌ

௢ƍܥ
௢ܥ ൌ

ͷͲ
ʹͷ ൌ ஽ݎ����ʹ ൌ ஽ƍܥ

஽ܥ ൌ
ͳͲͲͲ
ʹͲͲͲ ൌ

ͳ
ʹ

Simultaneous effect of the errors in D& CO on �୵ 

=�ට௥ೀ௥ವ
௥೓ െ ͳ ൌ ටଶכ଴Ǥହ

ଵ െ ͳ ൌ Ͳ 

Simultaneous effect of the errors in all 3 parameters on ܳ௪= 

ൌ ඨ�୓�ୈ�୦ െ ͳ ൌ ඨʹ כ ͲǤͷͲǤͷ െ ͳ ൌ ͲǤͶͳͶ������ͶͳǤͶΨǤ 
b) 
The effect of error in all parameters   on TVC=�ඥݎ஽ݎைݎ௛ െ ˺ 
The effect of error in Ch  on TVC =� 
ඥͳ ൈ ͳ ൈ �୦ െ ͳ=�ξͳ כ ͳ כ ͲǤͷ െ ͳ ൌ െͲǤʹͻ͵� 
���ʹͻǤ͵Ψ�reduction on TVC. End of example 

Example 2-4 

   If an order quantity equal to one half or 2 times the optimal value 
ܳௐ  is placed, what will be the effect on the total variable cost? 
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ߙ ൌ ்௏஼ሺொሻ
்஼ೢ ൌ ଵ

ଶ ሺ
ଵ
ఉ ൅  ሻߚ

�������������ቐ �
ொ
ொೢ ൌ ߚ ൌ ʹ �����������������������ሱۛ ۛۛ ሮ ߙ���������� ൌ ହ

ସ
ொ
ொೢ ൌ ߚ ൌ ଵ

ଶ �������
����������������ሱۛ ۛۛ ሮ ߙ���������� ൌ ହ

ସ
ቑ� 

Figure 2-5 shows the relation between  ߙ�� ൌ ்௏஼ሺொሻ
்஼ೢ and  ߚ ൌ ொ

ொೢ. . 

According to the figure, 
்௏஼ሺொሻ
்஼ೢ Is slightly sensitive to 

ொ
ொೢ when 

ͲǤͷ ൑ ொ
ொೢ ൑ ʹ.

Fig.  2-5 The relationship between ߚ�����ߙǤ 
Example 2-5 

An item is purchased for $2000 per unit.  The order cost is 
$4000.  The annual holding cost fraction is 20% and the annual 
demand for the item is 20000.  What order cost incur+5% in total 
variable cost compared to the optimum TVC? 
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Solution 

ܥܸܶ
௪ܥܶ ൌ ͳ

ʹ ൬�
ܳ
ܳ௪ ൅

ܳ௪
ܳ ൰ ௪ܥܶܥܸܶ�������������� ൌ �����������ߙ ܳܳ௪ ൌ  ��ߚ

ߙ ൌ ͳ
ʹ ൬ߚ ൅

ͳ
൰ߚ ������ฺ ߚ ൌ ߙ േ ඥߙଶ െ ͳ 

ܥܸܶ ൌ ௪ܥܶ� ൅ ͲǤͲͷܶܥ௪    ߙ ൌ � ୘୚େ୘େ౭ ൌ ͳ ൅ ͲǤͲͷ ൌ ͳǤͲͷ 

ߚ  ൌ1.051േξͳǤͲͷଶ െ ͳ   ฺ ߚ��� ൌ ͳǤ͵͹ݎ݋���ͲǤ͹͵�� 

�ܳ௪ ൌ ඨʹܥܦைܥ௛ ൌ ݐݎݍݏ� ൬ʹ כ ʹͲͲͲͲ כ ͶͲͲͲͲǤʹ כ ʹͲͲͲ ൰ ൌ ͸͵ʹ������ 

�ܳ ൌ ௪ܳ�ߚ ؆ Ͷ͸ʹݎ݋������ͺ͸͹.

Therefore  placing  an order of ܳ ൌ Ͷ͸ʹݎ݋������ͺ͸͹ units will have a 
total variable inventory cost equal to  ͳǤͲͷܶܥ௪.  This fact is shown in 

the figure below where the minimum occurs at ܳ௪ ൌ ͸͵ʹ.  
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Note that TVC=(1-0.05)���୵ cannot be considered in this problem. 
(Why?) 

EOQ model for items with discrete  order quantity(Q) 

When the order quantity is discrete rather than continuous and 
hence Q is a discrete variable, you cannot use differentiation approach 
to determine Q.  Instead, the following approach could be used : 

We know that ܶܥሺܳሻ ൌ ஼ೀ஽
ொ ൅ ௛ܥ ொଶ ൅  Ǥ Suppose the vendor supplyܦܲ

an item in  lots of size n only; therefore  the order quantity Q has to be 
an integer multiple of n i.e. Q=Kൈn   where K=1,2,3,.. Let the 
optimum order quantity is כ� and the minimum cost is ��ሺכ�ሻ; if one 
n is added  to or deducted from כ�, the corresponding total cost would 
be greater or equal to  ܶܥሺכ�ሻ 
ሻכ�ሺܥܶ ൑ כሺܳܥܶ ൅ ͳ݊ሻ 
ሻכ�ሺܥܶ ൑ כሺܳܥܶ െ ͳ݊ሻ 

ฺ
ە
۔
ۓ כܳܦைܥ� ൅ ௛ܥ ܳ

כ
ʹ ൑ ܦைܥ

כܳ ൅ ݊ ൅
כ௛ሺܳܥ ൅ ݊ሻ

ʹ �����������������������������ሺܫ�ሻ
ܦைܥ
כܳ ൅ ௛ܥ ܳ

כ
ʹ ൑ ܦைܥ

כܳ െ ݊ ൅
כ௛ሺܳܥ െ ݊ሻ

ʹ ������������������������������ሺܫܫ��ሻ
�

The following inequalities are derived from EQ. I &II: 

ە
۔
ۓ 2

WQ ൌ ܦைܥʹ
௛ܥ ൑ כሺܳכܳ ൅ ݊ሻ������������������������

2
WQ ൌ ܦைܥʹ

௛ܥ ൒ כሺܳכܳ െ ݊ሻ���������������������
�

Proof for 
૛ࡰࡻ࡯
ࢎ࡯ ൑ כࡽሺכࡽ ൅  ሻǣ࢔

By multiplying ʹܳכሺܳכ ൅ ݊ሻ to both sides of inequality  I : 
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כሺܳܦைܥʹ ൅ ݊ሻ ൅ כଶሺܳכ௛ܳܥ ൅ ݊ሻ ൑ ܦைܥכܳʹ ൅ כሺܳכ௛ܳܥ ൅ ݊ሻଶ �֜ 

כܳܦைܥʹ ൅ ݊ܦைܥʹ ൅ ଷכ௛ܳܥ ൅ ଶ݊כ௛ܳܥ
൑ ܦைܥכܳʹ ൅ ଷכ௛ܳܥ ൅ ଶ݊כ௛ܳܥ ൅  ଶ݊֜כ௛ܳܥʹ

݊ܦைܥʹ െ ଶ݊כ௛ܳܥ െ ଶ݊כ௛ܳܥ ൑ Ͳ֜ ௛ܥܦைܥʹ� ൑ כሺܳכܳ ൅ ݊ሻ 

In a similar manner
ଶ஼ೀ஽
஼೓ ൒ כሺܳכܳ െ ݊ሻ�is derived. Therefore:

Notice that when n approaches zero,��ܳכ ൌ ටଶ஽஼ೀ
஼೓ ൌ ܳௐǤ 

2-2-1Calculation of order quantity 

Solution No.1 

 is obtained by solving the  inequality 2-13 and noting that it is כܳ����
a multiple of n ���Ǥ �Ǥ��ܳכ ൌ ܭ���Ǥ݊ܭ ൌ ͳǡʹǡ͵ǡ ǥ 

Solution No.2 

It can be shown mathematically that the best integer value is one of 
the two integers surrounding Qw(Peterson & Silver , 1991, P187). 

In other words from the two integer multiples of n surrounding Qw 
(immediate value less than Qw or greater than Qw), the one with less 
TVC is the solution to 2-13 (adopted from page 123,Smith ,1989 as 
referenced  by  Ericson,1996 page 31) 

��Example 2-6 

An item is purchased for $100 per unit.  The order cost is $11.  The 
annual holding cost fraction is 10% and the annual demand for the 

כሺܳכܳ െ ݊ሻ ൑ 2
WQ ൌ ଶ஽஼ೀ

஼೓ ൑ כሺܳכܳ ൅ ݊ሻ���������������(2-13) 



55                                                                  Classical Topics in inventory Control� 

item is 1200 units.  If the vendor provides lots of 50 units  only, How 
many lots do we buy in each order to minimize te inventory total cost? 

Solution no.1:  

The optimal order quantity כ��satisfies  

כ�ሺכ� െ �ሻ ൑ ଶୈେో
େ౞ ൑ כ�ሺכ� ൅ �ሻ and    כ�ሺכ� െ ͷͲሻ ൑ ଶൈଵଶ଴଴ൈଵଵ

ଵ଴ ൑ כ�ሺכ� ൅ ͷͲሻ 

The following 2 inequalities have to be solved  

ଶכ� െ ͷͲכ� െ ʹ͸ͶͲ ൑ Ͳ              כ�ଶ ൅ ͷͲכ� െ ʹ͸ͶͲ ൒ Ͳ 

Solving Inequality כ�ଶ െ ͷͲכ� െ ʹ͸ͶͲ ൑ Ͳ 

ଶכ� െ ͷͲכ� െ ʹ͸ͶͲ ൌ Ͳ has two answers -32.14 and 82.4 

The sign of the  inequality in different  sub-interval is as follows 

െλ��������������������������   -͵ʹǤͳͶ���������ͺʹǤͳͶ     ��������λ Subinterval on Q 
� � � sign 

Q cannot be negative therefore Ͳ ൑ כ� ൑ ͺʹǤͳͶ�satisfies the 
inequality 

Solving inequalit כ�ଶ ൅ ͷͲכ� െ ʹ͸ͶͲ ൒ Ͳ 

ଶכ� ൅ ͷͲכ� െ ʹ͸ͶͲ ൌ Ͳ has two answers 32.14 and -82.4 

The sign of the  inequality in different  sub-intervals is as follows 

െλ�����������������   -ͺʹǤͳͶ���������͵ʹǤͳͶ     �λ Subinterval on Q 
� �� � sign 

Q cannot be negative; therefore כ� ൒ ͵ʹǤͳ� satisfies the inequality. 

The answer lies in ��Ͳ�� ൑ כ� ൑ ͺʹǤͳͶ���Ƭכ���� ൒ ͵ʹǤͳͶ that is  



Chapter 2  Deterministic  Models � ������������������� 56 

 

��lies In the interval ��͵ʹǤͳͶכ� ൑ כ� ൑ ͺʹǤͳͶ and is also a multiple on 
50, therefore   כ� ൌ ͷͲǤ 
      If  the inequality were such that either 50 or 100 could have been 
the answer, we had to choose the one with less TVC. 

Solution no.2: 

�� ൌ ඨʹ��୓�୦ ൌ ඨʹ ൈ ͳʹͲͲ ൈ ͳͳͳͲ ൌ ͷͳǤͶ 

Q*�� 
The immediate value less than Qw  is 50 and the immediate value 
greater than Qw is 100, 

���ሺ� ൌ ͷͲሻ ൌ �ͳͳ כ ͳʹͲͲͷͲ ൅ ͳͲ כ ൬ͷͲʹ ൰ ൌ ͷͳͶǡ
���ሺ� ൌ ͳͲͲሻ ൌ �ͳͳ כ ͳʹͲͲͳͲͲ ൅ ͳͲ כ ሺͳͲͲʹ ሻ ൌ ͸͵ʹ

The one with less TVC is the answer i.e. כ� ൌ ͷͲǤ 
2-3  Safety stock model 

    The difference between the classic EOQ model and the safety stock 
model is keeping an extra inventory known as safety stock(SS=M)in 
the warehouse of this system to cope with variations of D and TL(Fig. 
6.2) 

Fig.  2-6 Safety Stock Model 
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If the order quantity is Q, the total inventory cost would be: 

�� ൌ �୓�
� ൅ �୦�൅�൅ �

ʹ ൅ �� ൅�� ֜ 

�� ൌ �୓�
� ൅ �୦�ʹ ൅��୦ ൅ �ሺ� ൅�ሻ���������������ሺʹ െ ͳͷሻ 

The second derivative of TC with respect to variable Q ( ൌ େ౥ୈ
୕య ሻis 

positive then TC has a minimum which satisfies 
ୢ୘େ
ୢ୕ ൌ ͲǤ 

ୢ୘େ
ୢ୕ ൌ Ͳ ֜ � כ� ൌ �୛ ൌ ටଶୈେో

େ౞ . 

���ሺכ�ሻ ൌ ඥʹ��୓�୦ ൅��୦ ൌ �୦ሺכ� ൅�ሻ. 
The reorder point in safety stock model is 

��� ൌ ൝
��൅ ��୐�������������������������������������������������������୐ ൏ כ�
��൅ ��୐ െ כ�� ����൬� ൌ ൤ ��୐כ�൨ � ൑ �୐൰ ������୐ ൒ כ� � �����ሺʹ െ ͳ͸ሻ 

Where  ቂ �୘ై୘כቃ � ����������������������������
୘ై
୘כ. 

    Note that when replacing the parameters in formulas, their 
dimensions must agree; e.g. if D is given per day and TL is given in 
year, both must have the same time unit; e.g. multiply D by N (the 
number working days in a year).  

In this model the following formulae might be useful: 

Max inventory = �୛+ SS                               (2-17-1) 

   Min inventory = SS                                         (2-17-2) 
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Inventory Average = ��൅�୕౓ଶ  (2-17-3) 

ʹ-Ͷ Economic Order Interval(EOI) Model-Single 
itemͳ 

In this model the time interval  between successive  orders are  the 
same and the main problem is determining the optimal interval(T) and 
the desired maximum inventory(Imax).  Economic order interval is 
calculated by maximizing the total cost function.  Under no stockout 
assumption, the annual total cost TC is: 

Annual holding cost = 

�୦ ൈ ������������������������ ൌ �୦ �ʹ ൌ �୦ ��ʹ
If T is given in year, the annual number of orders is � ൌ ଵ

୘ and

therefore; 

�� ൌ �୓ ଵ
୘൅ �୦

ୈ୘
ଶ ൅ ��              (2-18) 

taking the derivative of the function with respect to T:�ୢ୘େୢ୘ ൌ Ͳ ฺ 

כ� ൌ ඨʹ�୓��୦ ��������������������������������������ሺʹ െ ͳͻሻ��� 

Replacing T with כ� in Eq. 2-18 gives optimal annual cost: 

כ�� ൌ ��୦כ� ൅ �� ൌ �୦כ� ൅ ��     (2-20)

where (Tersine,1994 page136) 

כ� ൌ ʹ������������������ሺכ�� െ ʹͳሻ 

                                                           

1Tersine(1985)page�596 
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Noting that the optimum occurs where the annual order cost equals 
annual holding cost,כ��� could also be calculated as follows: 

כ�� ൌ ��୦כ�
ʹ ൅ ��୦�

כ
ʹ ൅ �� ൌ ��୦כ� ൅ ���Ǥ���������� 

The maximum inventory in this model must be large enough to satisfy 
demand during subsequent interval T and also during the lead time 
(Tersine,1994,page 136, Tersine, 1985,596) 

� ൌ �୫ୟ୶כ ൌ כ�� ൅ ��୐ ൌ �ሺכ� ൅ �୐ሻ��������������������ሺʹ െ ʹʹሻ 
or 

,�୫ୟ୶כ ൌ כ� ൅ ��୐���������ሺʹ െ ʹ͵ሻ 
Note that  

-When replacing the parameters in formulas, their dimensions must 
agree; e.g. if D is given per month and TL is given in year, both must 
have the same time unit. 

- In this model, there is no need to give a separate formula for reorder 
points(why?) 

-If certainty conditions hold, there is no difference between the 
optimal T&Q of classic EOQ model and those of EOI model. 

- In probabilistic models there are  models titled fixed order size and 
fixed order interval in which D and TL might be random variables.  
As will be dealt in the related chapter, in this case to determine T and 
�୑ୟ୶, the mean of D could be inserted in the above formulae.  Further 
more, when placing an order, if the available inventory is A, then 

� ൌ �୑ୟ୶ െ ��           (2-24) 
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Example 2-6 

    An item is purchased for $10 per unit.  The order cost is $30.  The 
annual holding cost per unit is $3 and the annual demand for the item 
is 8000 units.  If the lead time is 10 working days and there is 260 
working days in a year, Find  the time interval between 2 successive 
orders, the maximum inventory level and the annual total cost in the 
optimal state. 

Solution 

כ� ൌ ටଶେో
ୈେ౞ ൌ ට ଶכଷ଴

଼଴଴଴כଷ ൌ ͲǤͲͷ��� ൌ ͲǤͲͷ כ ʹ͸Ͳ ൌ ͳ͵ days 

୑ୟ୶כ ൌ �ሺכ� ൅ �୐ሻ ൌ ͺͲͲͲሺͳ͵ ൅ ͳͲʹ͸Ͳ ሻ ؆ ͹Ͳͺ 

כ� ൌ כ�� ൌ ͺͲͲͲ כ ͲǤͲͷ ൌ ͶͲͲ������������ 

כ� ൌ �୑ୟ୶ െ ��୐ ൌ ͹Ͳͺ െ ͺͲͲͲሺ ͳͲʹ͸Ͳሻ ؆ ͶͲͲ 

In this inventory system, every 13 working days  an order of 400 
units is placed.כ��� ൌ �୦כ� ൅ �� ൌ �ͶͲͲ ൈ ͵ ൅ ͳͲ ൈ ͺͲͲͲ ൌ
ͺͳʹͲͲ̈́�������Ǥ�
ʹ-ͷ� ���������-Back  Order 

     In this model, any demand, when out of stock, is backordered and 
filled as soon as an adequate sized replenishment arrives 
(Peterson&Silver, 1991 p 209).  It is assumed that when we are out of 
stock the demand arrives with the same rate(see Fig. 2-7) 
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Symbols 

ʌ fixed stockout cost per unit  

ʌ෠� stockout cost per unit per year�ሺߨො ് Ͳሻ 
b maximum backordering (stockout) quantity 
തܾ��� average backordering (stockout) quantity  
s maximum inventory in units 
Q Order quantity  

Fig. 2-7 EOQ Model  with Back  Order 

2-5-1  Average inventory and stockout  level 

Below it is shown that : 

Average inventory level per year ( I ) is given by: 

ҧ ൌ ሺ୕ିୠሻమ
ଶ୕ ���ሺʹ െ ʹͷ െ ͳሻ 

Average stockout per year (�ത) is given by: 

�ത ൌ ୠమ
ଶ୕ ������������ሺʹ െ ʹͷ െ ʹሻ 
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Proof 

Assuming the rate of demand and the rate of stockout are the same, in 
Fig. 2-7 we have: 

��
�� ൌ ���Ƚ ൌ ��ǡ � ൌ � ൅ � ֜ � ൌ � െ � ൌ �� ֜ ��� ൌ � െ �

�  

�ҧ ൌ ����������������������
������� ൌ

ͳ
ʹ ሺ��ሻሺ��ሻ
�� ൅ �� ൌ

ͳ
ʹ ሺ� െ �ሻ

ሺ� െ �ሻ
�

� ൌ ሺ� െ �ሻଶ
ʹ��  

Q=DT    then   �ҧ ൌ ሺ୕ିୠሻమ
ଶ୕ ǡ 

Average stockout per year (�ത): 

�ത ൌ ����������������������
������� ൌ

�� ൈ �
ʹ
�  

�� ൌ ୠ
୲ୟ୬஑ ൌ

ୠ
ୈ� then  �ത ൌ ୠൈୠ

ଶ୘ୈฺ �ത ൌ ୠమ
ଶ୕Ǥ End of  proof.  

Costs: 

 Total cost includes total variable cost +PD 

    Total variable cost(TVC) is comprised of order cost, carrying cost 
and stockout cost.   

Variable cost for one period  =�୓ ൅ �୦�ҧ� ൅ Ɏෝ�ത� ൅ Ɏ� 

Total annual cost =�୓ ୈ
୕൅ �୦�ҧ�

ୈ
୕൅

ୈ
୕Ɏෝ�ത� ൅ Ɏ�

ୈ
୕+PD 

  Since 
ୈ୘
୕ ൌ ͳǡ ����� ��������ത ൌ ୠమ

ଶ୕� and���ҧ ൌ ሺ୕ିୠሻమ
ଶ୕ �  then  

��ሺ�ǡ �ሻ ൌ େోୈ
୕ ൅ �୦ ሺ୕ିୠሻ

మ
ଶ୕ ൅ Ɏෝ ୠమ

ଶ୕൅
஠ୠୈ
୕ +PD      (2-26) 
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2-5-2 Optimal order quantity(Q) and 
 maximum stockout (b) in EOQ model with backorder 

       Differentiating from  Eq. 2-26 with respect to Q and b and solving 
the   following simultaneous equations, yields  the optimal answers: 

ە
۔
�μ��μۓ ൌ Ͳ
μ��
μ� ൌ Ͳ

�� �ฺ 

ە
ۖۖ
۔
ۖۖ
כ���ۓ ൌ ඨɎෝ ൅ �୦Ɏෝ ඨʹ��୓�୦ െ ሺɎ�ሻଶ

�୦ሺɎෝ ൅ �୦ሻ ���ൌ
Ɏ�
�୦ ൅ ൬ͳ ൅

Ɏෝ
�୦൰ �

������Ɏෝכ ് Ͳ��������ሺʹ െ ʹ͹ሻ��������������

כ� ൌ ͳ
Ɏෝ ൅ �୦ ቌ

�െɎ� ൅ ඨʹ��୓�୦ ൬ͳ ൅ �୦Ɏෝ ൰െ
�୦ሺɎ�ሻଶ

Ɏෝ ቍ � ������������������������������������ሺʹ െ ʹͺሻ������������
� 

or  כ� ൌ ଵ
஠ෝାେ౞ ሺ�୦�

כ െ Ɏ�ሻ������ሺʹ െ ʹͻሻ�� 

If Eq. 2-29  gives a  negative or complex  value then   b=0. However, 
this does not mean that an optimal value for כ� is  zero in this case, 
and therefore  we  cannot use  כ� ൌ Ͳ in the formulas that contain כ�. 
2-5-3 Reorder level in EOQ with backorder model 

The reorder point in this model is calculated from: 

��� ൌ ൝
��୐ െ ���������������������������������������������������������������୐כ� ൏ ܶ
��୐ െ כ� െ כ�� �����������൬� ൌ ൤ ��୐� ൨ � ൑ �୐൰ ������୐ ൒ �� �ሺʹ െ ͵Ͳሻ 

 Note that in this model Imax� ,�ҧ� and� TC are less than the 
corresponding quantities in classic EOQ model, and  כ� ൐ �୛Ǥ   The
following  theorem is useful regarding determining  the optimal value 
of the two-parameter function used in this model. 



Chapter 2  Deterministic  Models � ������������������� 64 

 

Theorem 2-11 

Second Derivative maximum-minimum test for functions of two 
variables.  Let f(x,y) be of class C3 on an open set U in R2. A point 
(X0.Y0) is a (strict) local minimum of f(x,y)  provided the following 
three conditions hold: 

D is called the discriminant of the Hessian.  If in (ii) we have <0 
instead of > 0 and condition (iii) is unchanged, then we have a (strict) 
local maximum. 

Question : what is the criterion for a point to be a global optimum of 
function f. 

Answer   :  There is no simple answer; however if f is continuous and 
( , ) 0f x y  has only one answer, it is the global.

2-5-4 Optimal (Q) and (b) when  ࣊ෝ ് ૙�Ƭૈ ൌ ૙����

    If the stockout cost per unit time for each unit is not zero  (Ɏෝ ് Ͳ) 
and fixed stockout cost per unit is zero(Ɏ ൌ ͲሻǢ    substituting�Ɏ ൌ Ͳ in 
Eq. 2-26 to2-29 yields the following results: 

                                                           

1 Marsden,J.&. Trombaa (2003)page 216 
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כ� ൌ ට஠ෝାେ౞
஠ෝ ටଶୈେో

େ౞ כ������������ ൐ Ͳ  (2-31) 

כ� ൌ ඨ ʹ��୓�୦
ɎෝሺɎෝ ൅ �୦ሻ ൌ ඨʹ��୓�୦ ቌඨɎෝ ൅ �୦Ɏෝ െඨ Ɏෝ

Ɏෝ ൅ �୦ቍ

ൌ כ� ൬ �୦
Ɏෝ ൅ �୦൰ ������������ሺʹ െ ͵ʹሻ 

כ�� ൌ ඥʹ��୓�୦ට ஠ෝ
஠ෝାେ౞ ൅ �� ൌ �୦כ� ൅ �� ൌ Ɏෝכ� ൅ ��  (2-33) 

� ൌ � ൅ ��֜ � ൌ � െ �֜ 

כ������� ൌ כ� െ ʹ�������������������������������������������ሺכ� െ ͵͵ሻ 

כ� ൌ �୫ୟ୶כ ൌ ටଶୈେో
େ౞ ට ஠ෝ

஠ෝାେ౞=כ� ஠ෝ
஠ෝାେ౞  (2-34) 

�തכ ൌ ୠכమ
ଶ୕כ=

כ୕
ଶ ��ൈ �ሺ

େ౞
஠ෝାେ౞ሻ

ଶ  (2-35) 

Also note that in this model  if   Ɏෝ ് Ͳ and Ɏ ൌ Ͳ; we have: 

�ୠୟୡ୩୭୰ୢୣ୰כ ൌ �୛ට஠ෝାେ౞
஠ෝ  (2-36) 

כ��� ൌ���୛ට ஠ෝ
஠ෝାେ౞         (2-3̀) 

�ሺ஠ୀ଴ሻכ ൌ ୘େ౓
ඥ஠ෝሺ஠ෝାେ౞ሻ ൌ כ� େ౞

஠ෝାେ౞ ������Ɏෝ ് Ͳ     (2-38) 

and  if the cost of holding one unit per unit time( Ch )is largish then : 

כ� ൌ ටଶୈେో
஠ෝ כ�� �, ൌ ඥʹ��୓Ɏෝ,  כ� ൌ Ǥכ�
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Example 2-8 

An item is purchased for $10 per unit.  The order cost is $117.5. 
The daily holding cost per unit is 1% of the price and the monthly 
demand for the item is 125 units.  The lead time is 10 working days 
and there is 200working days in a year.  If back ordering is possible 
and the stockout cost per unit per day is $0.2.  

Find  the optimal order quantity, maximum of inventory, maximum of 
stockout, reorder point, the cycle time and the annual total cost in the 
optimal state.  Also calculate the carrying cost and the stockout cost 
during a cycle time.  

Solution 

�ୢୟ୧୪୷ ൌ ͲǤͲͳ��ǡ � ൌ ̈́ͳͲ���ǡ � ൌ ͳʹͷ����������ǡ �୓ ൌ ̈́ͳͳ͹Ǥͷ����ǡ �୐ ൌ ͳͲ����� 

Ɏෝ ൌ ̈́ͲǤʹ����������������������Ɏ ൌ Ͳ 

כ� ൌ ඨɎෝ ൅ �୦Ɏෝ ඨʹ��୓�୦

�୦ ൌ �� ൌ ͲǤͲͳ כ ͳͲ������� ൌ ǤͲͳ כ ͳͲ כ ͵͸ͷ ൌ ͵͸Ǥͷ�̈́���������� 
Ɏෝ ൌ ͲǤʹ כ ʹͲͲ ൌ ͶͲ̈́���������� 
Using MATLAB: 
כ� ൌ 
����ሺሺǤʹ כ ʹͲͲ ൅ ͵͸ǤͷሻȀሺǤʹ כ ʹͲͲሻሻ כ ����ሺሺʹ כ ͳʹͷ כ ͳʹ

כ ͳͳ͹ǤͷሻȀሺ͵͸Ǥͷሻሻ ؆ ͳ͵͸ 

�ሺ஠ୀ଴ሻכ ൌ כ� �୦
Ɏෝ ൅ �୦ ൌ ͸ͷ 

The maximum inventory is:  
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כ� ൌ �୫ୟ୶כ כ�= ஠ෝ
஠ෝାେ౞=͹Ͳ 

��� ൌ ��୐ െ כ� ൌ ଵଶହכଵଶכଵ଴
ଶ଴଴ െ ͸ͷ ൌ ͳͲǡ   

כ��� ൌ Ɏෝכ� ൅ ��ൌͲǤʹȗʹͲͲȗ͸ͷ൅ͳͲȗͳʹͷȗʹͲͲൌ�ʹͷʹ͸ͲͲ̈́ 

כ� ൌ כ�
� ൌ ͳ͵͸

ͳʹͷ ൈ ͳʹ ൌ ͲǤͲͻ��� ՜ � כ� ൌ ͲǤͲͻ כ ʹͲͲ ൌ ͳͺ���� 

The carrying cost for a cycle time (T) is equal to  Ɏෝ ൈ � ൌ ̈́͵Ǥ͸ǡ 
the  stockout cost during� T equals ChT=ͲǤͲͳ כ ͳͲ כ ͳͺൌ�̈́ͳǤͺǤ 
 The reader should verify that כ� ൌ ͸ͷ����andכ�� ൌ ͳ͵͸ satisfy  

��������ʹ-ͳ  
2-2-5 Some comments on backordering 

In this section some comments are provided on  the backordered 
EOQ model.  Most of these comment could be verified using the 
following relationships especially Eq.  (I). 

��ሺ�ǡ �ሻ ൌ �୓�
� ൅ �୦ ሺ� െ �ሻ

ଶ
ʹ� ൅ Ɏෝ �

ଶ
ʹ� ൅

Ɏ��
� ൅ �� 

Differentiating with respect to b&Q  : 

μ��
μ� ൌ Ͳ�� ֜ �െ��ሺ� െ �ሻ ൅ Ɏෝ� ൅ Ɏ� ൌ Ͳ 

μ��
μ� ൌ Ͳ ֜

2
2

�1
( )

2 2
h h

O

C C
DC Db b

Q

 
  

ฺ 
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2
2 2�1 1

( )
2 2 2O

h

b
Q DC Db b

C

   

ப୘େ
ப୕ ൌ Ͳ
ப୘େ
பୠ ൌ Ͳ

ฺ ሺɎෝଶ ൅ Ɏෝ�୦ሻ�ଶ ൅ ʹɎɎෝ�� ൅ ሺɎ�ሻଶ െ ʹ��୓�୦ ൌ Ͳ      (I) 

   (I)�֜ 

2 2 2

*

�
( ) (2 )

� � 0
�

h
o h

h

C
D D DC C D

b
C

  
 




   

 


or Eq. 2-28 i.e. 

כ� ൌ ͳ
Ɏෝ ൅ �୦ ቌ

�െɎ� ൅ ඨʹ��୓�୦ ൬ͳ ൅ �୦Ɏෝ ൰ െ
�୦ሺɎ�ሻଶ

Ɏෝ ቍ��������������������������������������� 

Comments on the model when ࣊ෝ ൌ ૙ ��  
a)If 0=כ࢈  
As mentioned above 

ܥ߲ܶ
߲ܳ ൌ Ͳ ֜ 2

2

�1
( )

2 2
h h

O

C C
DC Db b

Q

 
  

ฺ *
2

21
( 0 0)

2
oh

O W

h

DCC
DC Q Q

Q C
     

i.e. the model would be the classic EOQ model in which stockout is 
not permitted.   

b) If כ࢈=λ
When   כ࢈ is largish  it is preferred to place  no order.  In fact there 

would be no inventory system and an optimal back ordered cost of ܦߨ 
is incurred. 

c) If ࡰ࣊ ൌ ࢃ࡯ࢀ ൌ ඥʹܥܦைܥ௛�� orܦߨ� ൌ ߨ�௛ܳௐ�� orܥ ൌ ඥଶ஼ೀ஼೓
ξ஽

In this case from Eq. (I) it would concluded  optimal b 
������������������ ൒ Ͳ.  ܳכ  is dependent on the selected �ܾכ. 
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d) If  ࡰ࣊ ് ොߨ and ࢃ࡯ࢀ ൌ Ͳ
In this case From Eq. (I) it is concluded that there is no  positive 

solution for b .  An also  

if ܦߨ ്  ௐ  according to case f and e of this section,  optimizingܥܶ
TC would result in  either b=0���or�b=∞ 

e)ifࡰ࣊� ൐ ࢃ࡯ࢀ ൌ ඥʹܥܦைܥ௛�� orܦߨ� ൐ ߨ�௛ܳௐ��orܥ ൐ ඥଶ஼ೀ஼೓
ξ஽

when ࣊�ෝ  is very small, Eq.2-28   yields a complex number, and we 
have to use b=0  and according to the following equation derived 
above : 

2
2

�1
( )

2 2
h h

O

C C
DC Db b

Q

 
  

�� ൌ Ͳ���� ฺ
2

1
( 0 0)

2
h

O

C
DC

Q
   � ฺ ��ܳ ൌ ܳௐǤ 

f) �� ifࡰ࣊� ൏ ෝ࣊�&�ࢃ࡯ࢀ =0

if ߨො=0 then ܾכ ൌ λǤ Because according to Eq.2-28 or its 
equivalent i.e.  

2 2 2

*

2 2 2

*

( ) (1 )(2 )
� �, 0

�

( ) (1 )( )
0

0

h
o h

h

h
w

h

C
D D DC C D

b
C

C
D D TC D

b
C

  
 



  

    
  



    
  



This means we do not have an inventory  systems. 
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Some other comments 

g) if ૈ ൌ ૙�&�෡ૈ ് ૙܍ܜܑܖܑ܎��܌ܖ܉� 

If the fixed cost of stockout is negligible and  ሺͲ ൏ ොߨ ൏ λ, then in 
this model  b* is always positive and it will be never zero or negative 
(b*>0). 

h) if ૈ ് ૙&�ෝૈ ് ૙܍ܜܑܖܑ܎��܌ܖ܉�� 
In this case if Eq.2-28 return a negative b*� (b* �� 0),  let b=0 and 

order as much as  Q=QW. note that this does not mean that the  
optimal values for b and Q are respectively zero and QW(כ� ്
૙�ܽ݊݀כ�� ് �୵). 

i) if ෝૈ ് ૙ 

if ෝૈ ് ૙, b* ��would be finite  

j) if ෝૈ ് ૙ 

if ෝૈ ് ૙,use Eq.2-27 i.e.כࡽ� ൌ ට࣊ෝାࢎ࡯
ෝ࣊ ට૛ࡻ࡯ࡰ

ࢎ࡯ െ ሺࡰ࣊ሻ૛
 ,ሻ when b*>0ࢎ࡯ෝା࣊ሺࢎ࡯

other wise when b*<0 choose the ࢝ࡽ as the order quantity; however it 
is not meant the optimal value is ࢝ࡽ.  

k)when b*�=0 

   If  Eq. 2-28 returns b*=0,let  כࡽ ൌ  i.e the backordered model ࢝ࡽ
converts to classic EOQ model.  However, when b=0 , and we let 

Q=࢝ࡽ�if ࡰ࣊� ്   then  ࢃ࡯ࢀ
࡯ࢀࣔ
࢈ࣔ ് ૙  and therefore  b=0 in this case 

could not be optimal: 

��ሺ�ǡ �ሻ ൌ �୓�
� ൅ �୦ ሺ� െ �ሻ

ଶ
ʹ� ൅ Ɏෝ �

ଶ
ʹ� ൅

Ɏ��
� ൅ �� 
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ப୘େ
பୠ ൌ� ିେ୦ሺ୕ିୠሻା஠ୈା஠ෝୠ୕  Q =࢝ࡽ  . b=0 

ப୘େ
பୠ = 

ିେ୦ሺି࢝ࡽ଴ሻା஠ୈା଴
࢝ࡽ �ൌ �ିେ୦࢝ࡽା஠ୈ࢝ࡽ ൌ ା஠ୈ࢝࡯ࢀି

࢝ࡽ ് Ͳ 

Therefore in this case when Ɏ� ് ��୛, b=0 cannot be the optimal 
value for  b.   

ʹ-͸��On-hand inventory and on-order inventory 

Since in inventory books you may encounter the terms " on-hand 
inventory " and " on-order inventory " and also symbols r &ࢎ࢘� , a 
short description of them is followed. 

 A firm's inventory position consists of the on-hand inventory 
plus on-order inventory.  On-hand inventory is the amount of stock 
items available to be sold. Quantity on order is the amount ordered 
from a supplier/vendor but not yet received. This also includes 
quantities of items being made in a work order.  r  is the  inventory on 
hand + the  inventory on order andࢎ࢘��� is the available inventory. 

For example for both classic EOQ (Wilson) model and back-order 
model if ௅ܶ < T then ݎ௛ ൌ  :is ݎ

ݎ ൌ ௛ݎ ൌ ൜ ܦ ௅ܶܦ���������������������������������� ௅ܶ െ �������כܾ� െ ����������������
� �� ௅ܶ �൏ �ܶ   (2-39) 

If    TL ≥ T 

ݎ ൌon-order inventory is : 

௛ݎ� ൌ ൜ ܦ ௅ܶ െ �����������������������כܳܭ
ܦ ௅ܶ െ כܾ െ ����כܳܭ� െ �������

� ܭ��� ൌ ቂ்ಽ் ቃ ����� ௅ܶ ൒ ܶ����ሺʹ െ Ͷͳሻ�� 
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Fig ʹ-ͻ EOQ  model ��  On-hand +on-
order  inventory (r) when    �୐ ൐ �ܶ  

Fig ʹ-ͺ EOQ  model: On-hand 
+on-order  inventory  (r) when  
�୐ ൏ �ܶ  

At the time point just before the arrival  an order,  the sum of on- 
hand inventory and on-order inventory is equal to the consumption 

during lead time  i.e. DൈTL
1;because LT

h Tr =ROP=DT -KQ K=[ ]L  is

the on hand inventory  (rh) at this point and the  on-order inventory is 
KQ, where �K is the integral part of LT

T . At point in time just after the

arrival of an order quantity, LDT  is increased by Q, then 

LDT   
On-hand+on-

order  inventory 
LDT Q  (2-43) 

ʹ-͹�EOQ Model �lost sale case  

In the previous models, there was  either no stockout in the system, 
or the stockout was backordered and later compensated. Now we 
would like to analyze a case in which for a time say T2 (see Fig 2-10 
)the demand is not satisfied and is lost (or is backordered without 
compensation).  In this case the aim is to find the optimal value of T2 
and Q .

                                                           

ϭ Hajũŝ͕ϭϯϵϭ͕Ɖϯϳ 
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Fig. 2-10  Lost �sale Model 

Now considering an inventory system in which there is stockout, 
but is not compensated and is lost, let us calculate its total cost(TC), 
which is  actually an average annual cost. 

Fig. 2-11  Maximum stockout and inventory in lost �sale model 

ܶ ൌ ଵܶ ൅ ଶܶ ��ฺ ܶ ൌ ܳ
ܦ ൅ ଶܶ ൌ ܳ ൅ ܦ ଶܶ

ܦ �ǡ 

Number  of annual cycles (m) and the average annual inventory(ܫ ҧሻ
are: 
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݉ ൌ ଵ
் ൌ

஽
ொା஽ మ்

, 

ܫ ҧ ൌ � ൈ ������������������������	���ʹ െ ͳͳ
ͳ����� ൌ ͳ

ܶ ሺ
ͳ
ʹܳ

ܳ
ሻܦ ฺ 

ܫ ҧ ൌ ܦ
ܳ ൅ ܦ ଶܶ

൬ͳʹܳ
ܳ
൰ܦ ൌ

ͳ
ʹ ൈ

ܳଶ
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If the annual carrying cost of unit product is Ch and the cycle time in year 
is T . then 

 annual average carrying cost in the system=�୦�ҧǡ 

average carrying cost per cycle timeൌ �୦�ҧ� ൌ ଵ
ଶ �
୕మ
ୈ �୦Ǥ 

Stockout cost per cycle �ൌ Ɏ��ଶ 

Number of cycles per year= 
ୈ

୕ାୈ୘మ, 

Annual stockout cost =�Ɏ��ଶሺ ୈ
୕ାୈ୘మሻ. 

�� ൌ �୓ ൬ͳ�൰൅ �୦ሺ�ҧሻ ൅ Ɏ��ଶ ൬
ͳ
�൰ǡ 

�� ൌ �୓ ቀ ୈ
୕ାୈ୘మቁ ൅

େ౞
ଶ ቀ

୕మ
୕ାୈ୘మቁ ൅ Ɏ��ଶ ቀ

ୈ
୕ାୈ୘మቁ. 

TC  is a bivariate function, to find its optimum, its partial derivatives are 
set equal to zero: 

ەۖ
۔
ۓۖ ܥ߲ܶ
߲ܳ ൌ Ͳ�ฺെܥைܦ ൅ ௛ܳܥ

ଶ
ʹ െ ଶܦߨ ଶܶ ൅ ܦ௛ܳܥ ଶܶ ൌ Ͳ��������������������������ሺܫሻ������������

ܥ߲ܶ
߲ ଶܶ

ൌ Ͳ�ฺ ܦߨ� ൌ ܦைܥ
ܳ ൅ ௛ܥ ܳʹ �����Ͳ ൏ ଶܶ ൏ λ�ǡ���Ͳ ൏ ܳ ൏ λ������� ሺܫܫሻ��������������

� 

�ሺܫܫሻ �������������ሳልልሰ ܦߨ�� ൌ ܦைܥʹ ൅ ௛ܳଶܥ
ʹܳ ���֜ � ௛ܳଶܥ െ ܳܦߨʹ ൅ ܦைܥʹ ൌ Ͳ ฺ 
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ܳ ൌ ܦߨ േඥሺܦߨሻଶ െ ௛ܥܦைܥʹ
௛ܥ ൌ ��ܳ ൌ ܦߨ േඥሺܦߨሻଶ െ ௪ଶܥܶ

௛ܥ ฺ 

ܳ ൌ ܦߨ
௛ܥ േඨ൬

�ܦߨ�
௛ܥ ൰

ଶ
െ ௛ܥܦைܥʹ �����ሺܫܫܫሻ 

Now let us talk about the optimal value of Q and T2 when the result of the 
radical in Eq.(III) is a complex number, zero, a real number or equivalently 
ௐܥܶ� is less than, equal or greater than ܦߨ ൌ ඥʹܥைܥܦ௛  in this model. 

The value of Q* 

ࡰ࣊�(1 ൏ ࢃ࡯ࢀ
In Eq. (III), if  ܦߨ ൏  ௐ, then there would be no real answer for Q thereܥܶ

is no inventory system  i.e. Q=0. Later it will be shown that ଶܶכ ൌ λ ��
Substituting � ଶܶכ ൌ ൅λ ���	 ܳ ൌ Ͳ  in annual average cost i.e.

ܥܶ ൌ ைܥ ቀ ஽
ொା஽ మ்

ቁ ൅ ஼೓
ଶ ቀ

ொమ
ொା஽ మ்

ቁ ൅ ܦߨ ቆ ஽
ೂ
೅మା஽

ቇ 

results ܶܥ ൌ  .Ǥ Note there in no income in this caseܦߨ

ࡰ࣊�(2 ൌ ࢃ࡯ࢀ
Eq. (III), If  Ɏ� ൌ ��୛, Eq. (III) has double root of ܳכ ൌ �గ஽�

஼೓ ��   It will be 

shown that T2  could be any positive number. 

ࡰ࣊�(3 ൐ ࢃ࡯ࢀ
Although Eq. III gives 2 answers for Q; but It will be shown that ଶܶכ ൌ Ͳ

and the order quantity is necessarily equal to �୛ 

The value of T* 

There is a discussion about the optimum value  of the cycle time(T) in 
some books including Bazargan (2021).  The summary of the discussion is: 
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ࡰ࣊�(1 ൏ ࢃ࡯ࢀ
It is proved that ଶܶ ൌ λ�
ࡰ࣊�(2 ൌ ࢃ࡯ࢀ
It is proved  � ଶܶ could be any positive number. 

ࡰ࣊�(3 ൐ ࢃ࡯ࢀ
In this case �ଶכ ൌ Ͳ�
We summary the above discussion is as follows: 

Case 1)ࡰ࣊� ൏  ࢃ࡯ࢀ

In this case it is proved that ଶܶ ൌ λ�&�ܳכ ൌ Ͳ� i.e. there is no inventory
system. 

Case 2)ࡰ࣊� ൌ  ࢃ࡯ࢀ

In this case it is proved  כ�� ൌ గ஽
஼೓ � and ଶܶ could be any positive number. 

Case 3)ࡰ࣊� ൐  ࢃ࡯ࢀ

In this case �ଶכ ൌ Ͳ�&כ�� ൌ �୛ i.e. the model converts to the classic
model . 

Note that: 

-the product ߨ ൈ  .is the cost of lost sale for the whole demand  ܦ

-the case in which ܦߨ ൏  ௐ  is similar to one of the cases inܥܶ
backordered classic EOQ model where ܦߨ ൏ �ௐܥܶ ොߨ	 ൌ Ͳ�and 
consequently we did not an inventory system. 

-Some researches has been done to combine backordering with lost sales 
in EOQ model.  
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Example 2-9 

Consider an EOQ model where lost sale is possible and 

௛ܥ� ൌ ͲǤͺݎܽ݁ݕ�ݎ݁݌�ݐ݅݊ݑ�ݎ݁݌ǡ ைܥ ൌ ͲǤʹǡ ௅ܶ ൌ ͲǤͳݎܽ݁ݕ��ǡ ߨ ൌ ͲǤʹ������� 
Deter mine which the above cases is applicable here? And what should be 

done? 

Solution  

ܦߨ ൌ ͲǤʹ ൈ ͳͲͶͲͲͲ ൌ ʹͲͺͲͲǡ ௐܥܶ ൌ ξʹ ൈ ͳͲͶͲͲͲ ൈ ͲǤʹ ൈ ͲǤͺ ൌ ͳͺʹǤͶ  

ܦߨ ൌ ʹͲͺͲͲ ൐ ௐܥܶ ൌ ͳͺʹǤͶ�� 
Then Case 3 is applicable here :��ଶכ ൌ Ͳ  and ܳכ ൌ ܳௐ ൌ ʹʹͺǤ 

Quantity Discount Models 

The preceding models have assumed that the unit price of an item is the 
same regardless of the quantity in the batch; however, It is common for 
suppliers to give price discounts when order quantities are high.  
When discounts are factored into the calculation, the economic order 
quantity may change.  In this section we deal with two types of discount 
models in inventory systems: 

�������������� ൝���������������������� ൜
���୦���������������������������������	��������୦�������������������������������������

�����������
��������������������������������������������������������������������������������������

� 

ʹ-ͺ  Total Discount Model  

In this type of discount model, the unit price changes with order quantity 
in a manner similar to what the following  table shows: 

Price Order quantity(Q) 
�ͳൌ���ሺ��ሻ    ��൏��ͳ 
�ʹ �ͳ�൑���൏��ʹ 
�͵ �ʹ�൑���൏��͵ 
�Ͷൌ���ሺ��ሻ     Q ൒��͵ 
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Let R(Q) denote the purchase cost. In this type R(Q)= PQ. Figure 2-13 
shows the function R(Q) in terms of Q.  Q1, Q2,�are called price break 
points.   

Fig. 2-12 Purchase cost of an order in a 

 Total discount model with 2 break points 

Remember that �ܶܥ ൌ ைܥ ஽
ொ ൅

ூ௉
ଶ ܳ ൅ gives, total cost for each ܦܲ

price.  The graphical description of the components of the total cost is 
shown in figure 2-13 

Fig. 2-13 The components of the total cost for one price 

This model has two types i.e. either  Ch  changes with unit price or 
does not change with price. 
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2-8-1 Quantity Discount Model �Ch variable  

If Ch  changes with unit price and the price is similar to those given 
in the table above,  the carrying cost reduces as the order quantity 
increases.   The optimal order quantity in this type of the model could 
be determined  using an algorithm described below. 

ʹ-ͺ-ͳ-ͳ�������������������ϐ�����������������-  
C����ͳǣ��h variable 

Figure 2-14  shows the curves  of  total cost for an all-unit- 
discount  model where there are  3 price break points.  

 

 
Fig.2-14  Total  cost curves  for a total- discount model 

The steps of the algorithm of finding  optimal order quantity Q* is 
(Dilworth,1989, page 263): 

Step 1: 

Calculate  ܳௐ ൌ ටଶ஽஼ೀ
ூ௉   for P=min(Pi).  If ܳௐ is feasible i.e. 

satisfies the corresponding   interval of this price, it is the answer to 
our problem, otherwise go to step2. 
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Step 2: 

Calculate  ܳௐ for the immediate higher price, if it is feasible 

calculate annual total cost ܶܥ ൌ ஼ೀ஽
ொ ൅ ஼೓ொ

ଶ ൅ for this price and the ܦܲ

break points which are greater than it; the value with least TC is the 
optimal Q.  Other- wise if the  ܳௐ is not feasible go to step 3. 

Step 3 

Repeat Step 2 until a feasible ܳௐ  is obtained. 

The reorder point is  �ܴܱܲ ൌ ܦ ௅ܶ ����� ௅ܶ ൏ ܶǤ� 
Example 2-10 

The annual demand for a product is 2500, the yearly carrying cost 
of unit product is $ 0.10 and the order cost is $100.  The supplier 
offers discount according the following Table: 

Pi Q Ro
w (i) ͷ Ͳ�൑���൏�ͷͲͲͳ 

ͶǤ͹ͷ ͷͲͲ�≤ Q < ʹͷͲͲ ʹ 
ͶǤ͸ ʹͷͲͲ ൑���൏�ͷͲͲͲ͵ 
4.5 Q ≥ 5000 4 

Find the optimal order quantity, the cycle time T* ��  There are 300 
working days in a year and the lead time in 10 working days. 

Solution 

The minimum price is 4.5; ܳௐ ൌ ටଶൈଶହ଴଴ൈଵ଴଴
଴ǤଵൈସǤହ ؆ ͳͲͷͶ. 

The amount does not satisfy the corresponding interval i.e. Q ≥ 5000. 
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For the price P=4.6 ܳ௪ುୀସǤ଺ ؆ ͳͲͶ͵�����������������;

For  P=4.75       ܳ௪ುୀସǤ଺ ؆ ͳͲʹ͸�������������.

We calculate TC for this value and the break points which are greater: 

ሺܳܥܶ ൌ ͳͲʹ͸ǡ ܲ ൌ ͶǤ͹ͷሻ ൌ ܦைܥ
ܳ ൅ ʹ௛ܳܥ ൅ ܦܲ ൌ ͳʹ͵͸ʹ 

ሺܳܥܶ ൌ ʹͷͲͲǡ ܲ ൌ ͶǤ͸ሻ ൌ ͳʹͳ͹ͷ 

ሺܳܥܶ ൌ ͷͲͲͲǡ ܲ ൌ ͶǤͷሻ ൌ ͳʹͶʹͷ 

There foreܳכ ൌ ʹͷͲͲ� כ� ൌ ொכ
஽ ൌ ଶହ଴଴

ଶହ଴଴ ൌ ͳ 

There is no reorder point in  1 year

2-8-2 Quantity Discount Model �Case II:Ch Fixed 

This type of discount model is similar to the previous one described 
in Sec 2-8-1 except that the carrying cost per unit product (Ch) does 
not depend on the price and is a fixed value.  In this type Qw is the 
same for all intervals.  If Qw satisfies the interval related to the 
minimum price, it is the optimal order quantity; otherwise calculate 
the total cost for Qw and the price break points greater than it; the 
value with less TC is the answer.  

Example 2-11 

A supplier offers all- unit discount according to the following table 
for a product whose annual Ch is $100, ��୭ ൌ ̈́ͳͲͲ������������ 
D=1000. Find the 

optimal order quantity. 

Q Ͳ � ͻͻ ͳͲͲ-ͳͻͻ ʹͲͲ��������� 
price ͷͲͲ ͶͲͲ ͵ͲͲ 
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Solution 

The curves of total cost for the 3 prices are shown below. 

�୵ ൌ ඨʹ݄ܥܱܥܦ
ൌ ටʹ ൈ ͳͲͲͲ ൈ ͳͲͲ ൈ ͳʹ

ͳͲͲ ൌ ͳͷͶǤͻ ൎ ͳͷͷ 

ሺܳௐܥܶ ൌ ͳͷͷǡ ܲ ൌ ͶͲͲሻ ൌ ξʹ ൈ ͳʹͲͲͲ ൈ ͳͲͲ ൈ ͳͲͲ+400ൈ ͳʹͲͲͲ=
4815492. 

Qw does not satisfy the interval related to the minimum price i.e.
(200 and more).  Therefore the total cost for the price break points more than Qw
has to be calculated. 

ሺܳǡܥܶ ܲሻ ൌ ைܥ ܳܦ ൅ ௛ܥ
ܳ
ʹ ൅  ǡܦܲ

ሺܳܥܶ ൌ ʹͲͲǡ ܲ ൌ ͵ͲͲሻ ൌ ͵͸ͳ͸ͲͲͲǡ therefore כ� ൌ ʹͲͲ. 
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ʹ-ͻ  Converse of Discount Model (rate increase with 
quantity increase) 

Here the purpose is to deal with the cases where a rate and the  holding cost  
increases as the quantity increases.   An example follows: 

Suppose  in a deterministic inventory system, stockout is not 
permitted and the rent of a warehouse is to paid as well as  Ch=IP for 
each unit hold in warehouse. The rent is not included in the holding 
cost Ch and changes with the increase of order quantity. The total 
cost(TC) component of  annual rent cost   is determined based on the 
maximum inventory.   Now we would like to calculate  the economic 
order quantity.  If 

the annual rent per unit product is �ଵǡ  then: 

��ሺ�ሻ ൌ �� ൅ ��ைܥ ൅ ܲܫ �ʹ ൅݄ଵ���������
���
�� ൌ Ͳ������� ฺ�����  

כܳ ൌ ඨ ைܥܦʹ
ʹ�݄ଵ ൅ ʹ��������������������ሺܲܫ െ Ͷ͹ሻ 

The algorithm for determining the economic order quantity is 
similar to the previous algorithm described in Sec ʹ-ͺ-ͳ-ͳ and is 
illustrated below.  In this model the break point located at left side of 
 .could also be the answer  כܳ

Example 2-12 

The annual demand for a product is 10000, the order cost is $64, 
the unit price is $4 the annual cost of holding 1 unit product in 
warehouse is  $ 0.25. 

Find the economic order quantity.  No stockout is permitted and as 
well as this cost, for each unit product  a separate annual cost(h1) has 
to be paid for holding the products in warehouse.  The annual rent cost 
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per unit product depends on the quantity ordered(Q) as given in the 
following table: 

Q Ͳ ൑ � ൏ ͷͲͲ ͷͲͲ ൑ � ൏ ͹ͷͲ ͹ͷͲƬ����� 
�ଵ ͳ ͳǤͷ ʹ 

Solution 

Starting with the least rate h1=1 

݄ଵ ൌ ͳ����ื �ଵ ൌ ඨ ைܥܦʹ
ʹ�݄ଵ ൅ ܲܫ ൌ ඨʹ ൈ ͳͲͲͲͲ ൈ ͸Ͷʹ ൈ ͳ ൅ ͲǤʹͷ ൈ Ͷ ؆ ͸ͷ͵���������������ǡ 

�ଵ is not reasible because it does not satisfy 0< Q ≤500. 

݄ଵ ൌ ͳǤͷ�ื �ଶ ൌ ට ଶൈ଺ସൈଵ଴଴଴଴
ଶൈଵǤହା଴Ǥଶହൈସ ؆ ͷ͸͸������������� 

݄ଵ ൌ ʹ����ื �ଷ ൌ ඨʹ ൈ ͸Ͷ ൈ ͳͲͲͲͲʹ ൈ ʹ ൅ ͲǤʹͷ ൈ Ͷ ؆ ͷͲ͸������������� 

Now we compare  the total cost feasible � ൌ ͷ͸͸ and the break 
points 500 &750. 

��ሺ�ሻ ൌ �� ൅ ��ைܥ ൅ ܲܫ �ʹ ൅݄ଵ���������

��ሺ� ൌ ͷ͸͸ሻ ൌ Ͷ ൈ ͳͲͲͲͲ ൅ ͸Ͷ ൈ ͳͲͲͲͲͷ͸͸ ൅ ͲǤʹͷ ൈ Ͷ ൈ ሺͷ͸͸ʹ ሻ
൅ ͳǤͷ ൈ ሺͷ͸͸ሻ ؆ Ͷʹʹ͸͵ǡ 

��ሺ� ൌ ͷͲͲሻ ൌ Ͷ ൈ ͳͲͲͲͲ ൅ ͸Ͷ ൈ ͳͲͲͲͲͷͲͲ ൅ Ͳ
ʹͷ ൈ Ͷ ൈ ൬

ͷͲͲ
ʹ ൰ ൅ ͳǤͷ

ൈ ሺͷͲͲሻ ൌ ͶʹʹͺͲǡ 
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��ሺ� ൌ ͹ͷͲሻ ൌ Ͷ ൈ ͳͲͲͲͲ ൅ ͸Ͷ ൈ ଵ଴଴଴଴
଻ହ଴ ൅ ͲǤʹͷ ൈ Ͷ ൈ ቀ଻ହ଴ଶ ቁ ൅ʹ ൈ ሺ͹ͷͲሻ ൌ �Ͷʹ͹ʹͺ. 

The minimum TC belongs to � ൌ ͷ͸͸;  then it is the optimum. 

Before dealing with another type of discount model , note that 

ܦܲ ൌ ܦ
ܳ ሺ��ሻ ൌ ݉ ൈ �ሺ�ሻ���������������������ሺʹ െ Ͷͺሻ

Where 

݉ ൌ ଵ
் ൌ

஽
ொ  : is the number of orders per unit time (year,�), 

�ሺ�ሻ ൌ ��  is the purchase cost per order.

2-10 Incremental discount model 

In all-unit discount model, the reduced price is valid for each unit 
in the order quantity, whereas in  this variation of discount models that 
is called incremental discount, only the quantity  exceeding the price 
break quantity is available at lower price.  The goal is to determine the 
economic order quantity and the optimal order point with minimizing 
costs. 

Purchase cost  of order  quantity Q 

In this model the following recursive relationship is used to 
calculate the amount of money  for buying the order quantity Q., R(Q) 
is given by the following relationship and show in Fig 2-15. 

����������������������� ൌ 

ܴሺܳሻ
ൌ ቊܴ൫ݍ௝൯൅ ሺ ௝ܲሻ൫ܳ െ ௝൯ǡݍ ௝ݍ���� �൏ �ܳ� ൑ ௝ାଵ������݆ݍ ൌ Ͳǡͳǡʹǡǥ ǡ ݊

ሺ ଴ܲሻሺܳሻ���������଴ �൏ �ܳ� ൑ �ଵ��������������������������������������������������������
������ 



Chapter 2  Deterministic  Models � ������������������� 86 

 

ܴሺݍ଴ሻ ൌ Ͳ�����ǡ ଴ݍ ൌ Ͳ������ǡ ௡ାଵݍ ൌ λ�� 
�൫�୨൯  is the purchase cost of quantity �୨. 

Fig. 2-15  Purchase cost of order quantity Q 

ʹ-ͳͲ   Incremental Discount Model 

Let TCj(Q) denote the total cost of order quantity Q when qj < Q ≤ 
qj+1. Using the relationship �ܶܥ ൌ ைܥ ஽

ொ ൅
ூ௉
ଶ ܳ ൅ :we could write  ܦܲ

௝ሺܳሻܥܶ ൌ ைܥ ܳܦ ൅
ܫ
ʹܴሺܳሻ ൅

ܦ
ܳ ܴሺܳሻ�����ฺ 

௝ሺܳሻܥܶ ൌ ைܥ ܳܦ ൅
ܫ
ʹ ൣܴ൫ݍ௝൯൅ ௝ܲܳ െ ௝ܲݍ௝൧

൅ ܳܦ ൣܴ൫ݍ௝൯൅ ௝ܲܳ െ ௝ܲݍ௝൧ �����ฺ 

௝ሺܳሻܥܶ ൌ ஽
ொ ைܥൣ ൅ ܴ൫ݍ௝൯൅ ௝ܲܳ െ ௝ܲݍ௝൧+ூଶ ൣܴ൫ݍ௝൯൅ ௝ܲܳ െ ௝ܲݍ௝൧

ฺ 

௝ሺܳሻܥܶ ൌ ஽
ொ ைܥൣ ൅ ܴ൫ݍ௝൯െ ௝ܲݍ௝൧ ൅ ூ

ଶ ൣ ௝ܲܳ ൅ ܴ൫ݍ௝൯െ ௝ܲݍ௝൧ ൅ ௝ܲܦ
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௝ݍ               ൏ �ܳ
And therefore: 

ௗ்஼ೕሺொሻ
ௗொ ൌ Ͳ���

 

Plotting the ܶܥ௝
2-16 

Fig. 2

2-10-1 The algorithm for finding optimal Q 
model 

The following steps

Step1: Calculate 

଴ݍ ൌ Ͳǡ ܴሺݍ଴ሻ
ܴ൫ݍ௝ାଵ൯ ൌ ܴ൫ݍ௝൯

                                               Classical Topics in inventory Control

ܳ� ൑ ௝ݍ ൅ ͳ       �����݆ ൌ Ͳǡͳǡʹǡ ǥ ǡ ݊ 

 

 �ܳ௝כ ൌ ටଶ஽ൣ஼ೀାோ൫௤ೕ൯ି௉ೕ௤ೕ൧
ூ௉ೕ    ������݆ ൌ Ͳǡͳǡʹǡ ǥ ǡ

݆ ௝ሺܳሻ  forܥܶ ൌ Ͳǡͳǡʹǡ ǥ results in a figure such

2-16 Total Cost in incremental discount model 

 The algorithm for finding optimal Q - incremental  

The following steps determine the order quantity. 

Calculate  R(Q) for all break points: 

ሺ ሻ ൌ Ͳ����������������������ܴሺݍଵሻ ൌ ଴ܲݍଵ������������������������ 
൫ ൯൅ ሺ ௝ܲሻ൫ݍ௝ାଵ െ ௝൯ǡ��������݆ݍ ൌ Ͳǡͳǡʹǡ ǥ ǡ ݊�����ሺʹ െ
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݊Ǥ       

results in a figure such as Fig. 

 

incremental  

 

െ Ͷͻሻ 



Chapter 2  Deterministic  Models � ������������������� 88 

 

Step2: Calculate ܳ௝כ ൌ ටଶ஽ൣ஼ೀାோ൫௤ೕ൯ି௉ೕ௤ೕ൧
ூ௉ೕ ������������ሺʹ െ ͷͲሻǡ 

for ݆ ൌ Ͳǡͳǡʹǡ ǥ ǡ ݊�ǡ����and determine which of them are feasible. 

Step3: 

Calculate the total cost for the feasible ܳ௝כ�Ԣݏ  using the following
relationship: 

൯כ൫ܳ௝ܥܶ ൌ ஽
ொೕכ
ைܥൣ ൅ ܴ൫ݍ௝൯ െ ௝ܲݍ௝൧൅ ூ

ଶ ൣ ௝ܲܳ௝כ ൅ ܴ൫ݍ௝൯ െ ௝ܲݍ௝൧൅ ௝ܲܦ,

௝ݍ �൏ �ܳ௝כ �൑ ௝ାଵݍ�  (2-51) 

The feasible ܳ௝כ  with least total cost�is the optimum.�

Note: 

It could be proved that a break point ݍ௝�could not be the local or 
global optimum of the total cost curves shown in Fig 2-16. 

Example 2-13 

The annual demand for a product is D=2500,  annual I=0.1 and the 
order cost is $100.   Find the optimal order quantity if the price per unit is as 
follows: 

�୨ Q comments 
ͷ qͲൌͲ�ǡ�ͳൌͷͲͲ ��������ͳ���ͷͲͲ������ 
ͶǤ͹ͷ qͳൌͷͲͲ�ǡ�ʹൌʹͷͲͲ for ͷͲͳǡͷͲʹǡ�ǤǤǤ�ʹͷͲͲ 
ͶǤ͸ qʹൌʹͷͲͲ�ǡ�͵ൌͷͲͲͲ forʹͷͲͳǡʹͷͲʹǡ�ǤǤǤ�ͷͲͲͲ 
ͶǤͷ Quantities exceeding 

q͵ൌͷͲͲͲ�� 
for ͷͲͲͳ�ˬͷͲͲʹ�ˬ... 

Solution 

Step 1: Calculation of R(Q) for break points ݍ௝: 
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ܴ൫ݍ௝ାଵ൯ ൌ ܴ൫ݍ௝൯൅ ௝ܲ൫ݍ௝ାଵ െ  ௝൯ݍ
ܴሺݍ଴ሻ ൌ Ͳ
ܴሺݍଵሻ ൌ ܴሺݍ଴ሻ ൅ ଴ܲݍଵ ൌ Ͳ ൅ ͷሺͷͲͲ െ Ͳሻ ൌ ʹͷͲͲ
ܴሺݍଶሻ ൌ ܴሺݍଵሻ ൅ ଵܲሺݍଶ െ ଵሻݍ ൌ ʹͷͲͲ ൅ ͶǤ͹ͷሺʹͷͲͲ െ ͷͲͲሻ

ൌ ͳʹͲͲͲ 

ܴሺݍଷሻ ൌ ܴሺݍଶሻ ൅ ଶܲሺݍଷ െ ଶሻݍ ൌ ͳʹͲͲͲ ൅ ͶǤ͸ሺͷͲͲͲ െ ʹͷͲͲሻ
ൌ ʹ͵ͷͲͲ 

Step 2: 

ܳ଴כ ൌ ටଶ஽ሾ஼ೀାோሺ௤బሻି௉బ௤బሿ
ூ௉ೕ ൌ ටଶכଶହ଴଴ሾଵ଴଴ା଴ିହൈ଴ሿ

଴Ǥଵൈହ ൌ ͳͲͲͲ� infeasible 

ܳଵכ ൌ ටଶ஽ሾ஼ೀାோሺ௤భሻି௉భ௤భሿ
ூ௉ೕ ൌ ටଶכଶହ଴଴ሾଵ଴଴ାଶହ଴଴ିସǤ଻ହൈହ଴଴ሿ

଴ǤଵൈସǤ଻ହ ൌ ͳͷ͵ͻ 

feasible�     

ܳଶכ ൌ ටଶ஽ሾ஼ೀାோሺ௤మሻି௉మ௤మሿ
ூ௉ೕ ൌ ටଶכଶହ଴଴ሾଵ଴଴ାଵଶ଴଴଴ିସǤ଺ൈଶହ଴଴ሿ

ሺ଴ǤଵሻሺସǤ଺ሻ ൌ
ʹͷͷͶ��feasible  

ܳଷכ ൌ ටଶכଶହ଴଴ሺଵ଴଴ାଶଷହ଴଴ିସǤହൈହ଴଴଴ሻ
ሺ଴ǤଵሻሺସǤହሻ =3496����   infeasible 

Step 3: 

Calculation the total cost of feasible values��ܳଵכƬܳଶכ obtained in step 2

ሺܥܶ ଵܳכሻ ൌ ܦ
ଵܳכ
ሾܥை ൅ ܴሺݍଵሻ െ ଵܲݍଵሿ ൅ ܫ

ʹ ሾ ଵܲ ଵܳכ ൅ ܴሺݍଵሻ െ ଵܲݍଵሿ ൅ ଵܲܦ

ሺܥܶ ଵܳכ ൌ ͳͷ͵ͻሻ ൌ ଶହ଴଴
ଵହଷଽ ሾͳͲͲ ൅ ʹͷͲͲ െ ͶǤ͹ͷ כ ͷͲͲሿ ൅

଴Ǥଵ
ଶ [4.75*1539+2500-

4.75*500]൅ͶǤ͹ͷ כ ʹͷͲͲ 
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כሺܳଵܥܶ ൌ ͳͷ͵ͻሻ ൌ ͳʹ͸ͳʹ 

ሻכሺܳଶܥܶ ൌ ܦ
ܳଶכ ሾܥை ൅ ܴሺݍଶሻ െ ଶܲݍଶሿ ൅ ܫ

ʹ ሾ ଶܲܳଶכ ൅ ܴሺݍଶሻ െ ଶܲݍଶሿ ൅ ଶܲܦ 

כሺܳଶܥܶ ൌ ʹͷͷͶሻ ൌ ʹͷͲͲ
ʹͷͷͶ ሾͳͲͲ ൅ ͳʹͲͲͲ െ ͶǤ͸ כ ʹͷͲͲሿ

൅ ͲǤͳʹ ሾͶǤ͸ כ ʹͷͷͶ ൅ ͳʹͲͲͲ െ ͶǤ͸ כ ʹͷͲͲሿ ൅ ͶǤ͸ כ ʹͷͲͲ 

כሺܳଶܥܶ ൌ ʹͷͷͶሻ ൌ ͳʹ͹ͲͲ   

כሺܳଵܥܶ ൌ ͳͷ͵ͻሻ ൏ כʹ൫ܳܥܶ ൌ ʹͷͷͶ൯ฺ              .ͳͷ͵ͻ= כଵܳ= כܳ�����

Example 2-14 

Calculate the  purchase cost per unit product for    �୨ ൏ ܳ ൑ �୨ାଵǤ 
Solution  

The purchase cost of  Q units in �୨ ൏ ܳ ൑ �୨ାଵ  is: 

ܴሺܳሻ ൌ ܴ൫ݍ௝൯൅ ሺ ௝ܲሻ൫ܳ െ ௝൯ݍ ൌ 

�୨൫� െ �୨൯൅෍�୧ିଵ൫�୨ െ �୨ିଵ൯
௝

୧ୀଵ
ฺ 

തܲ୨ǡThe cost per unit is: 

ൌ തܲ୨ ൌ ோሺொሻ�
ொ �ൌ �୨ ቀ୕ି୯ౠ୕ ቁ ൅ σ �୧ିଵ ቀ୯ౠି୯ౠషభ୕ ቁ௝

୧ୀଵ  

The inventory models for price change 

A number of inventory models have been proposed to gain insight 
into the relationship between price changes including temporary 
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discounts,  increase of price and order policy
kinds are described below.

ʹ-ͳͳ EOQ Model with sale price(

Suppose a supplier
during a limited time in
can buy once, as much as he want
of price d per unit. 

 The aim is to take the advantage of the short
determine the optimum size of
At point there is 
quantity Q; the first lot arrives with unit price p

Fig. 2-17 

2) To place a special
amount is consumed,

from point C. �ǯ ൌ
Saving in this model
the time period �ǯ
would like to find that value of Q' which maximize the saving

                                        

ϭ Tersine(1994) page 113

 Classical Topics in inventory Control

increase of price  and order policy.  Two models of these
kinds are described below. 

EOQ Model with sale price(temporary discount

supplier discounts the unit price of one of his goods
time in a regular replenishment period.  The customer

as much as he wants with a temporary special reduction
. 

to take the advantage of the short-lived discount
the optimum size of a special order.   Consider Fig

At point there is 2 options : 1) To continue ordering the 
the first lot arrives with unit price p-d. 

 Special sale  price model       ܣᇱܣ ൌ ௅ܶ �����ሺݍ ൌ Ͳ
To place a special order of size Q' with unit price p-d; when this

amount is consumed, lots of  regular size Q and unit price p

ൌ ୕ǯ
஽  is the time needed to consume the special

model is equal to the difference between the cost during
�ǯ with and without the special order Q'. Now we

would like to find that value of Q' which maximize the saving. 
                                                           

113-116 

Classical Topics in inventory Control� 

of these 

temporary discount)ͳ 

the unit price of one of his goods 
. The customer 

reduction 

lived discount and 
Consider Fig. 2-17. 

To continue ordering the regular 

 Ͳሻ 
when this 

ular size Q and unit price p arrive 

is the time needed to consume the special order. 

is equal to the difference between the cost during 
with and without the special order Q'. Now we 

.
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Let K' denote the average cost during period T' if a special order of 
size Q' is placed.  K' has three components i.e. order cost (ܥை) , 
purchase cost :�ሺܲ െ ݀ሻܳᇱ and average carrying cost during the time 
period which is derived as following using Fig. 2-17: 

Average inventory during time T'=
భ
మொᇲ୘ǯ
୘ǯ =

ଵ
ଶܳᇱ 

 ௛ is the holding cost of one unit product in 1 yearܥ

 ='௛��Ԣ is the holding cost of one unit product during time period Tܥ�

ሺܲܫ െ ݀ሻ ൈ ሺܳ
ᇱሻ
ܦ

average carrying cost during the time period 

T'=ܫሺܲ െ ݀ሻ ൈ ൫ொᇲ൯
஽ ൈ ଵ

ଶܳᇱ ൌ ሺܲܫ െ ݀ሻ ൫ொᇲ൯
మ

ଶ஽ Ǥ�������  ׷

ᇱܭ ൌ ைܥ ൅ ሺܲܫ െ ݀ሻ ሺܳ
ᇱሻଶ
ܦʹ ൅ ሺܲ െ ݀ሻܳᇱ�������������������ሺʹ െ ͷʹሻ 

Let K denote the average cost during period T' if a special order of 
size Q' is not placed.  Noting that only  the unit price of  the first order 
is P-d and that of the other orders is p, we could write: 

ܭ ൌ ைܥ ொᇲ
ொ ൅

ەۖ
۔

ሺܲܫۓۖ െ ݀ሻ ொଶ ቀொ஽ቁ
ฐ

௧௜௠௘�஺஻�

൅ܲܫ ொ
ଶ ቀ

ொᇲିொ
஽ ቁᇣᇤᇥ

௧௜௠௘��஻஼�

�+ሺܲ െ ݀ሻܳ ൅ ሺܳᇱ െ ܳሻܲǤ 

To find the optimal one-time special order (Q'), the saving i.e. the 
difference in the above 2 cost must be maximized: 

ܩ ൌ ܭ െ ᇱܭ ൌ 
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݀ ൈ ሺܳᇱ െ ܳሻ െ ܳܫ݀
ଶ െ ᇱܳܳܲܫ
ܦʹ െ ሺܲܫ െ ݀ሻܳ

ᇱଶ

ܦʹ ൅ ைܳܥ
ᇱ

ܳ െ ʹை���ሺܥ െ ͷʹሻ���

�������� ൌ �୛Ǥ 
The second derivative of G with respect to Q' is െ ூሺ௉ିௗሻ

஽ ൏ Ͳ; then

G has a maximum.  To find the optimal Q', the first derivative is set 
equal to zero(tersine,1994 page 116): 

ܩ݀
݀ܳᇱ ൌ Ͳ ฺ ݀ ൅ ܦʹܳܲܫ െ ሺܲܫ െ ݀ሻܳ

ᇱ
ܦ ൅ ைܳܥ ൌ Ͳ 

ฺ �ᇱכ ൌ ଶୢୈ୕ା୍୔୕మାଶେబୈ
୍୕ሺ୔ିୢሻ ൌ ଶୢୈ୕ା୍୔୕మା୍୔୕మ

୍୕ሺ୔ିୢሻ

The above formula is valid when the stock position is zero (q=0)on 
the expiration date: 

�ᇱכ ൌ ୢୈ
୍ሺ୔ିୢሻ൅

୔୕
୔ିୢ ൌ

ୢୈା୍୔୕
୍ሺ୔ିୢሻ �  � ൌ Ͳ   (2-53) 

The saving due to placing this amount of order is((Tersine,1994 
page 116) : 

כܩ ൌ ஼ೀሺ௉ିௗሻ
௉ ൬ொᇲ

כ

ொೈ െ ͳ൰
ଶ

ݍ  ൌ Ͳ   (2-54) 

If the special order must be placed before the regular replenishment 
time and the stock position is q units on the expiration date, the 
optimizing formulations are(Tersine, 1994, page116): 

ሺʹ-ͷͷሻ � ് Ͳ �ᇱכ ൌ ୢୈା୍୔୕౓
୍ሺ୔ିୢሻ െ ������������    
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ሺʹ-ͷ͸ሻ � ് Ͳ 
כ ൌ �୓

ۏ
ێ
ێ
ۍ

ۉ
ۇ �ᇱכ

�୛ට �
� െ ی�

ۊ
ଶ

െ ͳ
ے
ۑ
ۑ
ې
 

or����
כ ൌ �୓ ቈ୔ିୢ୔ ൬୕ᇲ
כ

୕౓൰
ଶ
െ ͳ቉�

Note that in this case 

-we must have  ܳƍכ ൐ ܳௐට ௉
௉ିௗ , if we want כܩ ൐��Ͳ�

- ������ ൌ Ͳ��andݍ�� ് Ͳ  ฺܳᇱכ ൌ ܳௐ െ Ǥݍ

2-11-1 Summary : EOQ Model with sale 

ܳᇱכ ൌ ܦ݀ ൅ ௐܳܲܫ
ሺܲܫ െ ݀ሻ െ  ������ǡݍ

כܩ ൌ

ە
ۖۖ
ۖ
۔
ۖۖ
ۖ
ۓ ைሺܲܥ െ ݀ሻ

ܲ ቆܳ
ᇱכ

ܳௐ െ ͳቇ
ଶ
� ݍ����������� ൌ Ͳ

ைܥ
ۏ
ێ
ێ
ۍ

ۉ
ۇ ܳᇱכ

ܳௐට ܲ
ܲ െ ی݀

ۊ
ଶ

െ ͳ
ے
ۑ
ۑ
ې
ݍ������������ ് Ͳ

����� 

Example 2-15 

The annual demand for a product of unit price $10 is 8000; the 
annual  carrying cost of $1 is $ 0.30 and the cost order is $30.  The 
supplier is offering a special discount during regular replenishment. 
He has temporarily  reduced the unit price from $10 to $9.   There are 
330  working  days in a year. 
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a)The amount of the special discount that should be purchased. 

b)The time interval between 2 consecutive order  

c)The time in which the special order is consumed 

d)The optimal saving due to ordering the special order  

Solution  

����Annual D=8000 ,P=$10,   d=1,   �annual I=0.3  ,CO=$30 

a)  

ܳᇱכ ൌ ௗ஽
ூሺ௉ିௗሻ൅

௉ொ
௉ିௗ          ܳ ൌ ܳௐ ൌ ටଶ஽஼ೀ

ூ௉ ൌ ͶͲͲ����ܳᇱכ ൌ ͵ͶͲ͹ 

b) 

כܶ ൌ ொכ
஽ ൌ ସ଴଴

଼଴଴଴ ൌ
ଵ
ଶ଴ �� ൌ

ଵ
ଶ଴ ሺʹͲͲሻ ൌ ͳͲ������  

c) 

ܶԢכ ൌ ொᇱכ
஽ ൌ ଷସ଴଻

଼଴଴଴ ൌ ͲǤͶ͵ݎݕ ൌ ͲǤͶ͵ ൈ ʹͲͲ ؆ ͺ͸�݀ܽݏݕ  

d)  

כܩ ൌ ஼ೀሺ௉ିௗሻ
௉ ൬ொᇲ

כ

ொೈ െ ͳ൰
ଶ
= 30ቀͳ െ ଵ

ଵ଴ቁ˶*ቀଷସ଴଻ସ଴଴˶ െ ͳቁ
ଶ ൌ ̈́ͳͷʹͷǤͺ 

���
כ�could be calculated by substituting �Ԣכ ൌ ͵ͶͲ͹in the 
relationship which gives G:  

כܩ ൌ ݀ሺܳᇱ െ ܳௐሻ ൅ ܫ
ܦʹ 5 ሾെ݀ܳௐ

ଶ ൅ ܲܳௐܳᇱכ െ ሺܲ െ ݀ሻܳᇱכଶሿ ൅ ைܳܥ
ᇱכ

ܳௐ െ  ைܥ

=1(3407-400)+�ିଵൈ
య
భబൈସ଴଴మା

య
భబൈଵ଴ൈସ଴଴ൈଷସ଴଻ି

య
భబൈሺଵ଴ିଵሻൈଷସ଴଻మ�

ଶൈ଼଴଴଴ ൅ ଷ଴ൈଷସ଴଻
ସ଴଴ െ ͵Ͳ����� 

כܩ ൌ ̈́ͳͷʹ͸Ǥʹʹ�� 
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The difference in the 2 values obtained for כܩ  could be due to the 

approximation used for fraction numbers. 

It is worth knowing that Martin(1994) gives a more accurate 
formula fo the average inventory in this model; however if the 
discount per unit product is small  the above formulae from Tersine 
(1194) gives acceptable answers.  Based on Martin's modifications 
�Ԣ݀݊ܽ�כ��
 .would be 43401 and 1533.75 respevtively כ

ʹ-ͳʹEOQ Model -permanent reduction price 

If we know a permanent decrease in the price will occur, no special 
order will be placed. 

ʹ-ͳ͵�EOQ Model �known increase price 

Suppose a supplier inform us that in the early future, the unit price 
increases from P to P'=P+a.  Now We would like to know how much 
should we order with current price P before the new prices is 
applied(Tersine, 1994, page,117). 

Symbols 

ܳᇱ The special order quantity before the higher price 
 The stock position at time  when Q' is placed ݍ

����������ܳ௔כ The economic order quantity with unit price P+a 
ܳᇱכ The optimal value of Q' 

ܽ The increase in unit price 
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Fig. 2-18 Known increase price model ( 0LT  ) 

Suppose at time t1 when the stock position is q units, an order Q' of 
unit price P  is placed. At first, suppose 0LT  i.e. the lead time is 

ignorable and Q' arrives at time t1(Fig. 2-18.  The special order of Q'   

and the q units are enough for time 
௤ାொᇲ
஽ ǡ after the time t2= t1+

௤ାொᇲ
஽  the 

new price becomes effective and the optimal order quantity will 
become: 

ܳ௔כ ൌ ට ଶ஽஼ೀ
ூሺ௉ା௔ሻ����������(2-57) 

The total cost in period t2�t1 if Q' is placed equals: 

ᇱܭ ൌ ைܥ ൅ ௛ܥ ቆݍ ൅ ܳ
ᇱ

ʹ ቇ ሺݐଶ െ ଵሻݐ ൅ ܲሺܳᇱ ൅ ௛ܥ�����������ሻݍ� ൌ  ���ܲܫ

If no special order is placed  and all orders are purchased at unit 
price P+a, the total cost during t2-t1 is as follows 

� ൌ �୓ ୕ᇱ
୕౗כ ൅ ��

୯
ଶ
୯
ୈ ൅ �ሺ� ൅ �ሻ

୕౗כ
ଶ
୕ᇲ
ୈ ൅ ሺ� ൅ �ሻ�ᇱ ൅ ��� 
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To determine the optimal Q', ܩ ൌ ܭ� െ  ᇱ i.e. the saving �in totalܭ
cost must be maximized: 

If 0LT    , 
ௗீ
ௗொᇲ ൌ Ͳ��ฺ� 

�୐ ؆Ͳ 

ሺʹ െ ͷͺሻ���������ܳᇱכ ൌ ܳ௔כ ൅ ܽሺܳܫ௔
כ ൅ ሻܦ
ܲܫ െ  �����ݍ

Equivalent formulae 

� 

ܳᇱכ ൌ ܳ௔כ ൅ ௔
௉ ሺܳ௔כ ൅

஽
ூ ሻ െ  ݍ

ܳᇱכ ൌ ܳ௔כሺͳ ൅ ܽ
ܲሻ ൅

ܦܽ
ܲܫ െ  ݍ

ܳᇱכ ൌ ሺܲ ൅ ܽሻܳ௔
כ
ܲ ൅ ܲܫܦܽ െ  ݍ

The optimum cost saving is(Tersine,1994, page 119): 

כܩ ൌ ைሾ൬ொܥ
ᇲכ

ொೈ൰
ଶ
െ ͳሿ  (2-59) 

If the lead time is considerable then q� is reduced to  ݍ െ ܦ
LT Q' arrive 

and we have 

ܳᇱכ ൌ ሺܲ ൅ ܽሻܳ௔
כ
ܲ ൅ ܽ

ܲܫ ܦ െ ൫ݍ െ ܦ LT ൯������������ሺʹ െ ͸Ͳሻ 

If the Q' could be placed when the stock position reaches reorder 
point i.e.ݍ� ൌ ܴܱܲ, then (Tersine, 1994,page 120) 

ܳᇱכ ൌ ሺܲ ൅ ܽሻ ொೌכ௉ ൅௔஽
ூ௉

If ݍ ൌ ܴܱܲ ሺʹ െ ͸ͳሻ 

כܩ ൌ ைܥ ቆܳ
ᇱכ

ܳௐ െ ͳቇ
ଶ If ݍ ൌ ܴܱܲ ሺʹ െ ͸ʹሻ 

Example 2-16 
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The annual demand for a product is 8000, the supplier is going to 
increase the current price $10 to $11 from the beginning of the next 
year.  The cost of each order is $30, the lead time is 2 weeks, and the 
carrying cost of $1 per year is $.03.  What amount should be 
purchased on the last day of this year before the price increase if the 
stock position isݍ� ൌ ͵Ͷ͸Ǥ  What is the saving with this action?  There 
are 52  working  in a year? 

Solution  

a=1�ˬ P=10       ܳௐ ൌ ටଶ஽஼ೀ
ூ௉ ൌ ͶͲͲ ܳ௔כ ൌ ට ଶ஽஼ೀ

ூሺ௉ା௔ሻ=381 

  
ܳƍכ ൌ ܳ௔כ ൅ ܽ

ܲܫ ሺܳܫ௔
כ ൅ ሻܦ െ ݍ ൅ ܦ

LT ��
ൌ ͵ͺͳ ൅ ͳ

ͲǤ͵ ൈ ͳͲ ሺͲǤ͵ ൈ ͵ͺͳ ൅ ͺͲͲͲሻ െ ͵Ͷ͸ ൅ ͺͲͲͲ ൈ
ʹ
ͷʹ ൌ ͵ͲͶͺ 

�ܴܱܲ ൌ ܦ ௅ܶ ൌ ͺͲͲͲ ൈ ʹ
ͷͲ ൌ ͵Ͳ͹ 

Since ് ܴܱܲ ,�
  :has to be calculated using Eq. 2-62  כ


כ ൌ �୓ሾ൬୕
ƍכ

୕౓൰
ଶ
െ ͳ]=�͵Ͳ×ሾቀଷ଴ସ଼ସ଴଴ ቁ

ଶ െ ͳሿ ൌ1712. 

The above calculations show that at the end of the year an order of  
3048 units with price $10 has to placed; this amount is consumed in�
ଷ଴ସ଼
଼଴଴଴ ൌ ͲǤ͵ͺͳݎܽ݁ݕǢ bringing $1712 saving.  The next orders would be 

of amount 381 units and unit price $11.  

Economic Production Quantity(EPQ) Models  

This model , which is also called finite production rate model or 
manufacturing model has the following types: 
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ەۖ
۔
�ۓۖ െ ����������������� ൜ͳ െ ����������������������ʹ െ ������������������������ ���������������������������������

� െ ������������������� ൝
ͳ െ �������������������������������������������
ʹ െ ��������������������� ൜ͳ െ �୭ ؆ Ͳ

ʹ െ �୭ ് Ͳ�
������
�

The models are described below. 

ʹ-ͳͶ������������������������������single item 

To deal with EPQ model, when we have single item, two cases are 
distinguished: either stockout is permitted or it is not permitted.  

2-14-1   EPQ �single item,stockout unpermitted 

In this model, it is assumed that a product is  consumed with annual 
rate D at the same time it is produced gradually with annual rate R>D 
and therefore the remaining is stored with annual rate R-D in the 
ware- house simultaneously.  No stockout is permitted. Needlesas to 
say that this model exists if R>D. 

Fig.2-19 EPQ model   or  Gradual arrival model 
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The  annual total cost is: 

ܥܶ ൌ ைܥ ܳܦ ൅ ௛ܥ I ൅  ǡܦܲ

Where Q  is the order quantity and ܫ ҧ is the average inventory.

Referring to  Fig 2-19 : 

ࢀ ൌ ۿ
ࡼ࢚� ,۲ ൌ ࢞ࢇࡹࡵ

ࡰିࡾ

m mI I

2 2
ax axT

I
T


  ெ௔௫ܫ������� ൌ ொ

ோ ሺܴ െ ሻܦ ൌ ܳ ቀͳ െ ஽
ோቁ ฺ 

ܫ ҧ ൌ ܳሺͳ െ ሻܴܦ
ʹ

ܥܶ ൌ=
஼ೀ஽
ொ ൅ ௛ܥ ொሺଵି

ವ
ೃሻ

ଶ ൅  ܦܲ

If Q is continuous, since 
2

2
0

d TC

dQ
 , then the  function TC has 

minimum which satisfies 0
d TC

dQ
 .  This equation yields: 

כܳ ൌ ܳܲܧ ൌ ඨ
ைܥܦʹ

ܲܫ ቀͳ െ ቁܴܦ
�����������ܴ ൐ ʹ����ሺܦ െ ͸͵ሻ 

Let the sum of carrying cost and order cost for one year be dented 

by   ࡯ࢂࢀ ൌ ࡻ࡯ ࡰ
ࡽ ൅ ࢎ࡯ I Ǣ  substituting כࡽ�from Eq.2-63 in TVC

yields: 

כܥܸܶ�� ൌ ඨʹܥܦைܥ௛ሺͳ െ ʹሻ�������������������ሺܴܦ െ ͸Ͷ െ ͳሻ 
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כܥܸܶ�� ൌ כ௛ܳܥ ൬ͳ െ ൰ܴܦ ��������������������������ሺʹ െ ͸Ͷ െ ʹሻ 

כܥܸܶ�� ൌ ௛ܳ௪ඨͳܥ െ ܴܦ �������������������������ሺʹ െ ͸Ͷ െ ͵ሻ 

In this model if ۲ ൌ �࢘࢕�܀ ࡾࡰ ൌ ૚ǡ�no inventory is deposited.  If the 

production rate or the purchase rate is largish 
ࡰ
ࡾ ؆ ૙  and the model 

converts to the classic EOQ model. 

͸-ͷͺ-ͷ-ͷ The reorder point in EPQ model �single item  

If the time of consumption in each cycle time is �ୈ( line HS in 
Fig.2-19) then the reorder point would be (Hajji, 2012 page 66): 

 
ܴܱܲ ൌ ௛ݎ ൌ 

൝
ܦ ௅ܶ െ ���������������������������������������������������ܳܭ ௅ܶ െ ܶܭ ൏ ஽ݐ
௅ܶሺܦ െ ܴሻ ൅ ሺܭ ൅ ͳሻ ൬ܴܦ െ ͳ൰ܳ����������� ௅ܶ െ ܶܭ ൐ ʹ஽���������ሺݐ െ ͸ͷሻ

� 

Where ܭ ൌ ቂ்ಽ் ቃ �ܽ݊݀� ௅ܶ is the lead time. 

Example 2-16 

50 tons of a kind of chemical fertilizer is produced in a workshop . 
The fertilizer contains 30% urea which is produced in another work- 
shop which could produce 20 tons urea per year. TL=2 days and for 
each setup the workshop shuts down for 2 working days but 10 people 
have to adjust and fix the machine for producing urea. When The 
workshop incurs A dollars during the shutdown and pays $10 per hour 
to each of these 10 people.  There are 8 hours in each working day. 
The cost of producing 1 ton urea is P and annual I=0.1.   Find the 
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optimum values for Q, production time (tp) and cycle time(T).  
Stockout is not permitted.     

 

Solution  

For the production of urea: 

5=20;   D=ͷͲ ൈ Ǥ͵Ͳ ൌ ͳͷǤ    CO=(2×8×10×10)+2*A=1600+2A   ݎݕ

If A is given the following relationship could be used : 

כܳ ൌ ට ଶൈଵହൈ஼ೀ
ሺ଴Ǥଵሻ௉ሺଵିವ

మబሻ
כ௉ݐ                    ൌ ொכ

ோ כܶ               ൌ ொכ
஽ Ǥ  

End of example  

The following table compares some relationships in EOQ and EPQ 
models. 
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EPQ EOQ 
Order  Quantity כ� ൌ �୛

ටͳ െ ��
 �୛ 

Maximum  inventory on hand �୛ඨͳ െ �� ൌ ሺͳכ� െ ��ሻ 
�୛ 

Average inventory ୕౓
ଶ ටͳ െ ୈ

כ୕=ୖ
ଶ ሺͳ െ

ୈ
ୖሻ 

�୛
ʹ  

TVC ඨʹ��୓�୦ሺͳ െ ��ሻ ඥʹ��୓�୦ 

TVC �୛�୦ඨͳ െ �� �୛�୦ 

TC ඨʹ��୓�୦ሺͳ െ ��ሻ ൅ �� ඥʹ��୓�୦൅ �ᇱ� 

There are some variations for EPQ model including discounted 
EPQ model, EPQ model with stockout.  The description of 
backordered EPQ model follows.  

2-14-2  Single-item  EPQ model with backorders 

In a Single-item backordered EPQ model, as depicted in Fig. 2-20, 
when the inventory reaches zero the production phase does not start 
and the demand continues with rate D.  When the shortage reaches the 
allowable amount b the production phase begins.  

Symbols 

b maximum allowable shortage 
ʋ fixed shortage cost per unit  

ʌ෠ shortage cost per unit product per yearሺߨො ് Ͳሻ 
It is assumed that ߨො ് Ͳ and when the production starts again and 

the product arrives, the backorders are fulfilled.  
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To Find the optimal  order quantity(Q) and maximum 
shortage(b), the total cost of the model has to be written and its partial 
derivatives be set to zero.  The final results are:

כܳ ൌ ඩ
ܦʹ

௛ሺͳܥ

כܾ ൌ ሾܥ௛ܳכ

כ௠௔௫ୀܫ כܳ ൬ͳ

Fig. 2-20  A single

ʹ-ͳͶ-ʹ-ͳ�����������
Substituting ࣊ ൌ

כ� ൌ ඨ�୦
כ��� ൌ ඨʹ��୓�୦

כ��� ൌ�� �୦�
כ��୦=כ��� ቀͳ െ

It is worth mentioning that

࣊ ൌ ૙Ǥ  
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To Find the optimal  order quantity(Q) and maximum allowable 
shortage(b), the total cost of the model has to be written and its partial 
derivatives be set to zero.  The final results are: 

ைܥܦ
ͳ െ ሻܴܦ

െ ଶܦଶߨ
௛ܥ௛ሺܥ ൅ ොሻඨߨ

ොߨ ൅ ௛ܥ
ොߨ �������������ሺʹ െ ͸͸

െ ሿሺͳܦߨ െ ሻܴܦ
ොߨ ൅ ௛ܥ ����������������������������������������ሺʹ െ ͸͹

൬ͳ െ ൰ܴܦ െ ܾ
ʹ����������������������������������������������ሺכ െ ͸ͺ

 
  A single-item EPQ inventory model with backorder

 

ͳ����������� with backorder -   ࣊ ൌ ૙�&࣊�෡ ് ૙ 
ൌ ૙ in Eqs. 2-66 &2-67 results in the followings

 
�2-66-1� 

ඨ
ʹ��୓
ቀͳ െ���ቁ

ඨɎෝ ൅ �୦Ɏෝ  
 
�2-69) 
 ୦ ൬ͳ െ ��൰ඨ

Ɏෝ
Ɏෝ ൅ �୦ 

�୛ඨ൬ͳ െ ��൰
Ɏෝ

Ɏෝ ൅ �୦ 

ቀ െ ୈ
ୖቁට

஠ෝ
஠ෝାେ౞ 

It is worth mentioning that optimal b reduces to כ࢈ ൌ ૚ିࡾࡰ
૚ା ෝ࣊

ࢎ࡯
ࡽ

Classical Topics in inventory Control� 

allowable 
shortage(b), the total cost of the model has to be written and its partial 

͸͸ሻ 

͸͹ሻ 
͸ͺሻ 

model with backorder 

 results in the followings: 

ෝ   when כࡽ
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ʹ-ͳͷ Make or Buy Decision 

A make-or-buy decision involves  an act of using cost-benefit to 
make a choice between manufacturing a product internally or 
purchasing it from an external source.  To cope with this decision 
problem , use EOQ model for buying and EPQ model for 
manufacturing , choose the one with less total cost (TC not TVC). 

ʹ-ͳ͸�����������������������������:Multiple-item 

Symbols 

(Ch)i Annual holding cost for product # i 
(CO)i Setup cost for product # i 
Di Annual demand for product # i 
diൌ ஽೔

ே  daily demand for product # i 

iI Average inventory of product # i 

݉ ൌ ௜ܦ
௜ܳ

Annual number of cycles (production runs) 

N Number of working days in a year 
Pi Unit production cost of product # i 
�ܳ௜ Order Quantity for product # I per cycle 
Ri Annual  potential production rate of  product # i 
Si The setup time required for product # i 
(tp)i The production time for product # i 

כ௉௜ݐ Optimal (tp)i 

כܶ The time between two successive setups 

 ௜ annual total cost of product # iܥܶ

*
oT

The time between two successive setups for the case the 
setup times are negligible 

For determining the production quantity of each product in 
multiple- item EPQ, 2 cases are distinguished: case 1 in which each of 
our n  products are  produced on n separate machines and case 2 in 
which our n  products are  produced on only one machine or station 
where the number of cycles are the same for all n products. 
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2-16-1 Multiple-item EPQ model: n machines for n 
products with no constraints 

When we have n products that could be manufactured on n separate 
machines and there is no constraint, the purpose of is to determine the 
optimal production lot size of each product in order to minimize the 
total cost (TC)of system including set up costs,  holding costs of raw 
materials and finished products  as well as production costs i.e. 

ܥܶ ൌ σ ௜௡௜ୀଵܥܶ ൌ σ ஼ೀ೔஽೔
ொ೔

௡௜ୀଵ ൅ σ ஼೓೔
ଶ ܳ௜ ቀͳ െ

஽೔
ோ೔ቁ

௡௜ୀଵ ൅ σ ௜ܲܦ௜௡௜ୀଵ . 

To find the optimal values of ܳ௜ 's,  the partial derivatives are set 
equal to zero: 

Ąܶܥ
Ąܳ௜ ൌ Ͳ��� ฺ���െܥை௜ܦ௜ܳ௜ଶ ൅ ʹ௛௜ܥ ൬ͳ െ ௜ܴ௜൰ܦ ൌ Ͳ���� ฺ 

ܳ௜כ ൌ ඩ
ை௜ܥ௜ܦʹ

௛௜ܥ ቀͳ െ ௜ܴ௜ቁܦ
��������������݅ ൌ ͳǡʹǡ ǥ ǡ ݊���������ሺʹ െ ͹Ͳሻ 

The optimal total cost and cycle times are obtained from: 

כܥܶ���������������������������� ൌ෍ඨʹܦ௜ܥை௜ܥ௛௜ ൬ͳ െ
௜ܦ
ܴ௜൰

௡

௜ୀଵ
൅෍ ௜ܲܦ௜

௡

௜ୀଵ
��������ሺʹ െ ͹ͳሻ 

௜ܶכ ൌ ொ೔כ
஽೔  (2-72) 

The required time for producing product # i is derived from ݐ௣೔ ��ൌ �ொ೔ோ೔Ǥ 

If we use Fig 2-19,the average inventory of  Product No. i is 
calculated as follows: 
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iI ൌ
ሺೀೄሻሺಹಾሻ

మ
ைௌ ൌ ுெ

ଶ ൌ ሺோ೔ି஽೔ሻ௧೛೔
ଶ ฺ 

( ) (1 )
2 2

i i i i i
i

i i

R D Q Q D
I

R R


   , 

and the maximum inventory of  product # i would be equal to: 

ெ௔௫ሻ௜ܫ ൌ ሺܴ௜ െ ௉௜ݐ௜ሻܦ
In this model the annual number of setups for a product in not 

necessarily equal to that of the other product.  

2-16-1 Multiple-item EPQ model: 1 machine for n 
products     

Suppose would like to apply EPQ model to plan manufacturing of 
n products on the same machine and each product has to be produced 
m times a year. The following assumptions are needed in the multiple-
item EPQ model 

-Each tome, only one product is produced on the machine 

- The number of setups and cycles for manufacturing all n products 
are assumed the same and constant.   

-The number denoted by m equals  � ൌ ୈ౟
୕౟ � ǡ � ൌ ͳʹǡǥ ǡ �Ǥ 

- The reciprocal of m is the time between two consecutive: � ൌ ଵ
୫Ǥ 

௜ܦ- ǡ ܴ௜ ǡ demand and production rates for product # i,   ares assumed 
the same during all production cycle times and so is the production 
rate.  

-The setup cost for product # i is assumed independent of the order 
of producing the items on the machine 
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To deal with this model,  2 situations are supposed to be discussed: 

Either the setup times are negligible( 0iS  ) or they are 

considerable and cannot be ignored( 0iS  ). 

2-16-2-1 Multiple-item EPQ model: 1 machine & 0iS   

Here we would like to consider the multiple-item EPQ model 
having  1 machine with negligible setup times  ( 0iS  ) available for 

producing n products (Fig. 2-21) where 
஽೔
ோ೔ ൏ ͳ���݅ ൌ ͳǡʹǡ ǥ�,n.  

 

Fig. 2-21  EPQ model- multiple itemƬ ௜ܵ ൌ Ͳ 

To reach reasonable results in this model, as you will notice later, 

we must have σ ஽೔
ோ೔

௡௜ୀଵ ൏ ͳ� The average inventory of product # i could 

be written as follows: 

iI ൌ ቀோ೔ି஽೔ଶ ቁ ቀொ೔ோ೔ቁ ൌ
ொ೔
ଶ ቀͳ െ

஽೔
ோ೔ቁ ൌ

஽೔
ଶ୫ ቀͳ െ

஽೔
ோ೔ቁ�ǡ

  

Therefore the total cost of Product  # i is: 
௜ܥܶ ൌ ை௜݉൅ܥ ௛௜ܥ ൈ ஽೔

ଶ௠ ቀͳ െ
஽೔
ோ೔ቁ ൅ ௜ܲܦ௜ ൌ ை௜ܥ ஽೔ொ೔ ൅

஼೓೔
ଶ ௜ܳ ቀͳ െ ஽೔

ோ೔ቁ ൅ ௜ܲܦ௜ , 

The total cost of the system: 

ܥܶ  ൌ σ ௜௡௜ୀଵܥܶ =σ ை௜݉௡௜ୀଵܥ ൅ σ ௛௜ܥ ቆ ஽೔ଶ௠ ቀͳ െ
஽೔
ோ೔ቁቇ

௡௜ୀଵ +σ ௜ܲܦ௜௡௜ୀଵ . 

ܥܶ݀
݀݉ ൌ Ͳ 
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כ݉ ൌ ඩσ ሺܥ௛ሻ௜ܦ௜ ቀͳ െ ௜ܴ௜ቁܦ
௡௜ୀଵ
ʹσ ሺܥைሻ௜௡௜ୀଵ ������������������������������������ሺʹ െ ͹͵ሻ

���� 

כܥܶ �ൌ ሻכሺ݉ܥܶ ൌ ைሻ௜ܥ෍ሺכ݉ʹ
௡

௜ୀଵ
൅෍ ௜ܲܦ௜

௡

௜ୀଵ
����������ሺʹ െ ͹Ͷሻ 

ܳ௜כ ൌ ஽೔
௠כ  ൌ ௜ܦ ଴ܶכ  (2-75) 

Let� ଴ܶ  dentote the cycle time when the setup times are negligible;
then: 

כܥܶ �ൌ ଶσ ሺ஼ೀሻ೔೙೔సభ
బ்כ

൅ σ ௜ܲܦ௜௡௜ୀଵ ���������������������������������������������(2-76) 

where�� ଴ܶכ ൌ� ଵ௠כ��Ǥ 

This  EPQ model cannot be use unless σ ୈ౟
౎౟
ొ

୬୧ୀଵ (Tersine,1994,page 

128).;or σ ୈ౟
ୖ౟

୬୧ୀଵ ൏ ͳ.  The difference of right hand side from left hand 

side is dented by ߙ which is a dimentionless ratio: 

ߙ ൌ ͳ െ σ ୈ౟
ୖ౟

୬୧ୀଵ �������������� (2-77). 

Ƚ�������������������������  free or idle time of the station or the 
machine used for production.  That is because ܰߙ� is the�number of 

working days the machine is idle.This time in year is equal to 
ఈே�
ே  Ǥߙ�=��

The multiple- item EPQ model has feasible answer if Ƚ  ͲǤ  In this 
model 

଴ܶכ ൌ ඨ ଶσ ሺେోሻ౟౤౟సభ
σ ሾሺେ౞ሻ౟ୈ౟൬ଵିವ೔ೃ೔൰ሿ
౤౟సభ

 (2-78)� 

Note that� ଴ܶכ is also valid for the case in which the setup times( ௜ܵሻ
are not zero but their sum in a year is less than Ƚ;however , if their 
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sum is greater than Ƚ, as you will see later if Ƚ ൌ ͳ െ σ ୈ౟
ୖ౟

୬୧ୀଵ ൐ Ͳthe 

cycle time is calculated from ܶכ ൌ ݔܽܯ ቄ ଴ܶכǡ σ ௌ೔೙೔సభ
ఈ ቅ. 

Example 2-18 
What do you suggest the production cycle for the group of products 

in the following table.  Assume ܵଵ ൌ ܵଶ ൌ ܵଷ ൌ ܵସ ൌ ܵହ ؆ Ͳ�ܽ݊݀�250 
working days per year .  what is the optimal  production run size and 
total cost(Tersine, 199, page 129). 

Solution 

ߙ ൌ ͳ െ σ ஽೔
ோ೔

௡௜ୀଵ � 
=ͳ െ ሺ ହ଴଴଴

ଶହ଴ൈଵ଴଴+
ଵ଴଴଴଴
ଶହ଴ൈସ଴଴+

଻଴଴଴
ଶହ଴ൈଷହ଴+

ଵହ଴଴଴
ଶହ଴ൈଶ଴଴+

ସ଴଴଴
ଶହ଴ൈଵ଴଴ሻ=0.16�

Sinceߙ�� ൐ Ͳǡ� the problem  has answer to the  optimal production
runs(m*). 

כ݉ ൌ ඨσ ሺ஼೓ሻ೔஽೔൬ଵିವ೔ೃ೔൰
೙೔సభ
ଶσ ሺ஼ೀሻ೔೙೔సభ

ൌ ටସ଴�ସ଼ଷ
ଶൈଶ଴ଶ ؆ ͳͲ. 

This means the there are 10 runs per year for each product to meet 
the corresponding demands. 

Setup 
cost 

Annua
l 

holdin
g 

Cost 
per 
unit 

Daily 
produ
ction 
rate 

price 
Annual 

Demand 

product 
ሺ�୭ሻ୧ Chi Pi Di i 

͵Ͳ ͳǤ͸ ͳͲͲ ͸ ͷͲͲͲ ͳ 
ʹͷ ͳǤͶ ͶͲͲ ͷ ͳͲͲͲ ʹ 
͵Ͳ ͲǤ͸ ͵ͷͲ ͵ ͹ͲͲͲ ͵ 
ʹ͹ ͳǤͳͷ ʹͲͲ Ͷ ͳͷͲͲͲ Ͷ 
ͺͲ ͳǤ͸ͷ ͳͲͲ ͸ ͶͲͲͲ ͷ 

ʹͲʹ     VXP 
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   When the setup times are negligible ( ௜ܵ ؆ Ͳ), the number of 
production runs are dented by ݉଴  whose oiptimal value in the
example is ݉଴כ ൌ ͳͲǤ  The production cycle (the time between 2
successive production runs for each of the 5 products is equal 

to: ଴ܶכ ൌ ଵ
௠బכ

ൌ ଵ
ଵ଴  Ǥݎݕ��

The production run size for each product  calculated from 
ܳ௝כ ൌ ௝ܦ ଴݆ܶ��������כ ൌ ͳǡʹǡ͵ǡͶǡͷ  is given in the following table:

The machine cycle  time is 
୒
୫כ ൌ ଶହ଴

ଵ଴ ൌ ʹͷ����� and according to 

the above table  σ �୔୧ହ୧ୀଵ ൌ ͷ ൅ ʹǤͷ ൅ ʹ ൅ ͹Ǥͷ ൅ Ͷ ൌ ʹͳ�����Ǥ
Then in each cycle the machine is idle for 4 days.  The optimal total 
cost is given by Eq.2-74: 

ሻכሺ݉ܥܶ�� ൌ ைሻ௜ܥ෍ሺכ݉ʹ
௡

௜ୀଵ
���൅ �෍ܦ௜ ௜ܲ

௡

௜ୀଵ
 

ሻכሺ݉ܥܶ ൌ ʹሺͳͲሻሺʹͲʹሻ ൅ ሺ͵ͲͲͲͲ ൅ ͷͲͲͲͲ ൅ ʹͳͲͲͲ ൅ ͸ͲͲͲͲ ൅ ʹͶͲͲͲሻ
ൌ ͳͺͻͲͶͲ 

number of 
days in each 
cycle  
machine busy 
producing �୧כ

Production run size    

product 

��୧ ൌ �୧כ
�୧  �୧כ ൌ �୧

כ� ൌ �୧כ� 
�୦౟�୧ሺͳ
െ �୧�୧ሻ 

�୧ሺͳ െ �୧�୧ሻ i 

ͷ ͷͲͲ ͸ͶͲͲ ͶͲͲͲ ͳ 
ʹǤ�ͷ ͳͲͲͲ ͳʹ͸ͲͲ ͻͲͲͲ ʹ 
ʹ ͹ͲͲ Ͷͺ͸Ͷ ͸ͶͶͲ ͵ 
͹Ǥ�ͷ ͳͷͲͲ ͳʹͲ͹Ͷ ͳͷͲͲ Ͷ 
Ͷ ͶͲͲ ͷͷͶͶ ͵͵͸Ͳ ͷ 

ʹͳ  ͶͲͶͺ͵  su
m 

Note:ܴ௜ is the annual production rate for product # i. e.g.ܴଵ ൌ ʹͷͲ ൈ ͳͲͲ ൌ ʹͷͲͲͲ  
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End of example.  

ʹ-ͳ͸-ʹ-ʹ�  Multiple-��������������ǣ�ͳ���������Ƭ 0iS   

This section deals with multiple-item EPQ model when the 
machine setup time for each product  is not negligible and the 
production runs(m) for each product in a year is such that: 

݉ ൌ ଵܦ
ܳଵ ��ൌ �ǥ ���ൌ

௡ܦ
ܳ௡ Ǣ 

and the cycle time  is equal to : 

� ൌ �ଵ
�ଵ ൌ ڮ ൌ �୬

�୬Ǥ 

The time required by  the machine to produce the amount ࢐ࡽ of 
product #j is  

�୔୨ ൌ
�୨
�୨ ������������� ൌ ͳǡʹǡǥ ǡ �Ǥ 

Let T denote the time between two successive setups for product j 

including the non zero setup time� ௝ܵ:ܶ ൌ ொೕ
஽ೕ ���

The optimal T (ܶכ ൌ ொೕכ
ோೕ)is not less than ଴ܶכ (the time between two

successive setups for product j when  ௝ܵ ൌ ͲሻǣT* ≥ T*
0 (I)

In each machine cycle time, each product is produced once and It is 
obvious that : 

෍ ௝ܵ ൅෍ ௉௝ݐ ൑ ܶ�������������෍ ௝ܵ ൅෍ܳ௝
௝ܴ
൑ ܶǤ 
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The number of production runs for product j to produce  amount˶ܦ௝� 
is equal  ������ ൌ ୈౠ

୕ౠ ����������������������������݉
כ ൌ ஽ೕ

ொೕכ
Ǥ

Since σ ௝ܵ ൅ σ ொೕ
ோೕ ൑ ܶ�ܽ݊݀���ܳ௝כ ൌ ݄݊݁ݐ�כ௝ܶܦ

෍ ௝ܵ ൅෍ܦ௝
௝ܴ
כܶ ൑ כܶ �ฺ �� כܶ �൒ �� σ ௝ܵ

ͳ െ σ ௝ܦ
௝ܴ

௡௝ୀଵ
��

Let ௠ܶ௜௡ ൌ σௌೕ
ଵିσ ವೕ

ೃೕ
೙ೕసభ

כܶ���݁ݎ݋݂݁ݎ݄݁ݐ�� �൒ ���� ௠ܶ௜௡���������������������ሺ۷۷ሻ 

Considering Eq. ሺ۷ሻ�Ƭ��ሺ۷۷ሻ��we could write: 

כ��� ൌ ���ሼ�଴כǡ �୫୧୬ሽ����������(2-79) 

where 

���� ଴ܶכ ൌ ඩ
ʹσ ሺ�୓ሻ୧୬୧ୀଵ

σ ሺ�୦ሻ୧�୧ ቀͳ െ ௜ܴ௜ቁܦ
୬୧ୀଵ

��������� ௠ܶ௜௡ �ൌ
σ ௝ܵ௡௝ୀଵ

ͳ െ σ ௝ܦ
௝ܴ

௡௝ୀଵ
ൌ σ ௝ܵ

ߙ Ǥ 

ߙ ൌ ͳ െ σ ஽ೕ
ோೕ

௡௝ୀଵ >0 is a necessary condition  for the existence  כ�Ǥ
Note that: 
-�Sj��'s are not necessarily equal. 
-production run size is�� 

ܳ௝כ ൌ (2-80)�����������������������כ௝ܶܦ
-Eq. (2- 79  ) is also applicable when setup times are zero. 

Example 2-19 

Assuming 250 working days in ayear solve example 2-18 again if 

D� �ଵ ൌ �ଶ ൌ �ଷ ൌ �ସ ൌ �ହ ൌ ͲǤͷ ൌ ���������� 
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b)   ,..,jS day j 1 1 5

Solution 
a) 
The necessary condition ߙ ൌ ͳ െ σ ஽ೕ

ோೕ
ହ௝ୀଵ ൌ ͲǤͳ͸ ൐ Ͳ holds

therefore Eq. 2-79 could be utilized: 

ߙ ൌ ͳ െ෍ܦ௝
௝ܴ

ହ

௝ୀଵ
ൌ ͳ െ ʹͲ

ͳͲͲ െ
ͶͲ
ͶͲͲ െ

ʹͺ
͵ͷͲ െ

͸Ͳ
ʹͲͲ െ

ͳ͸
ͳͲͲ ൌ

ͶͲ
ʹͷͲ ൌ ͲǤͳ͸� 

כ݉ ൌ ଵ
כ் σ ௝ܵହ௝ୀଵ ൌ ʹǤͷ�݀ܽݏݕ ൌ ଵ

ଵ଴଴ כܶ ��� ൌ ሼݔܽܯ ଴ܶכǡ ௠ܶ௜௡ሽ
� ௠ܶ௜௡ ൌ σௌೕ

ଵିσ ವೕ
ೃೕ

ఱೕసభ
=

ହሺ଴Ǥହሻ
ଵି మబ

భబబି
రబ
రబబି

మఴ
యఱబି

లబ
మబబି

భల
భబబ
ൌ� ଶǤହ଴Ǥଵ଺݀ܽݕ=

ଶǤହ
଴Ǥଵ଺ �ൈ

ଵ
ଶହ଴ ൌ

ଵ
ଵ଺ �� 

଴ܶכ ൌ ඨ ଶσ ሺ஼ೀሻ೔೙೔సభ
σ ሺ஼೓ሻ೔஽೔൬ଵିವ೔ೃ೔൰
೙೔సభ

ൌ ටଶൈଶ଴ଶ
ସ଴ସ଼ଷ ൌ

ଵ
ଵ଴ yrฺ� 

כܶ� ൌ ݔܽܯ ቄ ଵଵ଴ ǡ
ଵ
ଵ଺ቅ ൌ

ଵ
ଵ଴ yr      m*=

ଵ
כ் ൌ ͳͲ 

The production quantities in each run are obtained from 

ܳ௝ ൌ כ௝ܶܦ �ൌ ஽ೕ
ଵ଴ ������݆ ൌ ͳǡʹǡ͵ǡͶǡͷ 

Therefore 
�ଵ ൌ ୈభ

ଵ଴ ൌ ͷͲͲ�����ଶ ൌ ͳͲͲͲ�����ଷ ൌ ͹ͲͲ�����ସ ൌ ͳͷͲͲ������ହ ൌ ͶͲͲ 

b)ܶכ ൌ ሼݔܽܯ ଴ܶכǡ ௠ܶ௜௡ሽ������ ଴ܶכ ൌ ଵ
ଵ଴ yr, jS day1 , then:

௠ܶ௜௡ ൌ σௌೕ
ଵିσ ವೕ

ೃೕ
ఱೕసభ

=
ሺହሻሺଵሻ

ଵି మబ
భబబି

రబ
రబబି

మఴ
యఱబି

లబ
మబబି

భల
భబబ
ൌ ହ

଴Ǥଵ଺  ݕܽ݀����

*
0min yr

5 1 1 1T = × = , T = yr
0.16 250 8 10

כܶ�� ൌ ݔܽܯ ቄ ଵଵ଴ ǡ
ଵ
଼ቅ ൌ

ଵ
଼ �� ,      m*=

ଵ
כ் ൌ ͺ��������������� / *j jQ D m

�ଵ ൌ �ଵכ� ൌ ͷͲͲͲ ൈ ଵ
଼ ൌ ͸ʹͷǡ�����ଶ ൌ ͳʹͷͲǡ �ଷ ൌ ͺ͹ͷǡ�ସ ൌ ͳͺ͹ͷǡ 

��ହ ൌ ͷͲͲ
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ʹ-ͳ͹ Multiple-item EOQ model 

In this section, EOQ model is extended to simultaneous purchase of 
several items.  Here  we  either have a constraint such as the having a 
case where the number of orders for all items must be the same or we 
may not have any constraint or precondition. 

2-17-1 Unconstrianed multiple-item EOQ model 

In a multiple �item EOQ model in which there is no constrain or 
preconditions,  and the items could be dealt separately e.g. our n 
products  could be bought from n suppliers, the optimal order quantity 
for each item is derived as follows: 

௜ܥܶ ൌ ை௜ܥ
௜ܦ
ܳ௜ ൅ ௛௜ܥ

ܳ௜
ʹ ൅ ௜ܲܦ௜ 

ܥܶ ൌ෍ܶܥ௜ ൌ෍൬ܥை௜
௜ܦ
ܳ௜ ൅ ௛௜ܥ

ܳ௜
ʹ ൅ ௜ܲܦ௜൰

௡

௜ୀଵ

௡

௜ୀଵ
 

ܥ߲ܶ
߲ܳ௜ ൌ Ͳ����� ฺ��ܳ௜כ ൌ ඨʹܦ௜ܥை௜ܥ௛௜
Substituting  ܳ௜כ in TC yields:

כܥܶ ൌ෍ටʹܦ௜ܥை௜ܥ௛௜ ൅
௡

௜ୀଵ
෍ ௜ܲܦ௜
௡

௜ୀଵ
�������������ሺʹ െ ͺͳሻ 

2-17-2 Multiple-item EOQ model- annual number of 
orders the same for all 

Here every time we place an order, we would like to order n 
products; therefore the annual number of orders for all products is the 
same and equals: 
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݉ ൌ ஽భ
ொభ ൌ ڮ ൌ ஽೙

ொ೙

or equivalently the cycle time(T) is the same for all: 

ܶ ൌ ொభ
஽భ ൌ ڮ ൌ ொ೙

஽೙.

In this regard two cases will be dealt with below; in one case one 
single order cost is paid to place an order of several items.  In the 
other case each item has its own order cost.   

ʹ-ͳ͹-ʹ-ͳ    Multiple-item EOQ  Model  : order cost independent of 
number  and quantity of items  

In this case we pay the  order cost CO to purchase n items.  CO is 
independent of  the   Qj's and n.  The number of orders and the cycle 
time is the same  for all items.  The stockout is assumed not to happen. 
With the symbols: 

௛௝ܥ �The annual holding cost of product j

CO   Order cost ���� 
Dj    Annual demand of product # j����� 
ܳ௝   Order quantity of product # j� 
ܶ ൌ ொೕ

஽ೕǡ the cycle time of all items. 

We could write the total cost as follows: 

ܥܶ ൌ ஼ೀ
் ൅σ ௛௝ܥ ቀ

஽ೕ்
ଶ ቁ௡௝ୀଵ ൅σ ௝ܲܦ௝௡௝ୀଵ �����ሺʹ െ81) 

ܶ�݀ܥܶ݀����� ൌ Ͳ ฺ 

כܶ ൌ ඨ ைܥʹ
σܥ௛௝ܦ௝

������������������������������ሺʹ െ ͺʹሻ 

ܳ௝כ ൌ ௝ܦכܶ ൌ ௝ܦ
כ݉ �������������������������ሺʹ െ ͺ͵ሻ 



Chapter 2  Deterministic  Models � ������������������� 118 

 

It is assumed that the number of orders are the same and 
independent of  items.   

Example 2-20 

Given the annual demand, unit price and annual holding cost of 
each unit for 5 items in the following table, if we want to have the 
same number of orders for the all items and the order cost is 
independent of the items and equals $40.5, find the optimal order 
quantity for each item. 

Item #(j) ͳ ʹ ͵ Ͷ ͷ 
annual �୨ ͷͲͲͲ ͳͲͲͲͲ ͹ͲͲͲ ͳͷͲͲͲ ͶͲͲͲ 

Pj ͸ ͷ ͵ Ͷ ͸ 
�������୦୨ ͳ.͸ ͳ.Ͷ Ͳ.͸ ͳ.ͳͷ ͳ.͸ͷ 

Solution 

כܶ ൌ ට ଶ஼ೀ
σ஼೓ೕ஽ೕ

ൌ ට ଶൈସ଴Ǥହ
ହ଴଴଴ൈଵǤ଺ାڮାସ଴଴଴ൈଵǤ଺ହ ൌ ͲǤͲͶͲʹyear 

כ݉ ൌ ଵ
כ் ؆ ʹͶǡܳଵכ ൌ ହ଴଴଴

ଶସ ǡ���������ܳଶכ ൌ
ଵ଴଴଴଴
ଶସ ǡ        �      ܳହכ=ସ଴଴଴ଶସ Ǥ 

End of example

Example 2-21 

Two products A&B are ordered simultaneously. The annual 
demand for the products are respectively 500 &1500.  If the annual 
holding cost for each unit is $10  and cost of joint order of these two is 
$100, find the optimal order quantities. 

Solution 
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כܶ ൌ ඨ ைܥʹ
ଵܦ௛ଵܥ ൅ ଶܦ௛ଶܥ

ൌ ͲǤͳ�µZ� ��������������ሳልልልሰ�݉כ ൌ ͳͲ

ܳଵכ ൌ ஽భ
௠כ ൌ ହ଴଴

ଵ଴ ൌ ͷͲǡ����ܳଶכ ൌ ஽మ
௠כ ൌ ଵହ଴଴

ଵ଴ ൌ ͳͷͲ
ʹ-ͳ͹-ʹ-ͳ Multiple-item EOQ  Model : separate order cost for items 

In this case several items are purchased simultaneously with its 
own order cost.  The number of orders and the cycle time are the same 
for all items: 

݉ ൌ ଵܦ
ܳଵ ൌ

ଶܦ
ܳଶ ൌ ڮ ����ฺ ��ܶ ൌ ܳଵ

ଵܦ ൌ
ܳଶ
ଶܦ ൌ  ڮ

Substituting these relationships into 

௝ܥܶ ൌ ை௝ܥ
஽ೕ
ொೕ ൅ ௛௜ܥ

ொ೔
ଶ ൅ ௝ܲܦ௝�yields: 

௝ܥܶ ൌ ை௝ܥ ቀଵ்ቁ ൅ ௛௝ܥ
஽ೕ்
ଶ ൅ ௝ܲܦ௝  ������݆ ൌ ͳǡʹǡ͵ǡ ǥ 

Since ܶܥ ൌ σ :௝ Thenܥܶ

ܥܶ ൌ σ ை௝ሺଵ்ሻ௡௝ୀଵܥ ൅ σ ௝ܦ௛௝ܥ ்ଶ௡௝ୀଵ ൅ σ ௝ܲܦ௝௡௝ୀଵ  (2-84) 

כܶ ൌ ඨଶσ஼ೀೕ
σ஼೓ೕ஽ೕ

�����������������������������������������������(2-85) 

ܳ௝כ ൌ  (2-86)����������������������������������������������������כ௝ܶܦ

ʹ-ͳͺ�Deterministic continuous & periodic review Models 

In deterministic models sometimes we encounter deterministic FOS 
and FOI models. They are briefly introduced below.  

2-18-1 Deterministic continuous review=deterministic 
(r,Q)�Model= Deterministic (�FOS)Model 
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 This model deals with a system where the stock level of the 
product is calculated each time a product  moves in or moves out 
the system. The demand rate for the product  is fixed and 
deterministic; whenever the inventory reaches fixed level r an order of 
fixed quantity  Q is placed. Note that some real world inventory 
systems, such as the one shown in Fig. 2.22 where the demand is not 
fixed, could be approximated with this deterministic continuous 
review model. 

  

Fig. 2-22 Approximation of  a real model with (r,Q ) model 

The total variable cost in this system equals: 

ܥܸܶ ൌ ௢ܥ ஽ொ ൅ ௛ܥ
ொ
ଶ                               ;Ϯ-ϴϳͿ 

2-18-2 Deterministic periodic review=deterministic (R,T)�
Model= Deterministic (�FOI)Model 

The periodic review model is one of the inventory policies 
that reviews physical inventory at specific interval of time T and 
places an order with the quantity  equal to the difference between the 
maximum level of inventory( R) and the current level of inventory(A) 
i.e.  
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ܳ ൌ ൜ܴ െ ܣ��������������ܣ ൏ ܴ�����������������
Ͳ�������������������� ���������

ܣ�� ൒ ܴ������� ��������
�(Ϯ-ϴϴ) 

TVC in this model equals: 

ܥܸܶ ൌ ஼೚
் ൅

஼೓஽்
ଶ Ǥ                                  ;Ϯ-ϴϵͿ 

It worth mentioning that, classic EOQ and EPQ models are both FOS 
and FOI. 

ʹ-ͳͻ�Inventory Models for  Deteriorating  Items 

In the models discussed so far, the products were assumed  to have 
long life and does not deteriorate or the deterioration rate is negligible. 
The items that incur a gradual loss in quality or quantity over time 
while in inventory are usually called deteriorating items. 

There are many references which deal with deteriorating items. 
One could refer to references such  as Bakkar(2012), Goyal &Giri 
(2001), Hung(2011) to study these kind of inventory models. 

Exercises 

1-(Tersine,1994 page 141)A company needs 54000 ball bearing sets each 
year.  Each set costs the company  $40.  Annual holding cost per unit 
set is $9 and each order costs$20. Find 

a) The optimal order quantity,
b) Annual number of orders,
c) the reorder point , if the lead time is 1 month.

     2-(Tersine,1994 page 141)A firm needs 38000 units of a product whose 
unit price is $4.  Each order costs $9.  The annual carrying cost is 25% 
of of the unit price.  There are 52 working week in a year.   
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a) What is the optimal order quantity for this product?
b) How much is the annual total cost of ordering the

economic quantity?
c) The maximum number of inventory in the warehouse?
d) What is the average number of inventory
e) What is the interval between 2 successive orders in weeks.

3- A company buys and sells 5 items and the  at the time being the 
places a 5-item  order at the end of each month.  The order quantity 

for each item is one twelfths (
ଵ
ଵଶ) of the corresponding annual demand. 

The company intends to shift from the current FOI system to FOS 
system.  The ordering cost per each item is $10.  The annual carrying 
cost of $1 is $0.2(I=20%).  Using the table below, calculate the total 
cost for the  FOI and FOS systems.  Is shifting to the FOS system 
economic? 

Item 
(i) 

Annual 
demand 
���୧

Unit price�
�(�୧ 

Annual 
order cost 

Average cost of holding 
inventory in�FOI 
��� ଵଶ ܫ ൈ ௜݌ ൈ

஽೔
ଵଶͳ ͸ͲͲ ͵ ͳʹൈͳͲ ͲǤʹൈ ͹ͷ 

ʹ ͻͲͲ ͳͲ ͳʹͲ ͲǤʹൈ͵͹ͷ ͵ ʹͶͲͲ ͷ ͳʹͲ ͲǤʹൈͷͲͲ 
Ͷ ͳʹͲͲͲ ͷ ͳʹͲ ͲǤʹൈʹͷͲͲ 
ͷ ͳͺͲͲͲ ͳ ͳʹͲ ͲǤʹൈ͹ͷͲ sum   ͸ͲͲ ͲǤʹൈͶʹͲͲ 

The solution is in  Tersine(1994) page 277. 

4-(Tersine,1994 page 142) If a firm overestimates its annual demand 
by 50%, calculate  the ratio of the total variable cost  in overestimate 
case to the total variable cost when the demand is not overestimated. 

5-(Tersine,1994 page 142)The annual demand for an item is 6000 
units, the unit price is $15, each order costs $25, annual holding cost 
per unit=$3, lead time is 3 weeks and there are 50 working weeks in a 
year.  Suppose the customers agree to backordering.  Each unit 
backordered costs $2 /yr. 

What is the 
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a) size of economic order quantity?
b) maximum inventory level in the optimal case?
c) reorder point?
d) number of backordered units during each order cycle?

6-(Tersine,1994 page 143)An electronics  company uses 20000 
particle beams each year.  The supplier of the beams offers them at the 
following prices 

Quantity Unit Price($) 
1-799 11 
800-1199 10 
1200-1599 9 

൒ ͳ͸ͲͲ 8 

the cost of an order is $50.00, and the holding cost is 20% of the unit 
value per year. Find 

 a)The optimal order size that minimizes for an all-unit- discount model. 

b) The optimal order size in an incremental discount model.

 7-If we buy a product from out of the company it costs $5 per unit 
and the ordering cost is $1 and if we manufacture it in the company it 
costs $4 per unit and the setup cost is $10.  The production rate in the 
company is 5000 /yr.  The annual holding cost of each unit is 10% of 
its price. If monthly demand is 100 units, what policy do you suggest: 

Buy or manufacture why?  What is the reorder point and the optimal 
quantity per order in your suggested policy?  

Ans: TC in buy policy is $6034 and in make policy is $4852. 

 7-If �୦ ൌ ͳ, which of the following choices are correct? 

        a)Qw and ��୛ both have the same quantity regardless of their 
dimension. 
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b) the quantity of ��୛�is half of that of ��୛�Ǥ
c) the quantity of ��୛�is half of that of ��୛�Ǥ

 9-Which  phrase is not correct for completing the phrase 

 "In classic EOQ model it is assumed that" 
a) the unit shortage cost is largish
b) The products is not deteriorating
c) the demand rate probabilistic
d) There is no constraint on, space, capital and the number

order runs
 Ans: choice ( c) 

11-Suppose the annual holding cost in classic EOQ model is estimated as 
much �୦ᇱ ,while the actual value is Ch.  With this assumption, Compute the 
the ratio of total variable cost in terms of �୦ᇱ  to the optimal total variable cost 
(in terms of Ch). 

12-The annual holding cost of $1 is $0.05, the unit price is $100 and the 
product is supplied in 100-unit boxes, find the optimal order 
quantity(ans:200). What would be the answer if there were no constraint on 
order quantity. 

13-The order quantity has to satisfy Q=ϭϬϬk, where k is an integer i.e. 
k=1,2,3,�if the annual demand is 2400 kilo gram, the annual holding cost 
per unit product is $5 and the ordering cost is ܥ௢ ൌ ̈́ʹʹ, find the optimal 
value for  k. 

Hint:�ܳௐ ൌ ͳͶͷ is not a multiple of 100; use the following relationship: 

כሺܳכܳ െ ݊ሻ ൑ ܳ௪ଶ ൑ כሺܳכܳ ൅ ݊ሻǤ 
14- (Tersine,1994, page143) 

     The demand in a  firm is annually 3000 units.  The ordering cost is a 
fixed cost of $250 and holding costs are computed at 25% of unit value per 
year. Source A will sell the component for $10 regardless of the order size. 
Source B will only accept orders of at Ieast 600 units at a unit price of $9,50. 
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Source C will charge $9.00 per item but requires a minimum order of 800 
units, (a) What Quantity should be purchased and from which source? (b) 
What are the cost savings in comparison with the other two sources? 

15-(Tersine,1994, page143 Pr#13)The Supplier for the firm in Problem 2 is 
offering a special discount and temporarily reducing the unit price of the 
product by $2. 

       a)What lot size should the firm order to take the advantage of the 
discount? 

 b)What cost saving would result from this order? 

16-The supplier in Problem 2 has decided to increase the unit price of its 
component from $4.00 to $4.2 tomorrow.  If the reorder point is 1500 units 
and the current stock position is 2200 units, 

a) What lot size Should be ordered today
b) What cost savings will be sacrificed if no special order is

placed prior to the price increase?
c) If the current stock position were 1500 instead of 200, what lot

size should be ordered today?

17- (Tersine,1994, page144)A tire manufacturing plans to produce 40000 units 
of a special type of tire next year.  The production  rate is 200  tires per day, 
and there are 250 working days available.  The set up cost is $200 per run, 
and the unit production cost is $15. If holding costs are $11.50 per 
unit per year,  

a) what is the economic production quantity?
b) how many production runs should be made each year?
c) If the production lead time is 5 days, what is the reorder point?

18- The current order quantity in a firm is 1000 units. Suppose 
customers agree to backordering.  If the annual holding costs per unit 
is $6 and each unit backordered costs $3/yr. 

19- (Tersine,1994, page144) A firm produces five products in a work center. 
The available information is shown in the table: 
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ሺ�୭ሻ୧ ������ 
ሺ�୦ሻ୧  

daily production 
date 

�୧ annual 
demand i 

ͺͲ ʹ. ͳ ͵ͲͲ ͸ ͸ͲͲͲ ͳ 
ͶͲ ͳǤͶ ͷͲͲ Ͷ ʹͲͲͲͲ ʹ 
ͳͲͲ ͳǤͺ ͳ͸Ͳ ͸ ͺͲͲͲ ͵ 
ͷͲ ͲǤͷ ʹͲͲ ʹ ͺͲͲͲ Ͷ 
ͷͲ ͳǤͷ ʹͲͲ Ͷ ͳͷͲͲͲ ͷ 

If there are 250 working days available: 
a) What is the best production cycle?

b) What is the optimum production run size for each product?
c) What is the annual demand time?

20-(Tersine,1994, page146)  A firm orders  eight items from the same vendor, 
as shown in the table. The ordering costs are $10 per purchase order and 
$0.25 per item.  Carrying costs are 15% per year. 

a) What is the economic order interval?
b) If the lead time is one month, what is the maximum inventory

level  for each item?

\ 

Order 
Cost 
�Co�

Unit 
Cost 
�pi�

Annual 
Demand 
(Di) 

item 
(i) 

�ͳ͹ͷ ͳ ͳ͹ͷ ͳ 
ʹʹͷ ͲǤ͸ Ͷʹͷ ʹ 
ʹͶͳ ʹǤͳ ͳͳͷ ͵ 
ʹ͹Ͳ ͵ ͻͲ Ͷ 
͸Ͳ͹ ͲǤ͹ͷ ͺͳͲ ͷ 
ʹͺͲ Ͷ ͹Ͳ ͸ 
ͻͷͲ ͷ ͳͻͲ ͹ 
ͶʹͲ ʹ ʹͳͲ ͺ 
͵ͳͻͻ sum 

21-What is the effect of the error in Ch on TVC and also the effect of error in 
all parameters related to TVC on it? 
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22- In Classic EOQ, let     
ொ
ொೢ ൌ ߙ�	ߚ ൌ �� ்௏஼ሺொሻ்஼ೢ �� Show     2 1 .  

23- What happens in backordered EOQ model if Ɏ� ൐ ��୛�&Ɏෝ ് Ͳǫ� 
24-(Tersine,1994, page142) Jane wants to determine the optimum amount of 
money to withdraw from an automatic teller machine (ATM) per transaction. 
The bank charges $.30 per ATM withdrawal transaction and a flat service 
charge of $5.00 per month. Jane spends an average of $10.00 per day. She 
figures there is a 10% chance that she will lose her wallet or be robbed in 
any given year. The bank pays 6% per year on checking account balances.  

    a) What is her optimal withdrawal amount per transaction? 

   b) How might the amount of Jane's withdrawals be altered if she moved to 
a high crime area? 

Solution 

On Sat, 6/23/18, Tersine, Richard J. wrote: 
Subject: Re: THe solution of a problem 
 To: "Hamid Bazargan"  
 Date: Saturday, June 23, 2018, 10:54 AM 
Hamid, 
The problem solution is as follows: 
(a) the unit price is $1.00; ordering cost is $.30/transaction; annual demand is 365(10)= 

3650; the annual 
holding cost fraction is the opportunity cost fraction plus the probability of loss or .16 

(.06+.10); the fixed  
service charge of $5.00 is irrelevant in lot size determination. 
optimum Q = sq. root {2(.30)3650/1(.16)} = $117.00 
(b) If Jane moves to a high crime area, she may need to increase her holding cost fraction.  

This would 
effectively lower the optimal withdrawal amount per transaction. 
Since the text materials were completed about 25 years ago, understandably they are no 

longer available.  
Best wishes, 
Richard J. Tersine 

 
From: HamidBazargan<bazarganh@yahoo.com> 

Sent: Friday,June22,2018 9:49AM 
To: Tersine,RichardJ.;Tersine,MicheleG. 
Subject: The solution of a problem 

DearProfessor 
I hope this email shall find you in the best of health and spirits. 
I teach Inventory control to BS students; my mail reference is: 
Prof.Tersine,RichardJ.1994 
          Principles of Inventory and Materials Management - 
          Prentice Hall 

mailto:HamidBazargan<bazarganh@yahoo.com>
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Could please tell me where I can find the solution of the following problem of the book: 
Page142 of 4th edition1994. 

You can never satisfy people by 
your property. So, you can attract 
their satisfaction by your behavior 
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͵-ͳ�����������������������������������������-
Kuhn-Tacker conditions 

Lagrange multiplies technique is used for finding the extrima of a 
nonlinear optimization problem with equality constrains. Karush-
Kuhn-Tacker conditions generalize the Lagrange method. Below some 
cases of the  nonlinear problems are distinguished and the above 
techniques are described briefly.  Before discussing the cases and the 
methods,  note the following definition. 

Definition of Lagrange's function 

     In constrained optimization if you multiply the function of each 
constraint by a multiplier and add the product to the objective 
function, you obtain a new function which is called Lagrange function 
or Lagrangian.  

Chapter ͵ 

Constrained Inventory Control  Problems 

Aims of the chapter 

This chapter deal with the problems of inventory control  in 
which some constraints on budgets, cycle time, ware house space, 
number of replenishments, the holding costs, etc�  are 
considered.  The chapter briefly describes the Lagrange multiplies 
technique and Karush-Kuhn-Tacker conditions , widely used in 
solving nonlinear programming problems which arises in various 
fields including constrained inventory control. 
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3-1-1   Nonlinear optimization problems with equality 
constraints 

Consider a constrained optimization problem, where the constraints 
are in equality form and their functions are continuous and 
differentiable. Equality constraints restrict the feasible region to points 
lying on some surface inside R. To solve this equality-constrained 
problem, Lagrange suggest to assign a variable(known as  Lagrange 
multiplier) to each constraint.   Then write the Lagrangian function.  
Deriving the gradient of the Lagrangian  and setting it to zero and 
solving the simultaneous equations usually gives the answer of the 
equality-constrained   problem.  A mathematical description  of is 
provided  below. 

Consider the following minimization problem, and assign a 
Lagragrange multiplier to each constraint: 
݉݅݊��ܼ ൌ ݂ሺݔଵǡ ǥ ǡ  ௡ሻݔ

s.t. 
݄ଵሺݔଵǥݔ௡ሻ ܾଵ������ ଵǣLagraqnge Multiplier 

݄ଶሺݔଵǥݔ௡ሻ ൌ ܾଶ����������� ଶǣ  ڭ  ڭ ��������������������
݄௠ሺݔଵǥݔ௡ሻ  ܾ௠������� ௠ǣ Lagraqnge Multiplier   

The Lagrangian is as follows: 
ܮ ൌ ݂ሺݔଵڮ ௡ሻݔ ൅  ଵሾ݄ଵሺݔଵڮ ௡ሻݔ െ ܾଵሿ ൅ڮ൅  ௠ሾ݄௠ሺݔଵڮ ௡ሻݔ െ ܾ௠ሿ 

Set  the gradient of L (partial derivates of L with respect to  �୨ᇱݏ�and 
ɉ୧Ԣ�ሻ equal to zero: 

ەۖ
۔

ۓۖ
��

ܮ߲
௝ݔ߲ ൌ Ͳ���������������������������݆ ൌ ͳǡǥ ǡ ݊
ܮ߲
߲ ௜

ൌ ݄௜ െ ܾ௜ ൌ Ͳ������݅ ൌ ͳǡǥ ǡ�� 

The feasible points where the partial derivatives of  L are 
simultaneously zero  are the optimal point of function L, and usually 
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provide the solution for the above equality-constrained 
problem(Winston,1994 page 684).  

In fact the above simultaneous equations which could written as 
follows: 

( ) ( ) 0 (3-1)

( ) 0 1,..., (3-2)
i

X X

m
f x h xi i

b h x i mi i





    

   

1

are the necessary conditions for optimality and under proper 
convexity assumptions they are also sufficient.  In Eq. (3-1) 

X
f

denotes the gradient of  function f i.e. partial derivatives of f with 
respect to variables �୨ Ԣݏ.

In the above problem, if all functions are differentiable and 
continuous, f is convex, hi's are convex[e.g. linear] then the solution to 
Eq. (3-1) & (3-2) is always the solution to the above optimization 
problem(extracted from Winston, 1994 page 685).  Therefore for 
solving such a problem, set the derivatives of the lagrangian with 
respect to xj �� ϭ  ௜ equal to zero; then find the solution to theߣ
simultaneous equations.  If The answers to  ߣ௜Ԣݏ are specific numbers, 
then the answers to �୨Ԣ� constitute the optimal solution of the 
optimization problem under consideration.  

It is worth knowing that Eq.(3-1)&(3-2) are some times called 
 Karush-Kuhn-Tucker{KKT) conditions for the aforementioned 
equality-constrained problem. 

Example 3-1 
Write the Lagrangian and KKT conditions for the following 

problem: 
ܼ���݊݅ܯ ൌ ଵݔʹ ൅ ଶଶݔʹ

s.t. 
�������������Ͷݔଵ െ ଶݔ ൌ ͸ 
ଵǡݔ�������������� ��������������ଶݔ�����������
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Solution 
The Lagrangian is 
L=ʹݔଵ ൅ ଶଶݔʹ ൅ ଵݔሺͶߣ െ ଵݔ െ ͸ሻ
KKT conditions : 

1

( ) ( ) 0

( ) 0 1,...,
i

X X X

m
L x f h xi i

b h x i mi i





      

   

ቊ ቀ
ଶାସ஛
ସ୶మି஛ቁ ൌ Ͳ

Ͷ�ଵ െ �ଶ ൌ ͸
� ฺ �ଵ ൌ ͳǤͶ͸ͺͺ��ǡ �ଶ ൌ െͲǤͳʹͷ�ǡ ɉ�� ൌ െͲǤͷ, 

�ଵ ൌ ͳǤͶ͸ͺͺ��ǡ �ଶ ൌ െͲǤͳʹͷ   could be the optimal point .  Since 
all functions of the problem are continuous and differentiable; 
furthermore f is convex and the function in the constraint is linear , 
therefore 
�ଵ ൌ ͳǤͶ͸ͺͺ��ǡ �ଶ ൌ െͲǤͳʹͷ   is the optimal solution to the  problem. 

Solution with Lingo Software: 
min=2*x1+2*(x2)^2; 
4*x1-x2=6; 
@free(x1);@free(x2); 
end
Local optimal solution found at iteration:   11 
  Objective value: 2.968750 

Variable  Value Reduced Cost 
X1 1.468750            0.000000  
X2 -0.125000           0.000000  

E˳nd of  example

3-1-2   optimization of nonlinear problems with in-equality 
constraints 

In minimization problems with constraints of type inequality, 
assign a variable known as Lagrange multiplier to each constraint and 
write the Lagrangian function and the KKT conditions  as will be 
shown.  If the answer to the KKT conditions is a feasible solution for 
the problem,  it might also be an optimal solution to the problem. To 
illustrate this case consider a  problem with following form: 

ܼ݉݅݊ ൌ ݂ሺݔଵǡ ǥ ǡ  ௡ሻݔ
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s.t.  
݃ଵሺݔଵǥݔ௡ሻ  ܾԢଵߠ�������������������������ଵǣݎ݈݁݅݌݅ݐ݈ݑܯ��݁݃݊ܽݎ݃ܽܮ 
݃ଶሺݔଵǥݔ௡ሻ  ܾԢଶߠ������������������������ଶǣ  ݎ݈݁݅݌݅ݐ݈ݑܯ��݁݃݊ܽݎ݃ܽܮ
                   ڭ ڭ
݃௠ሺݔଵǥݔ௡ሻ  ܾԢ௠ߠ���������������௠ǣ   ݎ݈݁݅݌݅ݐ݈ݑܯ��݁݃݊ܽݎ݃ܽܮ            
Suppose   all the functions are continuous and differentiable; the 

constraints are of the type  ݃௜  ܾԢ௜ any other form has to be converted 
to this form even though the right had side becomes negative.  

The Lgrangian is as follows: 

ܮ ൌ ݂ሺݔଵڮ ௡ሻݔ ൅ ଵሾߠ ଵ݃ሺݔଵڮ ௡ሻെܾԢଵሿݔ ൅ڮ൅ ڮଵݔ௠ሾ݃௠ሺߠ ௡ሻݔ െ ܾԢ௠ሿ 
The optimal solution of L satisfies the following conditions known 

as the Karush-Kuhn-Tucker{KKT) conditions: 

'

.... ,..,

(3 - 3)

... ,..,

[ ( ,..., )] , .., (3-4)

,.., (3-5)

X
j

m
m

j j j

i i i n

i

L
L or f g g or j n

x

o˶r

g gf
j n

x x x

b g x x i m

i m

 

 




           



         
   
  


1 1 2 2

1
1

1

0 0 0 1

0 1

0 1
0 1

 

In many cases1 any point (xͳ*�xn*,èͳ*,�,èn*)which satisfies the 
above conditions as well as the constraints, is the optimal solution to 
the aforementioned optimization problem. Note that since 

݃௜ሺݔଵǥݔ௡ሻ  ܾԢ௜ is equivalent to ݃௜ሺݔଵǥݔ௡ሻ൅ ௜ܵ ൌ ܾԢ௜ ǡ ௜ܵ ൒ Ͳ�; then  
'

1[ ( ,..., )] 0i i i nb g x x   and 0i iS  are equivalent. 

                                                           

1 Winston(1994) page 684 
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3-1-3   Nonlinear optimization problems with equality and 
in-equality constraints 

When a nonlinear optimization problem has inequality constraints 

of type   and equality constraints:
݉݅݊���ܼ ൌ ݂ሺݔଵǡ ǥ ǡ  ௡ሻݔ

s.t. 
݃௜ሺݔଵǥݔ௡ሻ  ܾԢ௜ �����������݅ ൌ ͳǡǥ ǡߠ���������������௜ �� ׷  �ݎ݈݁݅݌݅ݐ݈ݑܯ��݁݃݊ܽݎ݃ܽܮ�
௝݄ሺݔଵǥݔ௡ሻ ௝ܾ ��������������݆ ൌ ͳǡǥ ǡ����������� ௝ �� ׷ ݎ݈݁݅݌݅ݐ݈ݑܯ��݁݃݊ܽݎ݃ܽܮ

The Lgrangian  : 

ܮ ൌ ݂ሺݔଵڮ ௡ሻݔ ൅ ڮଵݔଵሾ݃ଵሺߠ ௡ሻݔ െ ܾଵᇱ ሿ ൅ڮ൅  ଵሾ݄ଵሺݔଵڮ ௡ሻݔ െ ܾଵሿ ൅ǥ Ǥ

If all the functions are continuous and differentiable, the necessary 
optimality conditions, according to Karush, Kahn and Tacker would 
be (Bazaraa,et al 2006 page205): 

൞
( ) ( ) è g ( ) .... ( ) ë h ( ) .... 0 (3-6)2 2 2 2f x g x x h x x            1 1 1 1

௜ሾܾ௜ᇱߠ െ ݃௜ሺݔሻሿ ൌ Ͳ�����������������݅ ൌ ͳǡǥ �݉������������������������������������ሺ͵ െ ͹ሻ
௜ߠ  Ͳ���������������������������������������������������������������������������������������������������ሺ͵ െ ͺሻ

�

If a point wants to be optimal for the above-mentioned nonlinear 
optimization problem, it has to satisfy the KKT conditions as well the 
constraints (whether equality or non-equality). 

In a problem is of the above form(minimization  with both equality 
and non-equality (൑)constraints), the optimal values obtained  for the 
Lagrange multipliers of equality constraint could be negative, zero or 
positive numbers; however for  the constraint of ൑ type, the 
corresponding Lagrange multipliers must be non-negative. In other 
words if the optimal value is negative the KKT conditions are not 
satisfied.  For more details on KKT conditions refer nonlinear 
programming text books. 

Example 3-2 

 Solve the following problem: 
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1 1 2 2 1 2 3

1 2 3 1 1 2 3 1 2 3

3 2 3

min ( ) ( 30) (2 50) 3 5 10

. .

( , , ) 0

17.25 17.25 0

f x x x x x x x

s t

x x x or g x x x x x x

x or g x

      

     

   

x

Solution 
With Lingo: 

model: 
min=x1*(x1-30)+x2*(2*x2-50)+3*x1+5*x2+10*x3; 
x1+x2<=x3; 
x3<=17.25; 
x1>=0; 
x2>=0; 
x3>=0; 
end 

Solve Menu� 
       Rows= 6           Vars=3                   No. integer vars=0 

 Nonlinear rows=      1 Nonlinear vars=      2 Nonlinear constraints=      0 
 Nonzeros=     11 Constraint nonz=     7 Density=0.458 
Optimal solution found at step:  6 
 Objective value:  -225.3750 

 Variable           Value        Reduced Cost 
 X1  8.500000  0.0000000 
 X2  8.750000  0.0000000 
 X3     17.25000  0.0000000 

The second way to solve the problem is to write the KKT 
conditions: 

Let 1,...,  nx xx = ;The KKT conditions are: 

൞
1 1 2 2( ) ( ) ( ) 0f u g u g     x x x �������

௜ሾܾ௜ᇱݑ െ ݃௜ሺܠሻሿ ൌ Ͳ���������������������������݅ ൌ ͳǡʹ
௜ݑ  Ͳ�������������������������������������������������������������

� 

Or 
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1 2

1

2 1 2

1 1 2 3

2 3

1

2

2 30 3 1 0

4 50 5 1 0 0

10 1 1

( ) 0

(17 / 25 ) 0

0

0

g gf

x

x u u

u x x x

u x

u

u

 
      

                         
      
 
 





 

or 

1 1

2 1

1 2

1 1 2 3

2 3

1

2

2 30 3 0

4 50 5 0

10 0

( ) 0

(17.25 ) 0

0

0

x u

x u

u u

u x x x

u x

u

u

   
    
   


   
  
 
 

 

To try to solve the above simultaneous equations, notice that 1u is 

either 0 or 1 and therefore ʹ௠ possible cases are identified for ( 1u ,

..., mu ) where m is the number of constraints; in this case m=2 and the 

four possible cases are: 1 2( 0, 0),u u  1 2( 0, 0)u u  ˬ 1 2( 0, 0)u u  �
and 1 2( 0, 0)u u  . 

Now let consider start with case  1 2( 0, 0)u u   

I) 1 20 0 .(3) 10 0 0 0u u Eq        impossible 

1 2 2 2) 0 0 (3) 10 0 0 10II u u u u         unacceptable 
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1 2

1 1

1

2

3

) 0 0

(3) 10 0 10

(1) 8.5

(2) 8.75

(4) 10( 8.5 8.75 1.3) 0 17.25

III u u

u u

x

x

x

 

    

 

 

      
This point satisfies the constraints. Therefore 

(8.5, 8.75, 17.25)x  is a feasible point with acceptable Lagrange 
multipliers .  Therefore is a KKT point. 
There is no need to investigate the case

1 2( 0 0)u u  , because we 

have come up with the solution to the problem. 

3-1-4 Nonlinear optimization problems inequality 
constraints and nonnegative ܒ࢞Ԣܛ 

The Karush-kahn Tacker conditions for the case where we have 
non-negative variables as well as inequality constraints are given in 
references such as Wiston(1994) page 694.  Needless to say if one 
finds the KKT point of the problem, ignoring the nonnegativity, and 
the point is nonnegative, the point is a KKT point for the problem 
having non-negative variables. 

3-1-5 Interpretation of Lagrange multiplies 

.   In the subject of inventory control, positive Lagrange multiplier 
could be interpreted as shadow price of the  resources(invested capital, 
warehouse space, number of orders, etc). In minimization problems, 
the shadow price is the amount of reduction in the objective function, 
 when the right-hand side value of the corresponding constraint 
increases by one unit. Of course If the objective function is TVC,this 
is valid until the TVC reaches TCW 
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͵-ʹ�Constraint in inventory systems 

 In this section, We have several products and there are some  constraints  on 
the budget, warehouse space, number of orders or machine setups, maximum 
inventory and the cycle time, etc. 

ܼ݉݅݊ ൌ ݂ሺܳሻ 
Ǥݏ  �Ǥݐ
�݃ଵሺܳሻ ൑ Ͳ
� 

݃௠ሺܳሻ ൑ Ͳ
ܳ ൌ ሺܳଵǡ �ଶǡ ǥ ሻ ൒ Ͳ� 
A solution method 

A method for solving these kind of problem is as follows: 
Solve the problem as if is there is no constraint. If the calculated Qjw's�
satisfy the constraints, you have come up with the Solution to the 
constrained problem; otherwise the constraint which is not satisfied is 
called active and KKT conditions is used for finding the solution to 
the problem. 

The Lagrangian function (i.e. the objective function  together with 
the constraint's function times the Lagrange multiplier)  is as follows: 

���� ൌ �ሺܳଵǥܳ௡ሻ ൅෍ߠ௜ � ௜݃ሺ ଵܳǥܳ௡ሻ
୫

୧ୀଵ
The point(s)that minimize L,satisfy the following conditions kown 

as KKT conditions: 

ە
۔
ۓ 0Q L  ௜ሾ݃௜ሿߠ��������������������������������������������������� ൌ Ͳ��݅ ൌ ͳǡǥ ǡ��������������������������

�����������������
௜ߠ� ൒ Ͳ����������������������������������������������������

��� 
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Note that in writing L, the non-negativity of the variables (�୨ ൒ Ͳ) 
was not included, instead the �୨'s obtained from the KKT conditions 
have to be checked for their non negativity and feasibility and the 
obtained  Ʌ୧'s have to be nonnegative (Ʌ୧ ൒ Ͳሻ. A few cases will 
follow to illustrate solving constrained inventory problems.  

3-2-1 Constraint on the space or surface of the warehouse 

Suppose we have n products.  The order quantity of Product�� j is 
Qj and 

each unit of the product occupy fj of the space or the surface area of 
our warehouse. If the maximum available space or surface area is F, 
then σ ௝݂ܳ௝ ൑ ௡௝ୀଵܨ Ǥ�  We want to determine the order quantity Qj in 
such a way that total cost is minimized and the constraint is satisfied. 

௝ܳ௝ܦ௝݋ܥ෍ቆ݊݅ܯ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
 

Ǥݏ Ǥݐ σ ௝݂ܳ௝ െ ܨ ൑ Ͳ௡௝ୀଵ  ,      ܳ௝ ൒ Ͳ
If the order quantities calculated from Wilson formula (Qjw's) 

satisfy the constraint, they are the optimal solution to the constrained 
problem; otherwise , using, the Lagrange multipliers technique, 
Lagrangian function is formed: 

ܮ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
൅ Ʌሺ෍ ௝݂ܳ௝ െ ሻܨ

௡

௝ୀଵ
 

where Ʌ ൒ Ͳ is the multiplier assigned to the constraint. 

ܳ௝ᇱݏ , as well as feasibility, must satisfy the following KKT 
conditions: 
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ە
ۖۖ
۔
ۖۖ
ۓ ܮ߲
߲ܳ௝ ൌ Ͳ���������� ����������������ሳልልልሰܳ௝כ ൌ ඨ ௝ܦ௝݋ܥʹ

ܥ ௝݄ ൅ ߠʹ ௝݂
�������݆ ൌ ͳǡǥ ǡ ݊

Ʌሺܨ െ෍ ௝݂ܳ௝ሻ
௡

௝ୀଵ
�ൌ Ͳ�������݆ ൌ ͳǡʹǡ Ǥ Ǥ ǡ ݊���������������������������������

�����������Ʌ ൒ Ͳ�������������������������������������������������������������������������������������

� 

After finding the optimal Ʌǡ  ܳ௝݆�כ ൌ ͳǡǥ ǡ ݊,  are obtained. 

If the model is of the following form: 

௝ܳ௝ܦ௝݋ܥ෍ቆ݊݅ܯ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
 

s.t. 
σ ௝݂ܳ௝ െ ܨ ൌ Ͳ௡௝ୀଵ       , 
      ܳ௝ ൒ Ͳ  j=1,2,� 

To find the optimal values of ܳ௝ǡ�set the gradient of L equal to zero 
i.e. differentiate L with respect to ܳ௝ǡ ݆ ൌ ͳǡʹǡ ǥ and  ߠǢ set the results 
equal to zero  

0L    

ە
۔
ۓ ܮ߲
߲ܳ௝ ൌ Ͳ ՜������������������������������������������������������������������������������������������������
ܮ߲
ߠ߲ ൌ Ͳ��� ՜������������������������������������������������������������������������������������������������

��� 

ە
ۖ
۔
ۖ
ۓ ܮ߲

߲ܳ௝ ൌ Ͳ ՜ �െ ௝ܳ௝ଶܦ௝݋ܥ ൅ ܥ ௝݄
ʹ ൅ ߠ ௝݂ �ൌ Ͳ ฺ�ൌ ܥ ௝݄ ൅ ߠʹ ௝݂

ʹ �ฺ ܳ௝ ൌ ඨ ௝ܦ௝݋ܥʹ
ܥ ௝݄ ൅ ߠʹ ௝݂

�������݆ ൌ ͳǡʹǡǥ�����

ܮ߲
ߠ߲ ൌ Ͳ��� ՜෍ ௝݂ܳ௝ െ ܨ ൌ Ͳ������������������������������������������������������������������������������������������������������������������

௡

௝ୀଵ
�����������������

� 

Solve the resultant equations for the �୨; insert �୨Ԣݏ in 
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σ �୨�୨ െ 	 ൌ Ͳ�୬୨ୀଵ to find the optimal value of ߠǤ

ฺ

ە
ۖ
۔
ۖ
௝ܳۓ ൌ ඨ ௝ܦ௝݋ܥʹ

ܥ ௝݄ ൅ ߠʹ ௝݂
������������������݆ ൌ ͳǡʹǡ Ǥ Ǥ ǡ ݊

෍ ௝݂ܳ௝ ൌ ܨ
௡

௝ୀଵ
����������������������������������������������������

�

This value of ߠ  easily gives the numerical value of ܳ௝כǤ
Example 3-3 

The maximum available space for keeping five products in a 

warehouse is 2000
3m . Using the information in the following table,

calculate the optimum order quantity for each product.   The annual 
holding cost of  1 dollar is approximately $ 0.2. 

Coj 
Unit space 

requirement in
m 3 ( f  j� 

price 

(Pj) 

Annual 
demand 

(Dj) 

Product 

No.(j) 

10 1 3 600 1 
10 1.5 10 900 2 
10 0.5 5 2400 3 
10 2 5 12004 
10 1 1 18005 

Solution 

The model is as follows: 

ܼ�݊݅ܯ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ �ܫ ௝ܲܳ௝ʹ ቇ
ହ

௝ୀଵ
 

s.t. 

 σ ௝݂ܳ௝ ൑ ʹͲͲͲ
  ܳ௝ ൒0 

If we calculate  Qwj, j=1,�,5 from Wilson formula, we will niotice 
that these order quantities do not satisfy the constraint; then we 
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proceed with  Lagrange multiplies.   Assigning u as a multiplier to the 
constraint, we have: 

ܮ ൌ σ ൬஼௢ೕ஽ೕொೕ ൅ ூ௉ೕொೕ
ଶ ൰ହ௝ୀଵ ൅ �ሺσ ௝݂ܳ௝ହ௝ୀଵ െ ʹͲͲͲሻ 

The KKT conditions are as follows: 

ەۖ
۔

ۓۖ ܮ߲
߲ܳ௝ ൌ Ͳ ՜ �ܳ௝ ൌ ඨ ௝ܦ௝݋ܥʹ

ܥ ௝݄ ൅ ݑʹ ௝݂

� ቀʹͲͲͲ െ෍ ௝݂ܳ௝ቁ ൌ Ͳ����������
ݑ ൒ Ͳ�������������������������������������������

�

��������
��ܳ ଵ ൌ ඨ ʹሺͳͲሻሺ͸ͲͲሻ

ሺͲǤʹ כ ͵ሻ ൅ ݑʹ כ ͳ ǡڮ � ǡ ܳହ ൌ ඨ ʹሺͳͲሻሺͳͺͲͲͲሻ
ሺͲǤʹ כ ͳሻ ൅ ݑʹ כ ͳ 

Since �ሺʹͲͲͲ െ σ �୨�୨ሻ �ൌ Ͳ, either both are zero or one of them is zero;

and since � ൒ Ͳ n it is possible that  

ͳ �� �� ൌ Ͳ��and����൫ʹͲͲͲ െ σ �୨�୨൯����������ǡ�
2)��� ൐ Ͳ����σ �୨�୨ െ ʹͲͲͲ ൌ Ͳǡ���� 
3) both are zero.

In cases 1& 3,where  � ൌ Ͳ�ǡ ����୨ ൌ ට ଶେ୭ౠୈౠ
େ୦ౠାଶ୳୤ౠ converts to Wilson 

formula, and hence unacceptable.   Then necessarily: 

� ൐ Ͳ����σ �୨�୨ െ ʹͲͲͲ ൌ Ͳ .  Substituting 
��������
��ܳ ଵǡ ǥ ǡ

��������
��ܳ ହ yields

an equation whose variable is u.  The equation could be solved by trial 
and error or fzero command in MATLAB: 
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fzero(@(u)       2000-(1*sqrt(2*10*600)/(.2*3+2*u*1)+ 

1.5*sqrt(2*10*900)/(.2*10+2*u*1.5)+0.5*sqrt(2*10*2400)/(.2*5+2*u*0.5) 

+2*sqrt(2*10*12000)/(.2*5+2*u*2) +1*sqrt(2*10*18000)/(.2*1+2*u*1)),0.1) 

gives u=0.1674. 
Trial and error: 
clc;d=0:.0001:.21;D=1000000000;i=1; 
while abs(D)>= d(i); 

 for u=0:0.0001 :0.2; 
       D=2000-(1*sqrt(2*10*600)/(.2*3+2*u*1)+ 

1.5*sqrt(2*10*900)/(.2*10+2*u*1.5)+0.5*sqrt(2*10*2400)/(.2*5+2*u*0.5) 
+2*sqrt(2*10*12000)/(.2*5+2*u*2)+1*sqrt(2*10*18000)/(.2*1+2*u*1)); 

 if (abs(D)<=d(i)); 
 break; 

 end; 
 end; 

    i=i+1; 
end; 
disp(sprintf(' u=  %6.4f D=    %5.4f', u ,  d(i-1) )); 
gives u=0.1674 ؆ ͲǤͳ͹. 

Q1,�, Q5 would be117, 53, 188,,293, 1122 approximately for this 
value of u, which satisfy the constraint.� 

Interpretation of u=ͲǤͳ͹: If one unit is added to the right hand 
side of the constraint(in this case the space of the warehouse), the 
objective function of the minimization problem (in this case the total 
cost) will decrease as much as 0.1674 ؆ ͲǤͳ͹.  Of course this will be 

true until the function reaches its potential minimum. 

3-2-2 Constraint on the budget 

This section deals with 2 constraints related to the budget i.e.� 

�σ �୨�୨ ൌ ���୬୨ୀଵ ���������� σ �୨�୨ ൑ �୬୨ୀଵ  ������ 
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͹-͸-͸-ͷ The budget for ordering is exactly C dollars  

If we have C dollars  budget and want to order  n products with unit 
price �୨ǡ � ൌ ͳǡ Ǥ Ǥ ǡ �ǡ� in such a way to minimize the total cost of the 
inventory system then the model would be 

ܥܸܶ���݊݅ܯ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
 

s.t. 

σ � ௝ܲܳ௝ ൌ ௡௝ୀଵܥ

 ܳ௝ ൒0 

Assigning Lagrange multiplier  to the constraint, the Lagrangian 
would be : 

ܮ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
൅  ሺ෍ � ௝ܲܳ௝ െ ሻܥ

௡

௝ୀଵ

Since we have only equality constraint, to solve the model it is 
enough to solve  0L  or equivalently the following: 

൞
డ௅
డொೕ ൌ Ͳ�� ՜ ��ܳ௝ ൌ ට ଶ஼௢ೕ஽ೕ

஼௛ೕାଶ஛�௉ೕ ൌ ට ଶ஼௢ೕ஽ೕ
௉ೕሺூାଶ஛ሻ������

డ௅
డ஛ ൌ Ͳ� ՜ ��� σ � ௝ܲܳ௝ ൌ ௡௝ୀଵܥ ����������������������������������

�� ൌ ͳǡ ǥ ǡ ���� 

To find the optimal ɉǡ substitute ܳ௝ǡ ݆ ൌ ͳǡʹǡ ǥ ǡ ݊ from the first 
equations in σ � ௝ܲܳ௝ ൌ ௡௝ୀଵܥ Ǥ  After finding ɉǡ�  it is easy to find  ܳ௝ᇱ�Ǥ It
is worth mentioning that in models of this kind which have equality 
constraints the optimal value of the LaGrange multiplier could be 
negative, zero or positive. 
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͹-͸-͸-͸����������������������������������������������������� 

Suppose the model is as follows: 

ܥܸܶ���݊݅ܯ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

௡

௝ୀଵ
 

s.t. 

σ � ௝ܲܳ௝ ൑ ௡௝ୀଵܥ
 ܳ௝ ൒0 

The optimal values of �୨ must satisfy the following KKT 
conditions: 

ە
ۖۖ
۔
ۖۖ
ۓ డ௅
డொೕ ൌ Ͳ��� ൌ ͳǡʹǡ ǥ ǡ � ՜ ����� ܳ௝ ൌ ට ଶ஼௢ೕ஽ೕ

�௉ೕሺூାଶఏሻ���
Ʌሺܥ െ σ � ௝ܲܳ௝ሻ௡௝ୀଵ �ൌ Ͳ�������������������������������������
Ʌ ൒ Ͳ���������������������������������������������������������������������

�������������������
����������������������������������������������

�

Example  3-4 

Three products are to be ordered simultaneously.  The maximum 
budget available is $14000 to order the 3 products each time.  No 
shortage is permitted and the annual  holding cost of  1 dollar is 
approximately $ 0.2 (I=20%).  Using the data in the table calculate the 
optimal value of the ordering quantities. 

Dj Pj($) Coj($) 
1000 20 50 
500 100 75 
2000 50 100 

Solution 
The model of the problem is: 
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ܼ�݊݅ܯ�������� ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

ଷ

௝ୀଵ
 

s.t. 
σ � ௝ܲܳ௝ ൑ ͳͶͲͲͲଷ௝ୀଵ

��������ܳ௝ ൒0 
At the outset we solve the problem, ignoring the constraint: 

ܳ௪ଵ ൌ ඨʹሺͷͲሻሺͳͲͲͲሻሺͲǤʹሻሺʹͲሻ � �؆ ͳͷͺ������������ܳ௪ଶ ؆ ͸ͳ���������ܳ௪ଷ ؆ ʹͲͲ 

෍ � ௝ܲܳ௝ ൌ ͳͻʹ͸Ͳ� ൐ ͳͶͲͲͲ��
ଷ

௝ୀଵ
 

Since these values do not satisfy the constraint, the KKT conditions 
are utilized: 

ܮ߲
߲ܳ௝ ൌ Ͳ��݆ ൌ ͳǡʹǡ͵ ՜ �ܳ௝כ ൌ ඨ ௝ܦ௝݋ܥʹ

ܫ�௝ሺ݌ ൅ ሻߠʹ ���݆ ൌ ͳǡʹǡ͵��

ɅሺͳͶͲͲͲ െ෍ � ௝ܲܳ௝ሻ ൌ Ͳ���������������������������������

� ߠ���� ൒ Ͳ���������������������������������������������������������������������������������������

ە
ۖۖ
۔
ۖۖ
ଵܳۓ ൌ ට ଶ஼௢భ஽భ

௣�భሺூାଶఏሻ ൌ ටଶሺହ଴ሻሺଵ଴଴଴ሻ
ଶ଴ሺ଴Ǥଶାଶఏሻ ൌ ට ଵ଴ఱ

ସ଴ሺ଴Ǥଵାఏሻ ൌ
ହ଴

ξ଴Ǥଵାఏ

ܳଶ ൌ ට ଶሺ଻ହሻሺହ଴଴ሻ
ଵ଴଴ሺ଴Ǥଶାଶఏሻ ൌ ට ଻ହ଴଴଴

ଶ଴଴ሺ଴Ǥଵାఏሻ ൌ
ଵଽǤଷ଺ସଽ
ξ଴Ǥଵାఏ �������������������

ܳଷ ൌ ටଶሺଵ଴଴ሻሺଶ଴଴଴ሻ
ହ଴ሺ଴Ǥଶାଶఏሻ ൌ ට ସכଵ଴ఱ

ଵ଴଴ሺ଴Ǥଵାఏሻ ൌ
଺ଷǤଶସହ଺
ξ଴Ǥଵାఏ ������������������

�

Since the product of ߠ  and ሺσ ୨ܲ�୨ െ ͳͶͲͲͲሻ  is zero,
Either both are zero or only one of them is zero. 

cannot be zero therefore σ ߠ ୨ܲ�୨ െ ͳͶͲͲͲ ൌ Ͳ

෍ ௝ܲܳ௝ ൌ ͳͶͲͲͲ� ֜ 
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��ʹͲ ൈ ͷͲ
ξͲǤͳ ൅ ߠ ൅ ͳͲͲ ൈ

ͳͻǤ͵͸Ͷͻ
ξͲǤͳ ൅ ߠ ൅ ͷͲ ൈ

͸͵ǤʹͶͷ͸
ξͲǤͳ ൅ ߠ ൌ ͳͶͲͲͲ� 

�� ൌ � ͳ
ξͲǤͳ ൅ ߠ �֜ ������� ؆ ʹǤʹͻͷͷ 

֜ ��Ʌ ൌ ͲǤͲͻ ՜ ܳଵ ൌ ͳͳͶÁ�ܳଶ ൌ ͶͶ�Á�ܳଷ ൌ ͳͶͷ
Since these ܳ୨ᇱݏ satisfy the constraint and the Lagrange multiplier

Ʌ in not negative, they form the  optimal solution to the problem: 
ܳଵכ ൌ ͳͳͶ�������Á�ܳଶכ ൌ ͶͶ�����������Á�ܳଷכ ൌ ͳͶͷ.

The optimal value of the total variable cost is 
TVC*=$4064 

Interpretation of ી =૙Ǥ૙ૢ: 
If one unit is added to the right hand side of the constraint(in this 

case the space of the warehouse), the objective function of the 
minimization problem (in this case the total cost) will decrease as 
much as 0.09.  Of course this will occur until the function reaches its 

potential minimum. 
Note that in the above 2 examples, if instead of maximum budget, 
the average inventory or the average budget involved with inventory 

were given, we would substitute ܳ௝ in the constraint with 
ொೕ
ଶ . 

3-2-3 Constraint on the number of orders of multiple items 
Sometimes there is a constraint on the number of orders that can be 

placed per unit time say per year i.e.σ �୨୬୨ୀଵ ൌ σ ୈౠ
୕ౠ ൑ κǤ  To deal with

this case we suppose either the ordering cost ܥ௢ is negligible or not 
negligible.  

͹-͸-͹-ͷ��������������������������������������-࢕࡯ negligible 

    If there is a constraint on annual number of orders of multiple-
item case and the ordering costs are negligible, then the model of the 
problem would be: 

Min  ܸܶܥ ൌ σܥ௛௝
ொೕ
ଶ �+0 

s.t. 
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����������෍ ௝ܦ
ܳ௝ ൑κ 

To determine the ܳ௝ᇱݏ, the Lagrange function and the KKT 
conditions are 

Written: 

ܮ ൌ෍ܥ௛௝
ܳ௝
ʹ ൅ ௝ܦሺ෍ߠ

ܳ௝ െ κሻ 

ە
ۖۖ
۔
ۖۖ
ۓ ௝߲ܳܮ߲ ൌ Ͳ��ǡ ݆ ൌ ͳǡʹǡ ǥ

ሺκെ෍ߠ ௝ܦ
ܳ௝ሻ ൌ Ͳ

0  ��������������������
����

� ֜

ە
ۖ
۔
ۖ
ۓ ௛௝ܥ

ʹ െ ௝ܳ௝ଶܦߠ ൌ Ͳ

ሺκെ෍ߠ ௝ܦ
ܳ௝ሻ ൌ Ͳ

0  ��������������������

�

The equality of ߠሺκെ σ ஽ೕ
ொೕሻ  with zero imply that either both are

zero or one of them is zero; 
and since ߠ ൒ Ͳ n it is possible that 

ͳ �� ߠ� ൌ Ͳ��and����൬κ െ σ ஽ೕ
ொೕ൰ ����������ǡ� 

ߠ��(2 ൐ Ͳ����σ ஽ೕ
ொೕ െ κ ൌ Ͳ���� 

3) both are zero.

Cases 1 and 3 cannot be valid, because with ߠ ൌ Ͳ, the first 

equation i.e. 
஼೓ೕ
ଶ െ ఏ஽ೕ

ொೕమ ൌ Ͳ does not hold.  Therefore ߠ ൐ Ͳ�ǡ ݉σ ஽ೕ
ொೕ െ

κ ൌ Ͳ����and the KKT conditions reduces to : 

ە
ۖۖ
۔
ۖۖ
ۓ ܳ௝ ൌ ඨʹܦ௝ܥߠ௛௝
κെ෍ ௝ܦ

ܳ௝ ൌ Ͳ
ߠ ൐ Ͳ�

�

Substituting ܳ௝ in the second equation, we have: 
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σܦ௝ට ஼೓ೕ
ଶ஽ೕߠ �ൌ κ� ฺ כߠ ൌ ଵ

ଶκమ ቆσ ටܦ௝ ൈ ௛௝௡௝ୀଵܥ ቇ
ଶ
. 

ș
כ
 is derived from the above relationship and ܳ௝ from �୨כ ൌ

ඨଶ஽ೕכߠ�
஼௛ೕ �, 

whose feasibility have to be verified. 

3-2-3-2 Constraint on annual number of orders-࢕࡯ significant 

If there is a constraint on annual number of orders of multiple-item 
case and the ordering cost is not negligible, then the model of the 
problem would be: 

������� ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ʹ௛௝ܳ௝ܥ ቇ
௡

௝ୀଵ
 

s.t. 

      σ ஽ೕ
ொೕ ൑ κ௡௝ୀଵ  

����������ܳ௝ ൒0 

Again here the order quantities calculated from Wilson formula 
would be answers to the problem if they satisfy the constraint.  
Otherwise the lagrangian function and KKT conditions has to be 
written as follows: 

ە
ۖۖ
۔
ۖۖ
ۓ ௝߲ܳܮ߲ ൌ Ͳǡ ݆ ൌ ͳǡʹǡ ǥ�������������

ቆκെ෍ߠ ௝ܦ
ܳ௝ቇ ൌ Ͳ����������

ߠ ൒ Ͳ�������������������������������������

���������������������������������������������������������������������������������������������� 
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ܮ ൌ෍ܥ௛௝
ܳ௝
ʹ ൅ ௝ܦሺ෍ߠ

ܳ௝ െ κሻ 

ە
۔ۖ

ۓۖ ௝߲ܳܮ߲ ൌ Ͳ ฺ െ݋ܥ௝ܦ௝ܳ௝ଶ ൅ ʹ௛௝ܥ െ ௝ܳ௝ଶܦߠ ൌ Ͳ ฺ ௝݋ܥ௝ܦ ൅ ௝ܦߠ
ܳ௝ଶ ൌ ௛௝ܥ

ʹ
ቆκߠ െ෍ ௝ܦ

ܳ௝ቇ ൌ Ͳ����������������������������������������������������������������������������
ߠ ൒ Ͳ���������������������������������������������������������������������������������������������������

�

ฺ

ە
ۖۖ
۔
ۖۖ
௝ܳۓ ൌ ඨʹܦ௝ሺ݋ܥ௝ ൅ ௛௝ܥሻߠ
ቆκߠ െ෍ ௝ܦ

ܳ௝ቇ ൌ Ͳ��
ߠ ൒ Ͳ�������������������������

�

൬κߠ െ σ ஽ೕ
ொೕ൰ ൌ Ͳ implies either both ߠ and ൬κെ σ ஽ೕ

ொೕ൰  are equal 

zero or one of the 2 is zero.  For ߠ ൌ Ͳǡ the value of ܳ௝ will convert 
into Wilson formula.  If this ܳ௝�������������it is the answer; 

otherwiseσ ୈౠ
୕ౠ െ κ ൌ Ͳ. To compute the optimal values of Ʌ��

substitute��୨ ൌ ඨଶୈౠሺେ୭ౠା஘ሻ
஼೓ౠ

, j=1,2,� into  

σ ୈౠ
୕ౠ െ κ ൌ ͲǤ��After finding the value of Ʌǡ if it is positive, calculate 

�୨ǡ ݆ ൌ ͳǡʹǡ ǥ ǡ ݊ by substituting the optimal value of Ǥ Ʌ; then check 
the feasibility of them, if feasible they are optimal since they satisfy 
KKT conditions. 

Example   3-5 

Three products are to ordered by a firm. There is no stock-out cost 
and  the  annual  carrying cost of $1 is $ 0.20(I=0.20).  Considering 
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the data in the table and either of the following constraint, calculate 
the optimal order quantities, 

a)�σ ஽ೕ
ொೕ ൑ ʹͷ����b) ������ �σ ஽ೕ

ொೕ ൑ ͳͷ. 

Dj Pj($) Coj($) 
1000 20 50 
500 100 75 
2000 50 200 

Solution 
a) 
The model of the first part of the problem is as follows: 

ܼ�݊݅ܯ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

ଷ

௝ୀଵ
 

s.t. 

෍ ௝ܦ
ܳ௝ ൑ ʹͷ 

ܳ௝ ൒0 

Ignoring the constraint,  would yield 

ܳ௪ଵ ൌ ඨʹሺͷͲሻሺͳͲͲͲሻሺͲǤʹሻሺʹͲሻ � �؆ ͳͷͺǡ������������ܳ௪ଶ ؆ ͸ͳ������������ܳ௪ଷ ؆ ʹͺʹ 

෍ ௝ܦ
ܳ௝ ൌ

ͳͲͲͲ
ͳͷͺ ൅ ͷͲͲ͸ͳ ൅ ʹͲͲͲʹͺʹ ൌ ʹͳ ൑ ʹͷ 

The above quintiles satisfy the constraint; therefore they are the 
answers to the first part. 

b)The model for this part is 

ܼ�݊݅ܯ ൌ෍ቆ݋ܥ௝ܦ௝ܳ௝ ൅ ܥ ௝݄ܳ௝
ʹ ቇ

ଷ

௝ୀଵ
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s.t. 

෍ ௝ܦ
ܳ௝ ൑ ͳͷ 

ܳ௝ ൒0 

If the Lagrangian function and KKT conditions are written as done 
above at the beginning of this section to come up with the solution of 

the model, We have: �୨ ൌ ටଶୈౠሺେ୭ౠା୳ሻ
େ౞ౠ

� , j=1,2,3.  Since σሺ�୨ ൈ ଵ
୕ౠሻ ൑

ͳͷ; therefore we have to find u in such away that 

100Ͳට ସ
ଶ଴଴଴ሺହ଴ା୳ሻ+500ට ଶ଴

ଵ଴଴଴ሺ଻ହା୳ሻ+2000ට ଵ଴
ସ଴଴଴ሺଶ଴଴ା୳ሻ ൌ ͳͷǤ 

Using MATLAB command fzero: 

fzero(@(u) 15-
(1000*sqrt(4/(2000*(50+u)))+500*sqrt(20/(1000*(75+u)))+2000*sqrt(10/(4000*(20
0+u)))), 200) 

yields u=93.975 which is nonnegative. 

The optimal value of �୨ᇱ�  are obtained by substituting u in 

�୨ ൌ ටଶୈౠሺେ୭ౠା୳ሻ
େ౞ౠ

� which yields :�ଵ ൌ ʹ͸ͻǡ �ଶ ൌ ͻʹǡ �ଷ ൌ ͵Ͷ͵Ǥ

It is evident that these quantities satisfy the constraint:σ ୈౠ
୕ౠ ൌ

ଵ଴଴଴
ଶ଺ଽ ൅

ହ଴଴
ଽଶ ൅

ଶ଴଴଴
ଷସଷ ൌ ͳͶǤͻͺ ൏ ͳͷǡ�and  u is nonnegative; therefore the 

optimal answer is  �ଵכ ൌ �ʹ͸ͻǡ ��ଶכ ൌ ͻʹ��������ଷכ ൌ ͵Ͷ͵.

Note if u were negative or the quantities did not satisfy the 
constraint, we would conclude the problem in this case does not have 

optimal answer.�
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3-2-4 Constraint on the number of orders of multiple items 
having the same number of orders 

Suppose a firm places order for several items which have the same 
number of orders per year. Also suppose there is a constraint on the 
number. In other words the goods have the same cycle time T 

(
୕భ
ୈభ ൌ ڮ ൌ ୕౤

ୈ౤ ൌ ܶ) and the there is a constraint on T.  This case is 

illustrated below. 

Example   3-6 

The annual demand of 2 items, which ordered simultaneously, are 1000 
and 2000 respectively.  The holding cost is $ 2 per year.  The ordering cost is 
$100.  The annual number of orders must not exceed 5 times.  Find the 
optimal order quantity of each item. 
Solution 

The items have the same cycle time T and the model of the 
problem is as follows: 

ܥܸܶ�݊݅ܯ ൌ σ ൬஼௢ೕ஽ೕொೕ ൅ ஼೓ೕொೕ
ଶ ൰ ൌ σ ቀ஼௢ೕ் ൅ ஼೓ೕ்஽ೕ

ଶ ቁଶ௝ୀଵଶ௝ୀଵ                        

       s.t. 

        
ଵ
் ൑ ͷǡ� 

������������ܶ ൐ Ͳ 
Let us find the solution of the model ignoring the constraint: 

ܥܸܶ݀
݀ܶ ൌ Ͳ ֜ 

ܶ ൌ ඨ ʹσ݋ܥ௝
ଵܦ௛భܥ ൅ ଶܦ௛మܥ ൌ ඨ ʹͲͲ

ʹሺͳͲͲͲ ൅ ͳʹͲͲሻ ൌ ͲǤʹͳ͵ʹ 

This value of T satisfies the constraint and is optimal i.e. ܶכ ൌ ͲǤʹͳ͵ʹ. 
Therefore:  

ܳଵכ ൌ ଵܦכܶ ൌ ʹͳ͵ʹ��Á�ܳଶכ ൌ ଶܦכܶ ؆ ʹͷͷͻ��  
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Example   3-7 

The annual demand of 2 items, ordered simultaneously, are 8000 
and 16000 respectively.  The per unit holding cost is $ 5 per year.  The 
ordering cost is $1000.  The annual number of orders must not exceed 
4 times.  Find the optimal order quantity of each item. 

Solution 

The items have the same cycle time T and the model of the 
problem is as follows: 

ܥܸܶ�݊݅ܯ ൌ σ ቀ஼௢ೕ் ൅ ஼೓ೕ்஽ೕ
ଶ ቁଶ௝ୀଵ  

 s.t. 

ଵ
் ൑ Ͷǡ ܶ ൐ Ͳ 

Let us find the solution of the model ignoring the constraint: 

����
�� ൌ Ͳ ֜ 

�݉ ൌ ଵ
் ൌ ͷǤͶ͹ ൐ Ͷ��� ฺ���The constraint is active; and we write the 

Lagrangian and KKT conditions: 

ܮ ൌ෍ሺ݋ܥ௝ܶ ൅
ଶ

௝ୀଵ

ܫ ௝ܲܦ௝ܶ
ʹ ሻ ൅ �ሺͳܶߠ െ Ͷሻ 

ە
ۖ
۔
ۖ
ۓ ܮ߲
߲ܶ ൌ Ͳ��������
ሺͶߠ െ ͳ

ܶሻ ൌ Ͳ
0  �����������������

� 
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డ୐
డ୘ ൌ Ͳ ฺ � ൌ ඨଶσେ୭ౠାଶș

σେ౞ౠୈౠ
 . 

Since ߠ ൒ Ͳ and the second equations implies that : 

�����Ͷ	   0=ߠ െ ଵ
்  Ͳ���or

������Ͷ	 0=ߠ ൌ ଵ
்�����������or 

�������Ͷ&   0<ߠ െ ଵ
் ൌ Ͳ��; 

ܶ cannot be zero because  ߠ ൌ ඨ ଶσ஼௢ೕ
σ஼೓ೕ஽ೕ

ൌ ͲǤͳͺ does not satisfy the 

constraint.  Therefore 0<ߠ   and����Ͷ െ ଵ
் ൌ Ͳ��. 

ܶ ൌ ͳ
Ͷ ฺ ൞

ܳଵ ൌ ଵܶܦ ൌ ͺͲͲͲ ൈ ͳͶ ൌ ʹͲͲͲ
ܳଶ ൌ ଶܶܦ ൌ ͳ͸ͲͲͲ ൈ ͳͶ ൌ ͶͲͲͲ

�

Ͷ െ ଵ
்=0ฺ ܶ ൌ ඨଶσ஼௢ೕାଶఏ

σ஼೓ೕ஽ೕ
ൌ� ଵସฺට ଶൈଶ଴଴଴ାଶఏ

ሺହൈ଼଴଴଴ሻାሺହൈଵ଺଴଴଴ሻ ൌ�
ଵ
ସ ฺ

ߠ ൌ1750  >0 . 

     Since the Lagrange multiplier ߠ is not negative and ܳଵƬܳଶ are 

feasible, they could be the optimal solution.  

3-2-5 constraint on the cycle time of classic EOQ model-
single item  

In this section we would like to consider a classic EOQ model 

whose cycle time is constrained i.e.�ொ஽ ൌ ܶ ൑ ܶԢ�� or�ொ஽ െ ܶԢ ൑ Ͳ.  The

model is therefore: 

ܥܸܶ�݊݅ܯ ൌ ஼௢஽
ொ ൅ ௛ܥ ொଶ ൌ

஼௢
் ൅ ௛ܥ

஽்
ଶ ��������� ��� 

s.t. 



157                                                                  Classical Topics in inventory Control� 

  � െ ܶԢ ൑ Ͳ&T>0 

To find the optimal value of the cycle time, ܳ௪and � T  is 

calculated, if ܶכ ൌ ொೢ
஽ ൌ ටଶ஼௢

஼௛஽ ൏ ܶᇱ, ܶכ�is the optimal cycle time 

andܳכ ൌ  :otherwise L and KKT conditions are utilized ;ܦכܶ

ܮ ൌ ݋ܥ
ܶ ൅ ʹܶܦ݄ܥ ���൅ ሺܶߠ െ ܶᇱሻ 

KKT conditions: 

ەۖ
۔

߲ܶܮ߲ۓۖ ൌ Ͳ� ฺ െܶ݋ܥଶ ൅
ܦ݄ܥ
ʹ ൅ ߠ ൌ Ͳ

ሺܶᇱߠ െ ܶሻ ��ൌ Ͳ������������������������������
ߠ 0 ������������������������������������������������
������������������������������������������������

� 

After getting the answer of ߠ and T related to the above conditions, 
if T is feasible and �Ʌ ൒ Ͳ then ܳכ ൌ  ܦܶ

3-2-6 Constraint on the capital associated with inventory maximum 
in EPQ and EOQ models 

The following examples show how to deal with the EOQ and EPQ 
model in which the monetary value of the maximum of the inventory 
in warehouse is constrained. 

Example 3-8 

In an EOQ model, the capital devoted to the maximum inventory is 
restricted to $10,000, ൌ ̈́ʹͲͲ , � ൌ ʹͲΨ������� , the unit price is $50 
and annual demand is 4000.  Find the economic order quantity and the 
corresponding annual total cost.      

Solution 

The problem model is as follows: 
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ܥܶ���� ൌ ஼௢஽
ொ ൅ ௛ܥ ொଶ ൅  �ܦܲ

 s.t. 

        P�ൈ �  ௠௔௫≤10000   or PQ≤10000ܫ

Ignoring the constraint would yield: 

ܳ௪ ൌ ටଶ஽஼௢
஼೓ ൌ ͶͲͲ�Ƭܫ����௠௔௫כ ൌ ܳ௪ ൌ ͶͲͲǤ������ 

௠௔௫ܫ��ܲ ൌ ͷͲ ൈ ͶͲͲ ൐ ͳͲͲͲͲ ฺ��� The constraint is active and 
400 cannot be optimal.   We use Lagrangian function and KKT 
conditions: 

൯ߠ൫ܳǡܮ ൌ ܦ݋ܥ
ܳ ൅ ௛ܥ ܳʹ ൅ ൅ܲܦ ൅ ሾ�ܲܳߠ െ ͳͲͲͲͲሿ� 

Karush_Kahn-Tacker conditions: 

ە
۔
ۓ ܮ߲
߲ܳ ൌ Ͳ�������������������������
ሾሺͳͲͲͲͲߠ െ �ܲܳሻሿ� ൌ Ͳ�
ߠ ൒ Ͳ����������������������������

�

ܮ߲
߲ܳ ൌ Ͳ������� ฺ ��������ܳ ൌ ඨ ݋ܥܦʹ

ሺܥ௛ ൅ ሻߠܲʹ
ܳ cannot be zero because ߠ ൌ ට ଶ஽஼௢

ሺ஼೓ା଴ሻ doesn�t satisfy the 

constraint; therefore ߠ ൐ Ͳ  and ͳͲͲͲͲ െ ܲܳ=0 and KKT conditions 
reduces to : 

ەۖ
۔
ܳۓۖ ൌ ඨ ݋ܥܦʹ

ሺܥ௛ ൅ ሻߠܲʹ
�������������������������

ͳͲͲͲ െ ܲܳ ൌ Ͳ��������������������������
ߠ ൐ Ͳ�����������������������������������������

�

ͷͲܳ െ ͳͲͲͲͲ ൌ Ͳ ฺ ܳ ൌ ʹͲͲฺ ටଶሺସ଴଴଴ሻ൫ଶ଴଴ାߠ൯଴Ǥଶሺହ଴ሻାଵ଴଴௉ ൌ ʹͲͲฺ Ʌ ൌ ͲǤ3. 

Ʌ is positive and Q satisfies the constraint therefore כ� ൌ ʹͲͲ�is the 
answer. 

The total cost for this amount of order quantity is 

TC(Q=200)=�ଶ଴଴ൈସ଴଴଴ሺଶ଴଴ሻ ൅ ଴Ǥଶൈହ଴ൈଶ଴଴
ଶ ൅ ͷͲ ൈ ͶͲͲͲ ൌ ̈́ʹͲͷͲͲͲǤ 
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 Interpretation of u=ͲǤ͵: If one unit is added to the right hand side 
of the constraint(in, the objective function of the minimization 
problem (in this case the total cost) will decrease as much as 0.3.  Of 

course this will be true until the function reaches its minimum.  

Example 3-9 

The capital associated with the maximum inventory of a product in 
a warehouse is restricted to $20000.  The annual demand is 4000. The 
production capability rate is R=8000, the setup cost (Co) is 2500 
dollars and the carrying cost per unit per year is $200.  Find the 
economic production quantity.  

Solution 
    The model of the problem: 

ܥܸܶ�݊݅ܯ ൌ ܦ݋ܥ
ܳ ൅ ௛ܥ ܳʹ ሺͳ െ

ܦ
ܴሻ 

s.t. 

௠௔௫ܫܲ������� ൌ ܲ ൈ ܳ ൈ ൬ͳ െ ൰ܴܦ ൑ ʹͲͲͲͲ 

Ignoring the constraint yields ܳכ ൌ ට ଶ஽஼௢
஼೓ሺଵିವೃሻ

؆ ͸͵͵�based on EPQ 

model.  This answer does not satisfy the constraint; therefore we apply 
Lagrange multiplier technique to obtain the optimal solution of the 
model. 

ܮ ൌ ܦ݋ܥ
ܳ ൅ ௛ܥ ܳʹ ሺͳ െ

ܦ
ܴሻ ൅ ߠ ൤ �ܲܳ ൬ͳ െ

ܦ
ܴ൰ െ ʹͲͲͲͲ൨ � 

Karush_Kahn-Tacker conditions: 

ەۖ
۔

ۓۖ ܮ߲
߲ܳ ൌ Ͳ���������������������������������������

ߠ ൤ʹͲͲͲͲ െ �ܲܳ ൬ͳ െ ൰൨ܴܦ � ൌ Ͳ�
0 ���������������������������������������

� 
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ܮ߲
߲ܳ ൌ Ͳ ฺ 

െܳܦ݋ܥଶ ൅ ʹ௛ܥ ൬ͳ െ
ܦ
ܴ൰ ൅ ܲߠ ൬ͳ െ

ܦ
ܴ൰ ൌ Ͳ ฺ ܳ

ൌ ඨ
݋ܥܦʹ

ሺܥ௛ ൅ ሻሺͳߠܲʹ െ ሻܴܦ

ܳ cannot be zero because ߠ ൌ ට ଶ஽஼௢
ሺ஼೓ା଴ሻሺଵିವೃሻ

doesn�t satisfy the 

constraint; therefore ߠ ൐ Ͳ  and ʹͲͲͲͲ െ ܲܳ ቀͳ െ ஽
ோቁ ൌ ͲǤ  KKT 

conditions reduces to: 

ە
ۖ
۔
ۖ
ܳۓ ൌ ඨ

݋ܥܦʹ
ሺܥ௛ ൅ ሻሺͳߠܲʹ െ ሻܴܦ

ൌ ඨ
ʹ כ ʹͷͲͲ כ ͶͲͲͲ

ሺͳͲͲ ൅ ͶͲͲ ൈ ሻሺͳߠ െ ͶͲͲͲͺͲͲͲሻ
ൌ ඨͶͲͲͲͲͲͳ ൅ Ͷߠ

��ܲܳ ൬ͳ െ ൰ܴܦ ൌ ʹͲͲͲͲ����������������������������������������������������������������������������������������
ߠ ൒ Ͳ�����������������������������������������������������������������������������������������������������������������

�

ܲܳ ൬ͳ െ ൰ܴܦ െ ʹͲͲͲͲ ൌ Ͳ ฺ 

ʹͲͲඨͶͲͲͲͲͲͳ ൅ Ͷߠ ൬ͳ െ
ͳ
ʹ൰ ൌ ʹͲͲͲͲ ฺ ටͳ ൅ Ͷߠ ൌ ξʹ ฺ כߠ ൌ ͻ

Ͷ ฺ 

כܳ ൌ ඩ
ͶͲͲͲͲͲ
ͳ ൅ Ͷ ቀͻͶቁ

ൌ ʹͲͲǤ 

 Since the multiplier ߠ is not negative and ܳכis feasible, therefore ܳכ 
could be accepted as the optimal solution to the problem.  
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3-2-7  Multiple-constraint inventory models 

Sometimes several restrictions may constrain the operation of an 
inventory system.  In this case, at first solve the problem without cons- 
idering the constraint; if the solution satisfy the constraints it is the optimal 
solution.  Otherwise find the optimal solution move the constraints to the 
objective function to obtain the Lagrangian form, and writing the KKT 
conditions.   

As an illustration suppose the monetary value of the average inventory in 
the warehouse  and also the space available for a product are restricted; then 
the model and the lagrange multipliers would be: 

ܥܸܶ���݊݅ܯ ൌ෍ሺ݋ܥ௝ܦ௝ܳ௝ ൅
௡

௝ୀଵ

ܫ ௝ܲܳ௝
ʹ ሻ 

Ǥݏ  Ǥ Lagrangeݐ
Multiplier 

݃ଵ ൌ෍ ௝ܲ
ܳ௝
ʹ ൑  ܯ

 ଵߠ

݃ଶ ൌ෍ ௝݂ܳ௝ ൑  ଶߠ ܨ

If the constraints are not satisfied with the optimal solution of the 
unrestricted problem, KKT conditions will be written: 

� ൌ෍ሺ݋ܥ௝ܦ௝ܳ௝ ൅
௡

௝ୀଵ

ܫ ௝ܲܳ௝
ʹ ሻ ൅ ଵሺ෍ߠ ௝ܲ

ܳ௝
ʹ െܯሻ ൅ ଶሺ෍ߠ ௝݂ܳ௝ െ  �����ሻܨ

ە
ۖۖ
ۖ
۔
ۖۖ
ۖ
ۓ 0Q L or 

ܮ߲
߲ܳ௝ ൌ Ͳ�����݆ ൌ ͳǡʹǡ ǥ ǡ ݊

ଵߠ ൬ܯ െ෍ ௝ܲ
ܳ௝
ʹ ൰ ൌ Ͳ����������������

ଶߠ ቀܨ െ෍ ௝݂ܳ௝ቁ ൌ Ͳ������������������
ଵߠ ൒ Ͳ��������������������������������������������
ଶߠ ൒ Ͳ��������������������������������������������

�
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After  calculating  ܳ௝� Ԣݏ������� డ௅డொೕ ൌ Ͳ in terms of  ߠଵ ��	  ଶ andߠ�

substituting in the other 2 equations,   ߠଵ ��	  ଶ and then the values forߠ�
ܳ௝Ԣݏ are obtained.  Note that if ߠଵ ��	  ଶ are non negatives and theߠ�
calculated values for ܳ௝ 's are feasible, they are usually optimal. 

It is worth mentioning that several computer softwares easily solve 
constrained problems.  

Exercises 
1-(Extracted  from: Example 3, Tersine,1994,page 284)

A firm buys and sell 5 items.   The  ordering cost of each item is 
$10 per order. , The holding cost is %20 per year ie. the annual 
holding cost of 1 dollar is $0.2. The  unit price and annual demand for 
each item is as follows: 

item no.(i) annual demand(ܦ୧) unit priceሺ݌୧ሻ 
1 600 3 
2 900 10 
3 2400 5 
4 12000 5 
5 18000 1 

With continuous review system, the mean investment calculated in 

its optimum state(i.e. σ ௜݌ ொ೔
כ
ଶ ) with the above data is obtained equal to

$3130.  Suppose the budget for this purpose is restricted to $2000. 
What is the economic order if  

a)The monetary value of the average inventory is $2000 

i.e.�σ ௣౟ொ౟
ଶ

ହ୧ୀଵ ൌ ʹͲͲͲ. 

Answer in Tersine(1994) page287. 

b)The monetary value of the average inventory for all items is 
totally $2000. 
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2-( Example 5, Tersine,1994,page 290)

The maximum space in Problem 1 is 1500cubic feet and each unit 
of the 5 item occupies respectively 1,1.5, 0.5,2,1cubic feet and also 
the capital for all items is restricted to $2000 maximum.   Find the 
economic order quantity for each item.  Answer on page 291 of 
Tersine(1994). 

3-(Asadzadeh et al. 2006) 

A firm buys 3 kind of electrical circuits. The management cannot 
pay more than $ 15000 on each order run.  Annual holding cost 
fraction is 20%; and Stockout is not permitted. Annual demand, unit 
price and the ordering cost for each item is given in the Table: 

Item no. 1 2 3 
Annual Demand 1000 1000 2000 

Unit price 50 20 80 
Ordering cost 50 50 50 

Find the economic order quantity of each item 

Let us take the advantage of  the present time 
which is a divine present, and not live either in the 

past or in the future 

. 
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Ͷ-ͳ������������� 

In the deterministic models presented in Chapter 2, such as 
EOQ model for purchase and EPQ for production , implicitly it was 
assumed that the demand is continuous and the demand rate is 
constant.  This chapter deals with  one-item cases where the demand is 
discrete and changes from one period to another  due to factors such 
as changes in season, social, economical , political issues or machine 
maintenance. The following table is an example which shows the 
demand varies from one period to another but for each period is 
deterministic and fixed. 

period(t)� ͳ ʹ ͵ Ͷ ͷ ͸ � T 
demand(Dt) ͳͲ Ͳ ͳͷ ʹͶ Ͳ ͳ � Ͷ 

One such  case is when we would like to produce a certain amount of a product 
over a T-period time horizon  and the production capacity  in the periods are 
different (Zenon et al, 2003).  To do this it is required to determine   the number of 
orders and the order sizes in such a way that minimizes  the ordering  and holding 
costs, the two significant factors that are considered while determining the economic 

Chapter Ͷ 

Dynamic Lot sing Techniques 

Aims of the chapter 

The present chapter  addresses lot sizing problem in inventory 
control where the demand changes  considerably from 1 period to 
another.  Several algorithms are presented for finding the best 
orders sizes which cover the periods in a time horizon .   
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order quantity for any business.  For this purpose we have to determine how much to 
purchase or produce at the beginning   of  the T periods and  determine the number 
of periods that this amount covers.  Needles to say that for some periods the 
scheduled order size would be zero and, instead, for some the size would be more 
than its own requirement. 

Ͷ-ʹ������������������� Problem 

When in an inventory planning problem, there is period-varying 
determi- nestic demand for a single storable product over some finite 
periods and the order size changes with period, it is called dynamic lot 
sizing problem.  This problem deals with the determination of the 
production or purchase plan that minimizes the total costs incurred 
over the planning horizon. In other words , dynamic lot sizing 
problem is a planning task for a multi-period time horizon to minimize 
the total cost of the inventory system.  

The rest of this chapter describes some of the  algorithms that have 
been proposed  for these problems.  Before introducing the algorithms 
some assumptions are needed to be explained. 

4-2-1  Assumptions of Dynamic Lot Sizing Algorisms 

The algorithms of dynamic lot sizing described in this chapter 
have been developed under the following assumptions( based on 
Chang,2001 and Tesine, 1994 page 179):  

1. The time horizon is finite and the periods of the horizon are of
the same time length. 

2. The demand is known but varies from one period to another
period. 

3. The replenishment always occurs at the beginning of a period.
4. No orders are scheduled to be received at the beginning of a

period in which demand is zero. 
5. Orders placed at the beginning of a period are assumed to be

available in time to meet the requirements . 
6. The entire order quantity is delivered outright at the beginning of

a period. 
7. No shortages is permitted.



167                                    Classical topics   in inventory control and Planning 

 8. The holding(carrying) cost is applied to the inventory available 
at the end of periods and only to inventory held from one period to the 
next.  

 9. All variables except demand and except specified ones are 
assumed to be constant,  

10. The manufacturer or vendor pays for the delivery cost.  
11. The replenishment of raw material to the manufacturer is 

assumed instantly, and the quantity is the same as the production 
quaintity of a production period.  

12. No inventory is held after the last period. 
 
 The first models for Lot sizing problem was developed in 1950s 

and still is being improved. For the history and more information on 
this model, the reader could refer to the books by Bramel and Simchi-
Levi (1997), Johnson and Montgomery (1974) and Silver et al. (1996). 

 
This model see Johnson &Montgomeri(1974), Bramel&Simchi, 

Silver et al(a996) 
4-2-2   Dynamic Lot Sizing Classic Model 
A mathematical model for dynamic lot sizing problem in its 

simplest form i.e. deterministic uncapacitated single item, zero lead-
time, without backlogging,  is as follows: 

Symbols  
T Number of periods in the planning horizon 
t  Period index;� א ሼͳǡ Ǥ Ǥ ǡ �ሽ  

 �୲� The quantity of demand for tth period 
 �୭୲ The ordering cost for period t 
 �୦୲ 

The cost for holding one unit at the end of Period t; not 
necessarily the same for all periods 

 �୲ 
The planned quantity  purchased or produced for the 
beginning of period t 

 �୲ The on-hand inventory at the end of period t 
Zt ൜ͳ��������������୲ �൐ Ͳ

Ͳ���������������୲ ൌ Ͳ� 

M A largish number e.g. the sum of the demands for all periods 
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TVC 
Total variable cost:TVC= σ �୦୲�୲୘୧ୀଵ    + σ �୭୲୘୧ୀଵ    
If  �୭& �୦ are the same for the periods, then 
TVC= �୦ ൈ σ �୲୘୧ୀଵ    + ሺ�ሻ ��ൈ �� 

����෍ሺ�୭୲ ൈ �୲ ൅ �୦୲ ൈ �୲
୘

୲ୀଵ
�ሻ���������������������������������ሺͳሻ 

s.t. 
�୲ିଵ ൅ �୲ ൌ �୲ ൅ �୲��������������� ൌ ͳǡʹǡ ǥ����������ሺʹሻ 

�୲ ൑ �ൈ �୲��������������������������� ൌ ͳǡʹǡ ǥ�����������ሺ͵ሻ 
��������୲ǡ �୲ ൒ Ͳǡ������ ൌ ͳǡʹǡ ǥ������������୲ א ሼͲǡͳሽ��������ሺͶሻ
In this model 

 Line (1) 
Represents minimization of the objective function (sum of 

setup/order cost and holing cost). Note that when an order is placed, 
there will be an incurred ordering cost. 

Line (2) 
The inventory � balance constraints  
Line (3) 
States that the quantity of each  order cannot exceed a level. 
Line (4):  
 Denotes the nonnegativity of the models variables.Note that 

(Simchi& Bramel,1997 page106): 
the inventory can be rewritten as �୲ ൌ σ ሺ�୧୲୧ୀଵ െ �୧ሻ and therefore

�୲  variables can be eliminated from the model. 
In fact, the above model does a trade-off  between the holding and 

the order/setup cost. The answer of the model is the solution to the 
classic dynamic problem.  In this model, assuming the holding  and 
setup/order costs do not depend on t, the total variable cost(TVC) is 
obtained from the following relationship: 

TVC= �୦σ �୲୘୧ୀଵ    + ሺ���ሻ ��ൈ �୭              (4-1)
Example 4-1 

Write the mathematical model for the following  dynamic problem. 
The ordering cost is $100 /order and the unit holding per period id $2. 
The inventory at the beginning and the end of the 8- period time 
horizon is zero (i0=0; i8=0).  There is no backlogging and the lead 
time is ignorable. Solve the model with a software: 
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sum ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ Period(t) 
ͳ͵ͷ ͳͲ ͷ Ͳ ͵Ͳ ͶͲ ͳͷ ʹͷ ͳͲ demand(�୲) 

Solution: 

����ͳͲͲ෍�୲
଼

୲ୀଵ
�൅ ʹ෍ �୲

଼

୲ୀଵ
�� 

s.t. 
I0+Q1=I1+10; 
I1+Q2=I2+25; 
I2+Q3=I3+15; 
I3+Q4=I4+40; 
I4+Q5=I5+30; 
I5+Q6=I6+0; 
I6+Q7=I7+5; 
I7+Q8=I8+10;�� 
�Ͳ ൌ ͲǢ ��ͺ ൌ ͲǢ�������������

Big M is set equal to the sum of the demands. 
Q1<=135*z1; 
Q2<=135*z2; 
Q3<=135*z3; 
Q4<=135*z4; 
Q5<=135*z5; 
Q6<=135*z6; 
Q7<=135*z7; 
Q8<=135*z8; 

�୲ א ሼͲǡͳሽ�������� ൌ ͳǡʹǡ ǥͺ������������������������������ 
�୲ ൒ Ͳǡ������������ ൌ ͳǡʹǡ ǥ ͺ������������������������� 
�୲ �൒ Ͳǡ������������ ൌ ͳǡʹǡ ǥ ͺ������������������������������ 

Solution from Lingo Software: 
We typed  the following phrases in LINGO environment.  Note that 

since Lingo does not accept i(0), i(1) denotes initial inventory at the 
beginning of the 8-period time horizon  and i(9) denote the inventory 
at the end of the horizon. 

sets: 
  index1/1..8/:z; 
index2/1..9/:i; 
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 end sets 
min = 100*(@sum(index1:z))+2*(@sum(index2:i)); 
i(1)+q1=i(2)+10;�

i(2)+q2=i(3)+25;i(3)+q3=i(4)+15;i(4)+q4=i(5)+40;i(5)+q5=i(6)+30; 
i(6)+q6=i(7)+0;i(7)+q7=i(8)+5;i(8)+q8=i(9)+10;q1<=135*z(1); 
q2<=135*z(2);q3<=135*z(3);q4<=135*z(4); 
q5<=135*z(5);q6<=135*z(6);q7<=135*z(7);q8<=135*z(8); 

@FOR(index1:@BIN(z)); 
!@BIN( z(1)); 
!@BIN( z(8)); 

i(1)=0;i(2)>=0;i(3)>=0;i(4)>=0;i(5)>=0;i(6)>=0;i(7)>=0; 
i(8)>=0;i(9)=0; 

q1>=0;q2>=0;q3>=0;q4>=0;q5>=0;q6>=0;q7>=0;q8>=0; 
end 
Of course there is no need to write the non- negativity of the 

variables; because it is the default in Lingo. 
Lingo gives the following answer with Solve command: 
Global optimal solution found at iteration:  39 
 Objective value:   480 

 Variable       Value  Reduced Cost 
 Z1  1.000000  100.0000 
 Z2  0.000000  -170.0000 
 Z3  0.000000  -440.0000 
 Z4  1.000000  100.0000 
 Z5  0.000000  -170.0000 
 Z6  0.000000  -440.0000 
 Z7  0.000000  -710.0000 
 Z8  0.000000  -980.0000 

 I1  40.00000  0.000000 
 I2  15.00000  0.000000 
 I3  0.000000  6.000000 
 I4  45.00000  0.000000 
 I5  15.00000  0.000000 
 I6  15.00000  0.000000 
 I7  10.00000  0.000000 
 I8  0.000000  0.000000 
 I0  0.000000  0.000000 

 Q1  50.00000  0.000000 
 Q2  0.000000  0.000000 
 Q3  0.000000  0.000000 

 Q4  85.00000  0.000000 
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 Q5  0.000000  0.000000 
 Q6  0.000000  0.000000 
 Q7  0.000000  0.000000 
 Q8  0.000000  0.000000 

Assuming zero lead time, the  result is as follows: 

Sum ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ Period (�) 
ͳ͵ͷ ͳͲ ͷ Ͳ ͵Ͳ ͶͲ ͳͷ ʹͷ ͳͲ Demand(�୲) 

ͳ͵ͷ - - - - ͺͷ - - ͷͲ Quantity 
ordered ሺ�୲ሻ 

 Ͳ ͳͲ ͳͷ ͳͷ Ͷͷ Ͳ ͳͷ ͶͲ Inventory 
available at the 
end of period ሺ�୲ሻ 

Costs: 
The software gives the optimum cost :�σ ͳͲͲ�୲୲଼ୀଵ �൅ σ ʹ�୲୲଼ୀଵ ൌ

ͶͺͲ calculated as follows: 
>> i1=40; i2=15; i3=0; i4=45; i5=15; i6=15; i7=10; i8=0; 
>> z1=1; z2=0; z3=0; z4=1; z5=0; z6=0; z7=0; z8=0; 
>>TVC= 100 (z1+z2+z3+z4+z5+z6+z7+z8)+2 

(i1+i2+i3+i4+i5+i6+i7+i8) 
TVC =  100 (1+0+0+1+0+0+0+0)+2(140)=200+280 = 480 
Or according to Eq.(4-1): 
TVC= ܥ୦σ ௧୘୧ୀଵܫ + ሺ���ሻ ��ൈ ୭ܥ
�������୭ ൌ ʹͲͲ�,ܥ����୦ ൌ ʹ� 
ʹσ �୲୲଼ୀଵ ൌ ʹሺͶͲ ൅ ͳͷ ൅ Ͳ ൅ Ͷͷ ൅ڮ൅ Ͳሻ ൌ ʹ ൈ ͳͶͲ=280���� 

��TVC =280+(2)(100)=   480.End of example 
� 
4-3   Model Solution Techniques 
Many exact, heuristic and meta-heuristic have been proposed for 

solving dynamic lot sizing problems in the last decades.  The answer 
given by Lingo software for Example 4-1 is considered an exact 
solution. Among other exact solution techniques is dynamic 
programming(DP). One of the DP algorithms is Wagner-Within 
algorithm which will be discussed at the end of  this chapter.  

Several meta-heuristic algorithms such as Genetic Algorithm, Ant 
Colony, Variable Neighborhood Search have been applied to solve the 
dynamic lot sizing.  These kind of algorithms have been discussed in 
references such as Zenon(2003&2006). 
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Heuristc Algorithms 
This part discusses a number of heuristic approaches for finding the 

answer to the dynamic lot sizing model. Although the heuristic 
algorithms are approximate and do not give an optimal solution but 
some of them give good solution. It is very common in practice to use 
an approximate method. One reason is that the approximate methods 
are easy to understand. It is also easy to check the computations 
manually(Axsater,2015,page60).  

Orlicky (1975) divides lot sizing into static and dynamic defined as 
follows(Yilmaz, dated-nil, page44) 

     Static order quantity is defined as the one that once compute, 
continues unchanged in the planned order schedule.  A dynamic order 
quantity, on the other hand, is subject to continuous  re-computation. 
According to Orlicky (1975), only The so-called Fixed order Quantity 
technique is always static, while others can be used for dynamic 
repaining at the users option 

 (End of quote). 
Among the heuristic techniques used for solving dynamic lot sizing 

are the following ones: 
1- Lot for Lot L4L( LFL) 
2 - Fixed order quantity (FOQ ) 

 2-1  Economic order Quaintly  (EOQ ) 
3- Fixed Period Requirement (FPR) or Fixed Order Period(FOP) 

or Periods Of Supply (POS)algorithm    
 3-1 Economic Order Interval (EOI ) or Period order Quantity ( 

POQ) 
       or Fixed order Interval( FOI ) algorithm 

4- Least Unit Cost  (LUC ) algorithm 
5- Total cost (LTC)  Algorithm = Part Period Algorithm (PPA)  
6- Part Period Balancing (PPB) ) 
7- Incremental Part Period Algorithm (IPPA) 
8-Silver-Meal (SM) Algorithm 
As well as the above algorithms described below, there are other 

heuristic techniques such as Least Period Cost (LPC)method, 
Uniform Order Quantity (UOQ) lot sizing technique, Foris Webster, 
Fix - Relax method and Groff's method  which have applied to solve 
dynamic lot sizing problems. 
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Axsater(2015),Tersine(1994), Peterson& Silver(1991), Winston 
(1994) are among references which deal with dynamic lot sizing 
techniques.  

4-3-1  Lot �for �Lot (LFL=L4L)method 
In lot-for-lot rule or method, an order is placed for each period in 

which there is a non-zero demand in the exact quantity required for 
that period.  If the lead time is zero,  the quantity planned for the 
beginning of the period (ܜۿሻ is equal to ܜۿ ൌ ǡܜ۲ ܜ ൌ ૚ǡ૛ǡ Ǥ Ǥ ǡ܂Ǥ 
Therefore the number of orders is large and is generally used for the 
products that have storage restrictions such as deteriorating products. 
LFL method is also suitable for high-volume continuous production 
(assembly lines). The lead time should be small. This ordering rule is 
the simplest among the dynamic ordering techniques.  Although the 
method does not use costs for determining the amount of orders, but it 
is suitable for goods with high holding cost or in other words(Yilmaz, 
dated-nil) for goods that have a high unit price and a slight ordering 
cost. This technique (Yilmaz, dated-nil) minimizes the inventory 
holding cost. 
Example 4-2 

Determine the lot sizes by LFL rule from the data below; also 
calculate TVC if  ܥ௢ ൌ ͳͲͲ� and ܥ௛ ؆ ͲǤ� �୐؆଴. 

ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳʹ - - ͷͺ ͵ͷ ͳͻ Ͷ͵ - Dt 

Solution 
The second row of the following table  shows the demand of each 

period and the third row gives the lot sizes to be placed by lot-for lot 
rule, assuming the lead time is zero. Rows 5 and 6 show the costs 

sum ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
 ͳʹ - - ͷͺ ͵ͷ ͳͻ Ͷ͵ - Dt 
 ͳʹ - - ͷͺ ͵ͷ ͳͻ Ͷ͵ - �୲ 
ͷͲͲ ͳͲͲ   ͳͲͲ ͳͲͲ ͳͲͲ ͳͲͲ  �୓ 
Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Holding cost 
ͷͲͲ ͳͲͲ Ͳ Ͳ ͳͲͲ ͳͲͲ ͳͲͲ ͳͲͲ Ͳ TVC 

The total variable cost for this example is TVC=500. 
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Note that if the lead time is not zero all orders are placed before the 
beginning of the periods; e.g. with TL=1 all orders would be  placed 
one period ahead.   

4-3-2  Fixed order Quantity (FOQ)method 
     In fixed order quantity rule, there is a constraint: a fixed amount 

or an integer multiple of it must be ordered, every time an order is 
placed for a particular item to be purchased or produced.  The fixed 
quantity(Q) depends upon the restrictions on transportation capacity, 
packaging, storage capacity, quantity discounts and production 
capacity. It is required to order the smallest multiple that is 
immediately greater the required demand to satisfy the demand and 
prevent shortage.  Yilmaz points out that "this technique would be 
applicable to items with an ordering cost sufficiently high to rule out 
ordering in net requirement quantities, period by period".  In this 
technique the order quantity is fixed but the time interval between the 
orders is not usually the same. 
Example  4-3 

A workshop produces an item in batches of  size 100.  The table 
shows the equipments of a 10-period horizon.  Prepare  a  production 
plan for the time horizon using FOQ rule and calculate the costs if �
ܐ۱ ൌ ̈́૛ and the setup cost per run is $1000. 
t ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ 
Dt ʹͲ ͷͲ ͳͲ ͷͲ ͷͲ ͳͲ ʹͲ ͶͲ ʹͲ ͵Ͳ 
Solution 

Costs: 

ordering cost:͵ ൈ �୭ ൌ ͵ͲͲͲǡ 
jolding cost: �୦ �σ �୲ଵ଴୲ୀଵ ൌ ʹሺͺͲ ൅ ͵Ͳ ൅ڮ൅ ͵Ͳ ൅ Ͳሻ ൌ ͺͲͲǡ
Total variable cost : TVC=3000+800=3800. 

Example  4-4 
   The following table shows the requirements schedule  for the 

nine periods. Determine the order sizes by FOQ policy.  Use lot sizes 
of multiples 15.  ۺ܂ ؆ ૙Ǥ 

t ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ su
m Dt ʹͲ ͷ

Ͳ 
ͳͲ ͷͲ ͷͲ ͳ

Ͳ 
ʹͲ ͶͲ ʹ

Ͳ 
͵Ͳ ͵ͲͲ 

Qt ͳͲͲ Ͳ Ͳ ͳͲͲ Ͳ Ͳ ͳͲͲ Ͳ Ͳ Ͳ ͵ͲͲ 
W, ͺͲ ͵

Ͳ 
ʹͲ ͹Ͳ ʹͲ ͳ

Ͳ 
ͻͲ ͷͲ ͵

Ͳ 
Ͳ  
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ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
͵ͷ ͳͲ ͳͲ Ͳ ͵ͷ ʹͷ ͳͲ ͶͲ Ͳ Dt 

 
Solution 

Third row of the following table gives the solution.  The 4th row is 
the inventory at the end of period t. 

sum ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳ͸ͷ ͵ͷ ͳͲ ͳͲ Ͳ ͵ͷ ʹͷ ͳͲ ͶͲ Ͳ Dt 
ͳ͸ͷ ͵Ͳ ͳͷ - - Ͷͷ ͳͷ ͳͷ Ͷͷ - Qt 
 Ͳ ͷ Ͳ ͳͲ ͳͲ Ͳ ͳͲ ͷ Ͳ It 

Note: 
The demands of some periods are greater than 15; that is why lot 

sizes of more than 15 were ordered. 
Costs: Assuming the cost per order is ۱۽ and the unit holding cost 

per period is �୦, then 
ordering cost:�͸ ൈ �୓  
holding cost :��୦ כ ሺͷ ൅ ͳͲ ൅ Ͳ ൅ ͳͲ ൅ ͳͲ ൅ Ͳ ൅ ͷ ൅ Ͳ�ሻ ൌ ͶͲ�୦ 
ܥܸܶ ൌ ͸�୭ ൅ ͶͲ�୦  

ͺ-͹-͸-ͷ�Economic order Quantity (EOQ) lot sizing policy 

EOQ  policy is a special case of FOQ policy in which the 
average of the demands of the periods(ܦഥ) is used to calculate 
EOQ according to Wilson Formula for purchase or production 
lot, if the range of demand changes is not too much. The 
calculated EOQ is rounded to the immediate greater integer. 
EOQ may not be necessarily suitable for lot size. If the EOQ 
does not satisfy the demand of any period, use the smallest 
multiple of it(2ൈEOQ, 3ൈEOQ,�) that will avoid shortage 
(Winston 1994, page 947).  The more the discontinuous and non-
uniform the demand, the less effective the EOQ will prove to 
be(Yilmaz, dated-nil).  

 
Example 4-5 

The demand for all coming 10 months is the same and equal to 25. 
TL=0 and the setup cost Co=$80� The unit holding cost per period is 
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�୦ ൌ ͳǤͷǤ��Determine the order sizes by EOQ policy.  What are the 
costs? 
Solution 

Since ۳ۿ۽ ൌ ට૛ࡻ࡯ࡰ
ࢎ࡯ ൌ ሺ૛ܜܚܙܛ כ ૛૞ כ ૡ૙Ȁ૚Ǥ૞ሻ ൌ ૞૚Ǥ૟૝ therfore 

Q is set equal to 52 and we could have the plan given in the following 
table. 

�୵ 
Error factor ͲǤͳ ͲǤʹ ͲǤ͵ ͲǤͶ ͲǤͷ ��� ͳ ͳǤʹ ͳǤͶ ��� ʹ 
Relative increase 
in TVC(%) 

ͶͲͷ ͳ͸Ͳ ͺͳ Ͷͷ ʹͷ  Ͳ ͳǤ͹ ͷǤ͹ ��� ʹͷ 

Costs 
Ordering cost: ͷ�୭� 
Holding  cost�ൌ �୦ሺʹ͹ ൅ ʹ ൅ڮ൅ ͵ͷ ൅ ͳͲሻ ൌ ͳͺͷ���୦� �୦ ൌ ͳǤͷǡ �� ൌ ͺͲ���������� 
��� ൌ ͷ�୭ ൅ ͳͺͷ���୦ ൌ ͸͹͹Ǥͷ�. 
If the lot size were chosen Q=50 then 

ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ ʹͷ �୲ - ͷͲ - ͷͲ - ͷͲ - ͷͲ - ͷͲ �୲ Ͳ ʹͷ Ͳ ʹͷ Ͳ ʹͷ Ͳ ʹͷ Ͳ ʹͷ �୲ 

Ordering cost: ͷ�୭� 
Holding  costൌ ���୦ሺʹͷ ൅ ʹͷ ൅ ʹͷ ൅ ʹͷ ൅ ʹͷሻ ൌ ͳʹͷ���୦� 
�୦ ൌ ͳǤͷǡ ˬ�� ൌ ͺͲ���������� 

��� ൌ ͷ�୭ ൅ ͳʹͷ���୦ ൌ ͷͺ͹Ǥͷ�. 
4-3-3 Fixed Order Period (FOP )��or Periods of Supply 
(POS) policy 

In Fixed Order Period method of lot sizing, the item is ordered 
every T time i.e. the time interval between successive orders  is a 
fixed time such as T, due to some restrictions. This method is also 
called Periods of Supply (POS) policy; and it is not necessarily 
economical.   In this method the order size changes but the interval 
between successive orders is constant.  In a special form of FOP 
called Fixed  Period Requirement(FPR),the fixed T is  set equal 
to m periods  and 
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ܳ௧ ൌ ෍ ௜ܦ
��௧ା௠ିଵ�

௜ୀ௧
 

where  
 

m The time interval between two successive orders 
(in number or periods) 

�୲ The order to be received at the beginning of Period t 
�୲ The demand of period t 
Example 4-6 

The following table shows the future monthly demands for a 
product. The lead time is 3 months and orders are set to exactly match 
the  requirements of 2 months. The unit holding cost per period for all 
periods is equal to �୦.  Determine the lot sizes and the costs for the 
time horizon by FPR rule. 

period Sep Oct Nov Dec Jan Feb Mar Apr May Jun 
demand - - - ͷ ͳͲ ͳͷ ʹͲ ͵ͷ ͷ ʹͷ 
Solution 

With FPR rule: 

 
ͳͲ  ͻ  ͺ  ͹  ͸  ͷ  Ͷ  ͵ ʹ  ͳ t 

ʹͷ�  ͷ ͵ͷ  ʹͲ ͳͷ ͳͲ ͷ  
Ͳ Ͳ 

 
Ͳ 

�୲ 

- - -  
ʹͷ 

-  
ͶͲ 

-  
 ͵ͷ 

  
ͳͷ 

�୲ 

Ͳ Ͳ ͷ Ͳ ʹͲ Ͳ ͳͲ Ͳ Ͳ ୲ 

������������� ൌ Ͷ�୭ǡ 
������������ ൌ෍�୦

ଵ଴

୲ୀଵ
ൈ �୲ ൌ �୦ כ ሺͳͲ ൅ ʹͲ ൅ ͷ�ሻ ൌ ͵ͷ�୦

ܥܸܶ ൌ Ͷ�୭ ൅ ͵ͷ�୦
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Example 4-7ͳ 
Apply POS method for the data given below.  Order for 3 weeks 

ahead.  The lead time is 2 weeks and the safety stock is 80.  The initial 
inventory is 370.  The unit holding cost per period is ۱ܐ ൌ ૚Ǥ૞Ǥ  

t(week) ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ 
Dt ͳ͵Ͳ ͳ͸Ͳ ͳʹͲ ʹ͸Ͳ ͳ͵Ͳ ͳʹͲ ͳͺͷ ͳͳͷ 

Solution 
From the initial inventory, 80 units are left after period 2. As the 

following table shows 2 more orders are needed:  
 

t 
ሺ���ൌ�ʹ�weeks 
 ���ൌ�ͺͲሻ 
) 
 

Initial 
inventory 

ͳ  
ʹ ͵ Ͷ ͷ ͸ ͹ ͺ 

Gross 
Requirement(Dt) 
 

 ͳ͵Ͳ ͳ͸Ͳ ͳʹͲ ʹ͸Ͳ ͳ͵Ͳ ͳʹͲ ͳͺͷ ͳͳͷ 
Planned Receipts    ͷͳͲ   ͶʹͲ   
Planned Order 
Releases(Qt)  ͷͳͲ   ͶʹͲ     
Projected 
Available (�୲) 
 

͵͹Ͳ ʹͶͲ ͺͲ Ͷ͹Ͳ ʹͳͲ ͺͲ ͵ͺͲ ͳͻͷ ͺͲ 
Costs: 
Ordering  cost: �୭ ൈ ʹ 
Holding cost : 

�୦෍ �୲ ൌ
଼

୲ୀଵ
�୦ כ ሺʹͶͲ ൅ ͺͲ ൅ Ͷ͹Ͳ ൅ ʹͳͲ ൅ ͺͲ ൅ ͵ͺͲ ൅ ͳͻͷ ൅ ͺͲሻ

ൌ ͳ͹͵ͷ�୦ 

��� ൌ ʹ�୭ ൅ ͳ͹͵ͷ�୦

                                                           

1 Extracted from: http://www.slideshare.net/anandsubramaniam/lot-
sizing-techniques 

http://www.slideshare.net/anandsubramaniam/lot-
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Ͷ-͵-͵-ͳ Economic Order Interval�(1EOI) method  or� Period Order 
Quantity (POQ)�or�Fixed Order Interval(FOI) 

In this heuristic method which is a kind of  Fixed Order Period 
method and sometimes called Fixed Order Interval method, a 
fixed number of  periods is used for ordering.  This fixed number 
(T) is derived from : 

o2CEOQ
T = =

D D I P                  ሺͶ-ʹሻ 
Where 
D  The average of the period requirements 
If the calculated � ൌ ୉୓୕

ୈഥ  is not integer, round it..  If it is possible 
to calculate the average inventory cost per period, from the 
integers ( less than or the greater  than T ) choose the one with 
less cost. The consumption during time T is sometimes dented by 
POQ : 

Consumption during time T=POQ. 
It is worth knowing that together with a fixed number of 

periods, some- times another number is given as the maximum 
inventory in this method.  If so the amount for placing an order is 
calculated from the difference between the maximum and the 
inventory available at the time of placing an order. 
	��� ����� �������� ���� �������� ሺͳͻͻͶሻ� ����� ͳ͵Ͷǡ� ���������

Ƭ������ሺͳͻͻͳሻ������͵ʹ͹ 
 

��������Ͷ-ͺ 
Apply  FOI rule to the following data in order to determine the 

order quantities which cover  the 9-period horizon.  ܥ୭ ൌ ̈́ͳͲͲǡ �୐ ؆Ͳ�ǡ � ൌ ̈́ͷͲ�ǡ � ൌ ʹΨ .  The unit holding cost is the same for all 
periods. 

                                                           

1  Economic Order Interval�
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ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t(month) 
ͳͷ ͷͲ ͺͲ ͳͷ ͹ ͳͲͲ ͵Ͳ ͵ ͳͲ 

tD

Solution 

9

1 34.5
9

tD
tD

  ϭ * *2

2.41 3oC
T T

DIP
     

sum ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
͵ͳͲ ͳͷ ͷͲ ͺͲ ͳͷ ͹ ͳͲͲ ͵Ͳ ͵ ͳͲ Dt 
͵ͳͲ   ͳͶͷ   ͳʹʹ   Ͷ͵ Qt 
ͳͺͲ Ͳ ͳͷ ͸ͷ Ͳ ͳͷ ʹʹ Ͳ ͵Ͳ ͵͵ It 

  If the planning for the receipt of  the orders were  such that the 
demand after the receipt of the order was zero, schedule the order for 
the next period with positive demand.  For example if the demand of 
Period 4 were zero instead of 122,  the order would be scheduled for 
the beginning of Period 5 that  has  a positive demand.    

Cost: 
Ordering cost:� ͵�୭ 
Holding cost: 

��������୦෍ �୲
ଵ଴

୲ୀଵ
ൌ �୦ሺ͵͵ ൅ ͵Ͳ ൅ ʹʹ ൅ ͳͷ ൅ ͸ͷ ൅ ͳͷ ൌ ͳͺͲ�୦ 

Total Variable cost 
�୦ ൌ � ൈ � ൌ ǤͲʹ ൈ ͷͲ ൌ ͳ 

��� ൌ ͵ כ �୭ ൅ �୦σ �୲ଵ଴୲ୀଵ ൌ ͵ ൈ ͳͲͲ ൅ ሺͳሻሺͳͺͲሻ ൌ ͶͺͲ��������
Example 4-91 

The demands of the next 8 periods for a product are given in 
the following table. The unit price is $1.5, the setup cost 
is��� ൌ ͳͲͲ and annual I=%25 for all periods.  TL =2 weeks. The 

                                                           

1 From Subramaniam(2009) 
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initial invent- tory is 370.  Apply POQ method to determine the 
lot sizes. Calculate the costs, assuming the unit holding cost per 
period is ܥ௛  

T(week) 
 
 

ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ 
�୲ ͳ͵Ͳ ͳ͸Ͳ ͳʹͲ ʹ͸Ͳ ͳ͵Ͳ ͳʹͲ ͳͺͷ ͳͳͷ 

Solution 

o h

0.25 1.50
C 10,  C =

52
per week




o

130 + 160 + 120 + 260 + 130 + 120 + 185 + 115

8
D = = 152.5 per  week

2DC 2(152.5)(10)
EOQ = = = 650.33 650

0.25×1.5C
h

52



����� ൌ ���
�ഥ ൌ ͸ͷͲ

ͳͷʹǤͷ ൌ ͶǤʹ͸ʹ ؆ Ͷ 

As observed from the table, the initial inventory suffices period 1 
and 2.  A lot of size 630 is placed for Periods 3 to 6 at the start of 
Period 1(note that we have a lead time of 2 weeks). To cover the 
Periods 7 & 8 a lot of size 300 is placed at the start of Period 5.  Row 
4 of the table shows the remaining inventory at the end of the periods;  
e.g. the on-hand inventory at the end of periods 3,7 & 8 are: 

t ୲ t =͵ �ଷ=ͺͲ൅�͸͵Ͳ�-ͳʹͲൌͷͻͲ 
t =͹ �଻ ൌͺͲ൅͵ͲͲ-ͳͺͷൌͳͻͷ 
T=ͺ �ଽ ൌͳͻͷ-ͳͳͷൌͺͲ 
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��ൌʹ 
��ൌ�ͺͲ 
 Initial 

inventory 

week 
 

t 
 

ͳ 
ʹ ͵ Ͷ ͷ ͸ ͹ ͺ 

Dt 
  ͳ͵Ͳ ͳ͸Ͳ ͳʹͲ ʹ͸Ͳ ͳ͵Ͳ ͳʹͲ ͳͺͷ ͳͳͷ 
Planned to 
be received    ͸͵Ͳ   ͵ͲͲ   

Qt  ͸͵Ͳ   ͵ͲͲ     
୲  ͵͹Ͳ ʹͶͲ ͺͲ ͷͻͲ ͵͵Ͳ ʹͲͲ ͺͲ ͳͻͷ ͺͲ 

costs:�ʹܥ଴�� 
Holding  cost: 

�୦෍ �୲
଼

୲ୀଵ
ൌ �୦ כ ሺʹͶͲ ൅ ͺͲ ൅ ͷͻͲ ൅ ͵͵Ͳ ൅ ʹͲͲ ൅ ͺͲ ൅ ͳͻͷ ൅ ͺͲ�ሻ ൌ ͳ͹ͻͷ�୦

Total Variable  cost: 

ܥܸܶ ൌ ଴ܥʹ ൅ ͳ͹ͻͷ�୦
Example 4-10 

The demands for a product during the next 8 periods and the 
unit holding cost per period for various periods are given below: 

ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͺͲ ͸Ͳ ͷͲ ͹Ͳ ͷͲ ͵ͷ ͸Ͳ Ͷͷ Dt 
ʹͲ ʹͲ ʹͲ ͳͺ ͳͷ ͳͶ ͳʹ ͳͲ �୦୲ 

the lead time is negligible and every 2 periods an order is placed 
( 2-period FOI rule).  The maximum on-hand inventory is set to 
be 140 units and no safety stock is necessary. Find the order lot 
sizes in order to plan for the time horizon,  Also calculate the 
TVC. 
Solution 

Since the lead time is zero and we have a ceiling for invent- 
ory, the order quantities(Qt's) are obtained from the difference 
between the maximum i.e.140 and the on hand inventory at the 
beginning  of the period as shown in the table below: 
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period(t)� ͳ ʹ ͵ Ͷ ͷ ͸ � T 
demand(Dt) ͳͲ Ͳ ͳͷ ʹͶ Ͳ ͳ � Ͷ 

sum ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͶͷͲ �ͺͲ�  ͸Ͳ����� �ͷͲ �͹Ͳ ͷͲ �͵ͷ ͸Ͳ Ͷͷ��� Dt 
ͶͷͲ - ͳʹͲ��� ͳͶͲ

െ ͷͷ
ൌ ͺͷ 

- ͳͶͲ
െ ͵ͷ
ൌ ͳͲͷ

�� ͳͶͲ Qt 

 Ͳ ͺͲ ʹͲ ͹Ͳ ͷͷ ͳͲͷ ͵ͷ ͻͷ It 
 Ordering cost:�Ͷ�୭�� 
Holding cost :σ ሺ�୦ሻ୲ ൈ �୲୲଼ୀଵ ൌ

ͳͲሺͻͷሻ ൅ ͳʹ ൈ ͵ͷ ൅ ͳͶሺͳͲͷሻ ൅ ͳͷሺͷͷሻ ൅ ͳͺሺ͹Ͳሻ ൅ ʹͲሺʹͲሻ ൅ ͺͲሺʹͲሻ ൅ Ͳ
ൌ ͸ͻʹͷ 

��� ൌ Ͷ ൈ �୭+6925

Ͷ-͵-Ͷ����������������� (LUC ��  1�˴Algorithm�

Suppose we would like to place an order which covers the next 
݅ periods and would like to know how many periods the order 
should cover. Least unit cost (LUC) method is based on 
minimization of ordering and holding cost per unit product. This 
cost denoted  by ��ሺ��ሻ���� ൌ ͳǡʹǡ ǥ����is defined as follows: 

ሺ�݅ሻܥܷ ൌ �������������� ൅ �������������
����������������������������������� ൌ

ைܥ ൅ ௛ܥ ൈ σ ሺݐ െ ͳሻܦ୲௜௧ୀଵ
σ ௧௜௧ୀଵܦ

 

ሺ�݅ሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ σ ሺݐሻܦ୲ାଵ௜ିଵ௧ୀଵ
σ ௧௜௧ୀଵܦ

ൌ ைܥ ൅ ଶܦ௛ሺͳܥ ൅ ଷܦʹ ൅ڮ൅ ሺ� െ ͳሻܦ୧ሻ
σ ௧௜௧ୀଵܦ

�����ሺͶ െ ͵ሻ 
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where 
� The period through the end of which the order covers 

 ை Ordering costܥ

 ௛ Holding cost per unit hold at the end of periodܥ

 ௧ The requirement of period tܦ

The algorithm of LUC may take several iterations to complete 
the planning horizon.  During the process, the periods for which 
the planning has been performed are put away and new iterations 
are performed until all periods are planned.  

In the first iteration the starting period is Period 1.  ��ሺ��ሻ is 
consecutively calculated for the starting period and the next 
periods (i=1,2,�) until���ሺ��ሻ for a particular ݅ satisfy the 
following two conditions: 

ሺ�݅ሻܥܷ ൑ ሺ�݅ܥܷ െ ͳሻ 
and 

ሺ�݅ሻܥܷ ൏ ሺ�݅ܥܷ ൅ ͳሻ 
 (4-4) 

Denote this � by �ଵǤ  Place an order to cover Periods 1 through 
�ଵǤ 

For the second iteration take �ଵ ൅ ͳ  as the starting period and 
calculate ��ሺ��ሻ for  � ൌ �ଵ ൅ ͳǡ �ଵ ൅ ʹǡ ǥ ����ǣ �ܷܥሺ�݅ሻ ൌ
஼ೀା஼೓ൈσ ሺ௧ିሺ୧భାଵሻሻ஽౪౪ಱ౟భశభ

σ ஽೟౪ಱ౟భశభ
.   

The stopping criterion here  is the same as that of the previous 
itera- tion.  Denote the period satisfying ��Ǥ� Ͷ-Ͷ� ��� �ଶǤ Perform 
new iterations until the entire time horizon is covered.  

If when increasing i=1,2,� in any iteration, you reach the end 
��� ���� ������������� ���� ���� ��������� �������������������Ǥ� Ͷ-Ͷ� ���
not satisfied, then stop and place the last order in such a  way it 
cover the remaining periods of the iteration (the unplanned 
periods). 
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Example 4-11 
Find the order lot sizes for the time horizon given in the table 

below using LUC heuristic  method. If the order cost is $100 and 
the unit holding cost per period is $2, calculate the costs. 

ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳ

Ͳ 
ͷ Ͳ ͵

Ͳ 
Ͷ

Ͳ 
ͳ

ͷ 
ʹ

ͷ 
ͳ

Ͳ 
�୲ 

Solution 
The problem is solved by LUC method through 3 iterations; in 

each iteration UC(i) is consecutively computed, when UC(i) starts 
to increase the iteration stops and an order is placed for the sum 
of the requirements of the first period in the iteration  and all its 
successive periods before the period in which the increase occurs.  
1st  Iteration: the stating period is 1 

ሺ�݅ሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ σ ሺݐ െ ͳሻܦ୲௜௧ୀଵ
σ ௧௜௧ୀଵܦ

 

ሺͳሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ σ ሺݐ െ ͳሻܦ୲ଵ௧ୀଵ
σ ௧ଵ௧ୀଵܦ

ൌ ைܥ ൅ Ͳ
ଵܦ ൌ ͳͲͲ

ͳͲ ൌ ͳͲ 
ሺʹሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ଶܦ

ଵܦ ൅ ଶܦ ൌ ͳͲͲ ൅ ʹ ൈ ʹͷ
ͳͲ ൅ ʹͷ ൌ ͶǤʹͺ 

ሺ͵ሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ሺͳܦଶ ൅ ଷሻܦʹ
ଵܦ ൅ ଶܦ ൅ ଷܦ ൌ ͳͲͲ ൅ ʹ ൈ ʹͷ ൅ ʹ ൈ ʹ ൈ ͳͷ

ͳͲ ൅ ʹͷ ൅ ͳͷ
ൌ ͶǤʹ 

ሺͶሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ሺͳܦଶ ൅ ଷܦʹ ൅ ସሻܦ͵
ଵܦ ൅ ଶܦ ൅ ଷܦ ൅ ସܦ
ൌ ͳͲͲ ൅ ʹ ൈ ʹͷ ൅ ʹ ൈ ʹ ൈ ͳͷ ൅ ʹ ൈ ͵ ൈ ͶͲ

ͳͲ ൅ ʹͷ ൅ ͳͷ ൅ ͶͲ ൌ ͷ 

The stopping criterion i.e. Ineq. 4-4 is satisfied for i=3: 

ሺ�͵ሻܥܷ ൑ ͵�ሺܥܷ െ ͳሻƬ 
ሺ͵ሻܥܷ ൏ ͵ሺܥܷ ൅ ͳሻ 

Now the first order is placed such that it covers period 1,2 and 
3 with quantity ͳͲΪʹͷΪͳͷαͷͲǤ   
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2nd  Iteration:Although  the starting period in this iteration is 4 but 
we set ݅  equal to 1 for the calculation. 
ሺͳሻܥܷ ൌ ஼ೀା଴஽ర

஽ర ൌ ଵ଴଴
ସ଴ ൌ ʹǤͷ; 

ሺʹሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ହܦ
ସܦ ൅ ହܦ ൌ ͳͲͲ ൅ ʹ ൈ ͵Ͳ

ͶͲ ൅ ͵Ͳ ൌ ʹǤʹͺͷ͹ 

ሺ͵ሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ሺͳܦହ ൅ ଺ሻܦʹ
ସܦ ൅ ହܦ ൅ ଺ܦ ൌ ͳͲͲ ൅ ʹ ൈ ͵Ͳ ൅ ʹ ൈ ʹ ൈ Ͳ

ͶͲ ൅ ͵Ͳ ൅ Ͳ
ൌ ʹǤʹͺͷ͹ 

ሺͶሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ሺܦହ ൅ ଺ܦʹ ൅ ଻ሻܦ͵
ସܦ ൅ ହܦ ൅ ଺ܦ ൅ ଻ܦ
ൌ ͳͲͲ ൅ ʹ ൈ ͵Ͳ ൅ ʹ ൈ ʹ ൈ Ͳ ൅ ʹ ൈ ͵ ൈ ͷ

ͶͲ ൅ ͵Ͳ ൅ Ͳ ൅ ͷ ൌ ʹǤͷ͵ 

The stopping criterion i.e. Ineq. 4-4 is satisfied for i=3: 

ሺ�͵ሻܥܷ ൑ ͵�ሺܥܷ െ ͳሻ,���ܷܥሺ͵ሻ ൏ ͵ሺܥܷ ൅ ͳሻ 
Then the second order is placed such that it covers 3 more 

periods i.e 4,5 and 6 with quantity ͶͲ+͵Ͳ+Ͳα͹ͲǤ 
3rd  Iteration:Although  the starting period  is 7 but for the 
calculation we set ݅  equal to 1. 

ሺͳሻܥܷ ൌ ைܥ ൅ Ͳ
଻ܦ ൌ ͳͲͲ

ͷ ൌ ʹͲ 
ሺʹሻܥܷ ൌ ைܥ ൅ ௛ܥ ൈ ଼ܦ

଻ܦ ൅ ଼ܦ ൌ ͳͲͲ ൅ ʹ ൈ ͳͲ
ͷ ൅ ͳͲ ൌ ͺ 

Then the  third and final order is placed for the remaining 
periods 7 and 8 with size of ͷ+ͳͲαͳͷǤ� � ���� �������� ����
summarized in the following table: 

ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ period(t)  
ͳͲ ͷ Ͳ ͵Ͳ ͶͲ ͳͷ ʹͷ ͳͲ requirement(Dt) 
 ͳͷ   ͹Ͳ   ͷͲ order(Qt) 
Ͳ ͳͲ Ͳ Ͳ ͵Ͳ Ͳ ͳͷ ͶͲ Inventory at the end 

of period ሺ�୲ሻ 
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Costs: 
Ordering  cost ������ ͵ ൈ ͳͲͲ 
Holding cost�����୦σ �୲୲଼ୀଵ ൌ ʹሺͶͲ ൅ ͳͷ ൅ ͵Ͳ ൅ ͳͲሻ ൌ ʹሺͻͷሻ ൌ ͳͻͲ 

��� ൌ ͵ ൈ ͳͲͲ ൅ ʹ ൈ ͻͷ ൌ ͶͻͲ     
 

Ͷ-͵-ͷ Least total Cost (LTC) method 
or Part Period Algorithm(PPA) 

Part Period algorithm was first introduced by DeMatteis(1968) .  
This researcher points out that it works well for all environments 
especially for the cases having a limited number of periods.  The 
algorithm tries to find a number of periods whose holding costs 
equals the ordering cost. The logic of this procedure is the same 
as that of classic EOQ model in which the inventory cost is mini- 
mized at the point where the holding cost equals the ordering 
cost.  It is worth mentioning that when the demand is discrete the 
holding cost and the ordering cost do not become equal.  Then 
the aim is to minimize their difference. 

 
Symbols 

 
��୭ Cost   per   order 

��୦ Unit holding cost per period 

��୧ Requirement of ith period 
��� ൌ ሺ� െ ͳሻ�୧ Part Period(PP) related to ith period� 

1

( 1)
n

i
i

App i D


   Accumulated Part-Period for n periods 

 
Definition of Part-Period and Accumulated Part-Period 

One of the measurement units used in inventory subject is part-
period(pp)1. By 1 pp it is meant that 1 unit of a product is held for 1 

                                                           

1 In industry we have other such measurement units as man-hour or machine-
hour.  
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period. If one unit  of a kind of a product is held for ten periods or 2 
units are held for 5 periods or 10 units are held  for 1 period we say 
that the part-period(pp) value of all these 3 cases are the same and 
equal to 10pp.  

Suppose we place an order for the requirements of n periods to 
receive a lot of size 

1 2 ... nQ D D D      at the beginning of Period 1. 

From the amount Q, as much as Dͳ is consumed during Period 1.  The 
pp measurement unit for this amount is Ͳ ൈ �ଵ. From the amount Q, as 
much as �ଶ is consumed during Period 2.  Noting that �ଶ was held for 
one period before being consumed in Period 2, the pp measurement 
unit for this amount is ͳ ൈ �ଶ . 

From the amount Q, as much as �ଷ is consumed during Period 3. 
Noting that �ଷ was held for 2 periods before being consumed in 
Period 3, the pp measurement unit for this amount is ʹ ൈ �ଷ �� the 

sum of these products i.e. 1 2
1

0 1 ... ( 1) ( 1)
n

n i
i

D D n D i D


      is called

accumulated part-period for n periods and is denoted by APPn: 

1

( 1)
n

n i
i

APP i D


 
Determination of order lot sizes 

To determine  the lot sizes or the orders for a time horizon  with 
PPA algorithm you may require several iterations.  In each iteration 
try to find the that number of periods(n=1,2,�.) for which ܥ௛ ൈܲܣ ௡ܲ ൌ ௛ܥ௢ or find that n  which makes ȁܥ ൈ ܲܣ ௡ܲ െ  .௢ȁ minimumܥ
Therefore in iteration 1  when an increase happened after several 
consecutive decrease in ȁܥ௛ ൈ ܲܣ ௡ܲ െ  ௢ȁǡ  stop the iteration andܥ
place an order that cover the n-1 periods. 

In the next Iteration take Period n+1 as the starting period and act 
similar to iteration 1.  Do this procedure until all periods in the 
horizon are covered. If in an iteration the stopping criterion is not 
satisfied place an order which cover the unplanned periods. 
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Example 4-12 

Find the order lot sizes for the time horizon given in the table 
below using LTC heuristic  method. If the order cost is $300 and 
the unit holding cost from one period to the next immediate 
period is $2, calculate the costs. 

ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
Ͳ ͷͷ Ͳ ͵Ͳ ʹͲ ͳͲ ͷͲ Ͳ ͶͲ ͵Ͳ �୲ 

Solution 

௢ܥ ൌ ͵ͲͲǡ ௛ܥ ൌ ʹ 
ȁ���୬ െ �୭�ȁ ൌ

1

| ( 1) |
n

h i o
i

C i D C


   
Quantity Covered 

periods 

Iteration  
(k) 

����

ȁͲ െ ͵ͲͲȁ ൌ ͵ͲͲ  ͵Ͳ��� ͳ 
1st ȁʹሺͶͲ ൈ ͳሻ െ ͵ͲͲȁ ൌ ʹʹͲ ͹Ͳൌ͵Ͳ൅ͶͲ ͳǡʹ 

  ʹʹͲ Ͳ൅͹Ͳൌ͹Ͳ  ͳǤʹǤ͵ 
ȁʹሺͶͲ ൈ ͳ ൅ ͷͲ ൈ ͵ሻ െ ͵ͲͲȁ ൌ ͺͲ ͷͲ൅͹ͲൌͳʹͲ ͳǤʹǤ͵ǤͶ 
ȁʹሺͶͲ ൈ ͳ ൅ ͷͲ ൈ ͵ ൅ ͳͲ ൈ Ͷሻ

െ ͵ͲͲȁ ൌ ͳ͸Ͳ 
ͳͲ൅ͳʹͲൌ 
ͳ͵Ͳ 

ͳǤʹǤ͵ǤͶǤͷ� 
��� ������� Ͷ� ���� ����������� ȁ���୬ െ �୭�ȁ has reached its 

������������������������������������������������ͳ���������Ͷ 
ȁͲ െ ͵ͲͲȁ ൌ ͵ͲͲ    ͳͲ ͷ ��

��
��
2nd 
��

ȁʹሺʹͲ ൈ ͳሻ െ ͵ͲͲȁ ൌ ʹ͸Ͳ    ͵Ͳ ͷǤ͸ 
ȁʹሺʹͲ ൈ ͳ ൅ ͵Ͳ ൈ ʹሻ െ ͵ͲͲȁ

ൌ ͳͶͲ 
   ͸Ͳ ͷǤ͸Ǥ͹ 

 ͳͶͲ    ͸Ͳ ͷǤ͸Ǥ͹Ǥͺ 
ȁʹሺʹͲ ൈ ͳ ൅ ͵Ͳ ൈ ʹ ൅ ͷͷ ൈ Ͷሻ

െ ͵ͲͲȁ ൌ ͵ͲͲ 
   ͳͳͷ ͷǤ͸Ǥ͹ǤͺǤͻ 

��� ������� ͺ� the difference ȁ���୬ െ �୭�ȁ has reached its 
minimum and an order is placed to cover per�����ͷ� ��������ͺ�
������������͵�������������������ͻሺ����ͳͲሻ 

͵ͲͲ ͷͷ ͻ 3rd 
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The summary of results are shown in the following Table 

Results of Example 4-12 with LTC or PPA  method
ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
Ͳ  ͷͷ  Ͳ    ͵Ͳ  ʹͲ  ͳͲ  ͷͲ  Ͳ   ͶͲ  ͵Ͳ Dt 
- ͷͷ - - - ͸Ͳ - - - ͳʹͲ Qt 
 Ͳ Ͳ Ͳ ͵Ͳ ͷͲ Ͳ ͷͲ ͷͲ ͻͲ �୲ 

ܥܸܶ ൌ ைܥ͵ ൅ ͵�୦෍ �୲
଼

୲ୀଵ
ൌ ͵ ൈ ͵ͲͲ ൅ ʹሺͻͲ ൅ ͷͲ ൅ ͷͲ ൅ ͷͲ ൅ ͵Ͳሻ ൌ ͳͶͶͲ� 

End of example

4-3-6 Part Period Balancing(PPB)�algorithm 

The part period balancing algorithm determines the lot sizes by a 
procedure similar to LTC algorithm.  It tries to balance the holding 
costs and ordering costs.  Let  

( )
n

n i
i

A PP i D


 
1

1 (4-4) 

o o

h

C C
EPP

C I p
 


(4-5) 

If the Ch of periods are not equal use their average in the 
denominator. 

In each iteration the aim is to  find the n which  APP and EPP 
equal.  Practically stop the iteration when you reach the smallest n 
which satisfy the following(Yilmaz, dated-nil) 

nAPP EPP  (4-6) 

To determine the suitable n  in the first  iteration,  calculate 

1

( 1)
n

n i
i

APP i D


  for n=1,2,� consecutively, When for the first 

time APP exceeds EPP  stop and place an order for the periods up to 
the period for which the increase happen. Denote the last period 
before the increase stats by n. 

In the second iteration take �Ϊͳ as the starting period(i=1) and act 
similar to iteration 1.  Continue the procedure until the horizon is 
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completed. PPB algorithm usually gives results similar to those of 
PPA. 

"Refinements  to this algorithm have been developed. These 
refinement called look-ahead and look-backward can improve 
performance"  see Tersine(1994) page 191.   

 
Example 4-13 

Find the order lot sizes for the time horizon given in the table 
below using PPB heuristic  method. If the order cost is $120 and 
the unit holding cost from one period to the next immediate 
period is $2, calculate the costs. 

ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
͵Ͳ ͳͷ ͷ ʹͲ Ͳ ͵ͷ Ͳ ͳͷ ͶͲ �୲ 

Solution 
 
Iteration 1 Iteration 2 

n 

1

( 1)
n

n i
i

App i D


   
period n 

1

( 1)
n

n i
i

App i D


   

ͳ ሺͳ െ ͳሻሺ�ͳሻ ൌ Ͳ ൏ ܲܲܧ
ൌ ͳʹͲ

ʹ  
Ͷ ͳ ሺͳ-ͳሻሺ͵ͷሻൌͲ൏  ൌ͸Ͳܲܲܧ

ʹ Ͳ൅ሺʹ-ͳሻሺͳͷሻൌͳͷ൏ ܲܲܧ ൌ
͸Ͳ 

ͷ ʹ Ͳ൅ሺʹ-ͳሻሺͲሻൌͲ൏  ܲܲܧ
͵ ͳͷ൅ሺ͵-ͳሻሺͲሻൌͳͷ൏ ͸ ͵ Ͳ൅ሺ͵-ͳሻሺʹͲሻൌͶͲ൏ ܲܲܧ  ܲܲܧ
Ͷ ͳͷ൅ሺͶ-ͳሻሺ͵ͷሻൌͳʹͲ൐ ͹ Ͷ ͶͲ൅ሺͶ-ͳሻሺͷሻൌͷͷ൏ ܲܲܧ  ܲܲܧ
  ͺ ͷ ͷͷ൅ሺͷ-ͳሻሺͳͷሻൌͳͳͷ൐  ܲܲܧ

Since APP�exceeds େ౥େ౞ ൌ ��� ൌ ͸Ͳ 
���������������ͷͷ�������������������

�����������������������Ͷ 

  Since APP�exceeds ��� 
��������������͸Ͳ���������������

��������Ͷ���������͹ 

 
 
The third ordering quantity is Q3 =30+15  for periods 8 and 9.  The 
summary of calculations  is given in the table below. 
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 Ordering cost: ͵ ൈ ͳʹͲ ൌ ͵͸Ͳ 
Holding�cost: 

�୦෍ �୲
଼

୲ୀଵ
ൌ ʹሺͳͷ ൅ Ͳ ൅ Ͳ ൅ ʹͷ ൅ ʹͷ ൅ ͷ ൅ Ͳ ൅ ͵Ͳ ൅ Ͳሻ ൌ ʹͲͲ���� 

���� ൌ �͵͸Ͳ ൅ ʹͲͲ ൌ ͷ͸Ͳ��� 
End of example

4-3-7  Incremental��Part- Period Algorithm(IPPA) 

Increment��Part-Period algorithm which was presented in Patterson 
and Forge (1985), is similar to PPB algorithm, but tries to balance 
incremental holding costs to ordering cost.   In this algorithm, the lot 
size is continually  increased as long as the incremental holding costs 
is less than or  equal to the ordering cost(Tersine, 1994 ,p 193).  La 
Forge(1982) showed through simulation technique that IPPA is 
preferable to PPB(Shih& Fu,1995). The objective in IPPA algorithm 
id to determine lot sizes that include an integer number of period 
requirements so that(Tersine 1994,page193)   

o
h n o n n

h

C
C (n-1)D =C or IPP =(n-1)D = (4-7)

C

where 

period ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ sum 
requirement ͶͲ ͳͷ 

 
͵ͷ  ʹͲ ͷ ͳͷ ͵Ͳ ͳ͸Ͳ 

inventory carrying 
period  (i) 

 
Ͳ ͳ ʹ ͵ 

    
 

 

( 1) ipp i D   Ͳ ͳͷ Ͳ ͳͲͷ       
n

n i
i=1

APP = (i-1)D
 
Ͳ ͳͷ ͳͷ ͳʹͲ       

i     Ͳ ͳ ʹ ͵ Ͷ   
( 1) ipp i D    

  Ͳ Ͳ ͶͲ ͳͷ ͸Ͳ   
A PP     Ͳ Ͳ ͶͲ ͷͷ ͳͳͷ   
Qt ͷͷ   ͸Ͳ    Ͷͷ  ͳ͸Ͳ 
It ͳͷ   ʹͷ ʹͷ ͷ  ͵Ͳ   
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oC The ordering cost 

�௛ ൌ  Unit holding cost ܲܫ

nD The requirement of nth period 

��୬ Incremental part-period=( n-1)Dn 

EPP Economical Part-Period�=�େ౥େ౞
This algorithm may require several iterations.  In iteration 1, 

calculate ���୬ ൌ ሺ� െ ͳሻ�୬ for n=1,2,�  Stop whenever ���୬ 
exceeds EPP; record the last value of n and denote the value of 
( last n-1) by n*. Place an order for the periods 1 through n*. 
Some references ignore the equality of IPPn with� �EPP ;however the 
author of this bookbelieves that the actual objective�  is to find an 
integer that satisfy the  equality 

h ( 1) n oC n D C  .  Therefore if for a 

particular n the equality happened, stop and set n* equal to this n.  If 
the horizon is not ended perform another similar iteration with n*+1 as 
the starting period. 

If in an iteration the stopping criterion is not satisfied place an 
order which cover the unplanned periods in the horizon. 

IIPA has been extended to discount case (see Fu and Shih,1995). 
This method has easy understanding and has less calculations with 
respect to Silver-Meal and PPA methods.  The following Flowchart 
helps to understand each iteration of the algorithm. 
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Fig 4-1 The algorithm for determining each lot size in IPPA 
assuming  zero inventory for ith period (Vera&Laforge,1985) 

Example 4-14 
Find the order lot sizes for the time horizon given in the table 

below using IPPA heuristic  method. If the order cost is $100 and 
the fraction of unit holding cost from one period to the next 
immediate period is 2%, and the unit price is $50 calculate the 
costs. 

Solution 

 o

h

C 100
EPP = = = 100

C 0.02 × 50
� 

Close the lot size and place an order  of 
Quantity  Qi 

Q=Q+ Di+n 

 

ŶсŶнϭ 

Yes 

Q=Di 

n=1 

 

nDi+n<EPP  ? 

 No 
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The calculations for IPPA method are as follows: 

Period(t)  n Dn 
n nIPP =(n-1)D  ͳ ͳ ͹ͷ Ͳ ൈ ͹ͷ ൌ Ͳ ൏ ͳͲͲ ʹ ʹ Ͳ ͳ ൈ Ͳ ൌ Ͳ ൏ ͳͲͲ ͵ ͵ ͵͵ ʹ ൈ ͵͵ ൌ ͸͸ ൏ ͳͲͲ Ͷ Ͷ ʹͺ ͵ ൈ ʹͺ ൌ ͺͶ ൏ ͳͲͲ ͷ ͷ Ͳ Ͷ ൈ Ͳ ൌ Ͳ ൏ ͳͲͲ ͸ ͸ ͳͲ ͷ ൈ ͳͲ ൌ ͷͲ ൏ ͳͲͲ  

������ ���� ����� ���� ������� ���αͳͲͲ� ��� ���� ������� ����� ����
order is enough to be placed with size  ͹ͷ ൅ Ͳ ൅ ͵͵ ൅ ʹͺ ൅ Ͳ ൅
ͳͲ ൌ ͳͶ͸ for all the horizon.   

���
Costs: 
Order cost�ͳ ൈ ͳͲͲ ൌͳͲͲ    
Holding Cost 
�୦σ �୲଺୲ୀଵ = 
 
ͲǤͲʹ ൈ ͷͲሺ͹ͳ כ ͳ ൅ ͹ͳ כ ͳ ൅ ͵ͺ כ ͳ ൅ ͳͲ כ ͳ ൅ ͳͲ כ ͳሻ ൌ ʹͲͲ� 
TVC=100+200=300�� 
The summary of the results are given in the table below: 

t ͳ ʹ ͵ Ͷ ͷ ͸ su
m Dt ͹ͷ Ͳ ͵͵ ʹͺ Ͳ ͳͲ ͳͶ
͸ Qt ͳͶ͸ - - - - - ͳͶ
͸ It ͹ͳ ͹ͳ ͵ͺ ͳͲ ͳͲ Ͳ ʹͲ
Ͳ Accu-

mulated  
variable 
cost 

100 + (146 - 75) ×

(0.02 × 50) = 171  171 +  
(146 - 75 - 0) ×

(.02 × 50) = 242  
ʹͺͲ ʹͻͲ ͵ͲͲ ͵ͲͲ  

End of example��

Another example is given at the end of this chapter. 

4-3-8 Silver �Meal algorithm 

Edward Silver and Harlen Meal in 1973 proposed an algorithm for 
dynamic lot sizing.  They  did not want to minimize unit cost or total 
cost, but tried to minimize average cost per period(Yilmaz, dated-nil). 
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This method has less calculations compared to that of  Wagner-Wittin 
and gives near optimal answer(Based on Winston,1994 Page1050).  In 
this algorithm. starting from a period, we are in search of that number 
of periods to place an order  whose   cost per period is minimum.  The 
costs consists  of the ordering cost  plus the carrying costs related to 
the requirements of the periods being considered. Defining 1AC(j) as   

ሺ�݆ሻܥܣ ൌ ������������� ൅ ��������������
݆  

��ሺ��ሻ ൌ େోାσ �ሺେ౞ሻ౪ൈሺ୲ିଵሻୈ౪ౠ
౪సభ

୨   Ύϳ� 
���ሺ��ሻ ൌ େోାσ �ሺେ౞ሻ౪ൈሺ୲ିଵሻୈ౪ౠ

౪సమ
୨                ȋͶ-ͺ-ͳȌ�� 

If the ሺ�୦ሻ୲Ԣ� are the same and equal to �୦, then we have 

��ሺ��ሻ ൌ �୓ ൅ �୦ ൈ σ ሺ� െ ͳሻ�୲୨
୲ୀଵ
�

ൌ �୓ ൅ �୦ሺͲ�ଵ ൅ ͳ�ଶ ൅ ʹ�ଷ൅Ǥ Ǥ ൅ሺ� െ ͳሻ�୨ሻ
� �� 

��ሺͳሻ ൌ ஼ೀା஼೓ሺ଴ሻ஽భ
ଵ ൌ �୓   ȋͶ-ͺ-ʹȌ������                                                                                 

where 
 ሺ�݆ሻ Average cost per periodܥܣ

j Number of periods 

 ை Ordering costܥ

ሺ�୦ሻ୲ Unit holding cost related to period t 

 ௛ Unit holding cost for all periodsܥ

 ௧ Requirement for period tܦ

This is an iterative method.  In each iteration the aim is to find say j 
periods whose ��ሺ��ሻ, when starting from a particular period, is 
minimum.  

To perform Silver =Meal algorithm, at the outset in iteration 1 set 
j=1.  It is assumed that all units assigned to Period 1(�ଵ) is consumed 

                                                           

1 Average Cost 
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and none is transferred to the next period; therefore the holding cost 
for it is supposed to be zero and 

ሺ�ͳሻܥܣ ൌ ������������� ൅ Ͳ�
ͳ  

Then increase j one by one and calculate ��ሺ��ሻ consecutively 
until for a particular j, as the value of j is increased, ��ሺ��ሻ exceeds 
��ሺ�� െ ͳሻ for the first time. Denote this value of j by �ଵǤ �Therefore 
the iteration is stopped whenever the following inequality is 
�����ϐ���ȋ������ǡʹͲͳͷ������ͶȌǣ 
ሺ�݆ሻܥܣ ൑ ሺ��ଵܥܣ െ ͳሻ��������������������ʹ ൑ ݆ ൑ �ଵ 

and��
ሺ�ଵܥܣ ൅ ͳሻ ൐ ሺ�ଵሻܥܣ

The first lot is place to cover periods 1 through �ଵǣ ܳ ൌ σ ௧୨భ���௧ୀଵܦ
Go to next iteration 2 , set j= �ଵ ൅ ͳ ,consecutively calculate ��ሺ��ሻ

and perform similar iteration until the time horizon is covered. 
 This approach has performed extremely well in numerous test 

examples and is recommended for significantly variable demand 
pattern (Person & Siver, 1991 page 317); however does not give 
optimal solution.  It is worth mentioning  that 2 situations where the 
heuristic does not perform well are (Tersine, 1994 page 187): 

1.when the demand rate decreases rapidly with time over several
periods, 

2. where there are a large number of periods with zero demand.

Example 4-15 
Find the order lot sizes for the time horizon given in the table 

below using Silver-Meal heuristic  method. If the order cost is $100 
and the unit holding cost from one period to the next immediate iod is 
$2, Also calculate the costs. 

ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳͲ ͷ Ͳ ͵Ͳ ͶͲ ͳͷ ʹͷ ͳͲ �୲ 

Solution 

��ሺ��ሻ ൌ �୓ ൅ �୦σ ሺ� െ ͳሻ�୲୨
୲ୀଶ
� ��������������������ሺͳሻ ൌ �୓ 

Iteration 1, starting period: 1 
Calculation of ��ሺ��ሻ  for j=1,2,�: 
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ሺͳሻܥܣ ൌ ைܥ ൅ Ͳ
ͳ ൌ ͳͲͲ

ͳ ൌ ͳͲͲ 
ሺʹሻܥܣ ൌ ைܥ ൅ ௛ܥ ൈ ଶܦ

ʹ ൌ ͳͲͲ ൅ ʹ ൈ ͳ ൈ ʹͷ
ʹ ൌ ͹ͷ 

ሺ͵ሻܥܣ ൌ ைܥ ൅ ௛ܥ ൈ ሺܦଶ ൅ ଷሻܦʹ
͵ ൌ ͳͲͲ ൅ ʹ ൈ ʹͷ ൅ ʹ ൈ ʹ ൈ ͳͷ

͵ ൌ ͹Ͳ 
ሺͶሻܥܣ ൌ ைܥ ൅ ௛ܥ ൈ ሺܦଶ ൅ ଷܦʹ ൅ ସሻܦ͵

Ͷ
ൌ ͳͲͲ ൅ ʹሺʹͷ ൅ ʹ ൈ ͳͷ ൅ ͵ ൈ ͶͲሻ

Ͷ ൌ ͳͳʹǤͷ 
For the first time  when �αͶ� ���� ���������Ǣ� ������������� �����

and 
plan an order of size Q = 10+15+25 =50 for the requirements of 

periods 1,2 and 3. 

Iteration 2, starting period: 4 

ሺͳሻܥܣ ൌ ைܥ ൅ ଵܦ௛ሺͲሻܥ
ͳ ൌ ͳͲͲ

ͳ ൌ ͳͲͲ 
ሺʹሻܥܣ ൌ ைܥ ൅ ସܦ௛ሺͲܥ ൅ ͳܦହሻ

ʹ ൌ ͳͲͲ ൅ ʹ ൈ ͵Ͳ
ʹ ൌ ͺͲ 

ሺ͵ሻܥܣ ൌ ைܥ ൅ ௛ܥ ൈ ሺͲܦସ ൅ ͳܦହ ൅ ଺ሻܦʹ
͵

ൌ ͳͲͲ ൅ ʹ ൈ ͵Ͳ ൅ ʹ ൈ ʹ ൈ Ͳ
͵ ൌ ͷ͵Ǥ͵ 

��ሺͶሻ ൌ �୓ ൅ �୦ ൈ ሺͲܦସ ൅ ͳܦହ ൅ ʹ�଺ ൅ ͵�଻ሻ
Ͷ

ൌ ͳͲͲ ൅ ʹሺ͵Ͳ ൅ ʹ ൈ Ͳ ൅ ͵ ൈ ͷሻ
Ͷ ൌ Ͷ͹Ǥͷͳ 

��ሺͷሻ ൌ �୓ ൅ �୦ ൈ ሺ�ହ ൅ ʹ�଺ ൅ ͵�଻ ൅ Ͷ�଼ሻ
ͷ

ൌ ͳͲͲ ൅ ʹሺ͵Ͳ ൅ ʹ ൈ Ͳ ൅ ͵ ൈ ͷ ൅ Ͷ ൈ ͳͲሻ
ͷ ൌ ͷͶ 

For the first time  when j=5  AC increased; therefore we stop and 
plan the second order of size Q = 40+30+0+5 =75 for the 

requirements of periods 4,5,6 and 7. 
Iteration 3 

No calculations is needed and the third order of size 10 is planed 
for the last period.  The summary of results are given in the following 
table: 
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sum ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳ͵ͷ ͳͲ ͷ Ͳ ͵Ͳ ͶͲ ͳͷ ʹͷ ͳͲ Dt 
ͳ͵ͷ ͳͲ - - - ͹ͷ - - ͷͲ Qt 
͵ͲͲ ͳͲͲ    ͳͲͲ   ͳͲͲ CO 
 Ͳ Ͳ ͷ ͷ ͵ͷ Ͳ ͳͷ ͶͲ It 
ʹͲͲ Ͳ Ͳ ͳͲ ͳͲ ͹Ͳ Ͳ ͵Ͳ ͺͲ �୦ ൈ �୲ 

Costs: 
Ordering cost=100ൈ ͵=300 
������������ǣ �୦σ �୲୲଼ୀଵ ൌ2ൈ(I1+I2+I3+I4+I5+I6+I7+I8) 
2ൈ (40+15+0+35+5+5+0+0)=200. 

TVC=300+200=500  

Ͷ-Ͷ�����er and Whitin's Exact Algorithm 

Wagner and Whitin(1958) presented an algorithm which gives an 
exact solution for discrete-demand dynamic lot sizing problems of 
finite time horizon .  Their solution causes no shortage.  The algorithm 
assumes the periods of the horizon are of the same time length and the 
planned orders arrive at the beginning of the periods (not in the 
middle).  The calculations of the algorithm are based on some 
theorems. The theorems are mentioned in some references including 
Winston(1994) page 1047.  The algorithm minimizes the inventory 
costs of the problem. 

It is worth mentioning that although the algorithms of Silver& 
Meal and  Wagner_&Whitin cause less inventory costs compared to 
other dynamic lot sizing rules, but many companies which utilize 
MRP1 production planning technique use simple heuristic rules of 
POQ, PPB and LFL( extracted from Winton,1994,page 946).  

                                                           

1 Materials Requirement planning 
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4-4-1 The steps of Wagner-Whitin Algorithm 

This algorithm uses a dynamic programming approach.  The steps 
of  this algorithm are mentioned in many references.  What follow is 
based on page 182 Winston (1994). 
Step 1 

For all possible ordering alternatives related to the given time 
horizon calculate total variable cost denoted by Z as described below. 

Suppose for the beginning of Period t, an order is planned with a 
size equal to the total requirements of period t through say period e. 
The cost of this order is calculated from: 

�୲ୣ ൌ ��୲ ൅ σ ��୧ሺ�୲ୣ୧ୣୀ୲ െ �୲୧ሻ ൅ �୲�୲ୣ (4-9) 
Where 

�୲ୣ total variable cost of the order planned for periods t to e 

��୲ ordering cost per order 

��୲ ൌ ��୲ unit holding cost for period t 

�୲ unit price of period t 

�୲ୣ sum of  requirements of Period t to Period ݁ǣ σ �୧୧ୣୀ୲ � �୲ୣ
 N number of periods available in the time horizon 

If for t=1,2,.., N �� � P  � �୲, �୭� �୭୲ and �୦� �୦୲ then(Tersine,1994
p182): 

�୲ୣ ൌ �୭ ൅ �୦෍ሺ�୲ୣ
ୣ

୧ୀ୲
െ �୲୧ሻ�����������ͳ ൑ ݐ ൑ ݁ ൑ ܰ���������ሺͶ െ ͳͲሻ 

Step 2 
Assuming the inventory at the end of Period e is zero, calculate 

�ଵˬǥˬˬ�୒from:
�ୣ ൌ ���ต

୤୭୰��������୲ୀଵǡǥǡୣ
ሺ�୲ୣ ൅ �୲ିଵ�ሻ��������� ൌ ͳǡʹǡ ǥ ǡ �         �଴ ൌ Ͳ

Or 
�ୣ ൌ ���ሺ�ଵୣ ൅ �଴���ǡ��������ଶୣ ൅ �ଵ���ǡǥǡ�������ǡ����ୣୣ ൅ �ୣିଵ��)   � ൌ ͳǡʹǡ ǥ ǡ � 
Or  for  � ൌ ͳǡʹǡ Ǥ Ǥ Ǥ ǡ � 
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�ୣ ൌ ���ሺ�ଵୣǡ �ଶୣǡ ǥ ǡ �ୣୣሻ,�� ൌ ͳǡʹǡ ǥ ǡ �  (4-11) 
Where 
�ଵୣ The cost of �ଵୣ , the order assigned to period 1 through e:��ଵୣ ൌ �ଵǡୣ ൅ �଴, ,�  �଴ ൌ Ͳ
�ଶୣ The cost of �ଶୣ  ,the order assigned to period 2through e:��ଶୣ ൌ �ଶǡୣ ൅ �ଵ,

� 

�ୣିଵǡୣ The cost related to  the order assigned to period e-1through e:��ୣିଵǡୣ ൌ �ୣିଵǡୣ ൅ �ୣିଵ,

�ୣǡୣ The cost of �ୣୣǡthe order assigned to period  e:��ୣǡୣ ൌ �ୣǡୣ ൅ �ୣିଵ, 

Therefore in this step, for  each period(� ൌ ͳǡʹǡ Ǥ Ǥ Ǥ ǡ �ሻ�all 
combinations of  ordering alternatives as well as �ୣݕ݃݁ݐܽݎݐݏ��  are 
compared and the combination with lowest  cost is recorded as �ୣ 
strategy .  It is proved that the value obtained for �୒ is the optimal 
ordering cost i.e. the cost of the optimal order schedule(Tersine, 1994 
page182). 

Step 3 
To  convert �୒ strategy obtained above into optimal order 

quantities,  act  by observing the orders backward . 
Example 4-16 

 ˴ From the data given in the following table determine the order 
quantities  by The Wagner Whitin algorithm ;also calculate the costs 
assuming Ch =$ 1 �����  CO = $40. 

I �୒ ൌ �୵ϭ୒ ൅ �୵ିଵ The last order happens in Period w to meet the 
requirements of periods w to N 

II �୵ିଵൌ �୳ϭ୵ିଵ ൅ �୳ିଵ 
The order just before the last order is made in 
Period u to  meet the requirements of periods u 
to w-ͳ�ሺ�୳୵ିଵ), 

III �୳ିଵ ൌ �ଵϭ୳ିଵ+�଴ ����ͳ��������� ����������� �����������ͳ� ���������
���� ������������� ��� �������� ͳ� �������� �-
ͳሺ�ଵ୳ିଵ). 
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ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ �୲ 

 
Solution  

Step 1 :Calculation of ��୲ୣ ൌ �୭ ൅ �୦σ ሺ�୲ୣ୧ୣୀ୲ െ �୲୧ሻ� 
Period 1 

�ଵଵ ൌ �୭భ ൅෍ �୦౟ሺܳଵଵ െ ܳଵଵሻ ൌ ͶͲ ൅ ͳሺʹ െ ʹሻ ൌ ͶͲ
ଵ

୧ୀଵ
 

�ଵଶ ൌ �୭భ ൅ �୦భሺܳଵଶ െ ܳଵଵሻ ൅ �୦మሺܳଵଶ െ ܳଵଶሻൌ ͶͲ ൅ ͳሺͳͶ െ ʹሻ ൅ ͳሺͳͶ െ ͳͶሻ ൌ ͷʹ 
�ଵଷ ൌ ͶͲ ൅ ͳ͸ ൅ Ͷ ൌ ͸Ͳǡ �ଵସ ൌ ͶͲ ൅ ʹͶ ൅ ͳʹ ൅ ͺ ൌ ͺͶǡ �ଵହൌ ͳͶͶ����� 
�ଵ଺ ൌ ʹ͸ͻ������ଵ଻ ൌ ͵ͺͻ�� 
�ଵ଼ ൌ ͶʹͶ�������ଵଽ ൌ ͷͲͶ�����ଵିଵ଴ ൌ ͸ͺͶ�����ଵିଵଵ ൌ ͹͵Ͷ�����ଵିଵଶൌ ͻͷͶ 

Period 2 

�ଶଶ ൌ �୭మ ൅෍�୦౟ሺܳଶଶ െ ܳଶଶሻ ൌ ͶͲ ൅ ͳሺͳʹ െ ͳʹሻ ൌ ͶͲ
ଶ

୧ୀଶ
 

�ଶଷ ൌ �୭మ ൅ �୦మሺܳଶଷ െ ܳଶଶሻ ൅ �୦మሺܳଶଷ െ ܳଶଷሻ ൌ ͶͲ ൅ Ͷ ൌ ͶͶ 
�ଶସ ൌ ͶͲ ൅ ͳʹ ൅ ͺ ൌ ͸Ͳ������ଶହ ൌ ͶͲ ൅ ʹ͹ ൅ ʹ͵ ൅ ͳͷ ൌ ͳͲͷ������ଶ଺ ൌ ʹͲͷ���� 
��ଶ଻ ൌ ͵Ͳͷ������ଶ଼ ൌ ͵͵ͷ         

�ଶଽ ൌ ͶͲͷ�����ଶିଵ଴ ൌ ͷ͸ͷ�������ଶିଵଵ ൌ ͸ͳͲ�� 
����ଶିଵଶ ൌ ͺͳͲ 

Period 3 
�ଷଷ ൌ �୭య ൅ �୦యሺܳଷଷ െ ܳଷଷሻ ൌ ͶͲ 
�ଷସ ൌ �୭య ൅ �୦యሺܳଷସ െ ܳଷଷሻ ൅ �୦యሺܳଷସ െ ܳଷସሻ ൌ ͶͲ ൅ ͺ ൌ Ͷͺ 
�ଷହ ൌ ͶͲ ൅ ʹ͵ ൅ ͳͷ ൌ ͹ͺ�������ଷ଺ ൌ ͶͲ ൅ Ͷͺ ൅ ͶͲ ൅ ʹͷ ൌ ͳͷ͵�� 
�ଷ଻ ൌ ʹ͵͵����� 
�ଷ଼ ൌ ʹͷͺ�����ଷଽ ൌ ͵ͳͺ�����ଷିଵ଴ ൌ Ͷͷͺ������ଷିଵଵ ൌ Ͷͻͺ������ଷିଵଶൌ ͸͹ͺ 

Period 4 
�ସସ ൌ �୭ర ൅ �୦రሺܳସସ െ ܳସସሻ ൌ ͶͲ 
�ସହ ൌ �୭ర ൅ �୦రሺܳସହ െ ܳସସሻ ൅ �୦రሺܳସହ െ ܳସହሻ ൌ ͷͷ 
�ସ଺ ൌ ͶͲ ൅ ͶͲ ൅ ʹͷ ൌ ͳͲͷ�����ସ଻ ൌ ͶͲ ൅ ͸Ͳ ൅ Ͷͷ ൅ ʹͲ ൌ ͳ͸ͷ�� 
�ସ଼ ൌ ͳͺͷ���� 
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�ସଽ ൌ ʹ͵ͷ �ସିଵ଴ ൌ ͵ͷͷ�����ସିଵଵ ൌ ͵ͻͲ������ସିଵଶ ൌ ͷͷͲ
Period 5 

�ହହ ൌ �୭ఱ ൅ �୦ఱሺܳହହ െ ܳହହሻ ൌ ͶͲ
�ହ଺ ൌ �୭ఱ ൅ �୦ఱሺܳହ଺ െ ܳହହሻ ൅ �୦ఱሺܳହ଺ െ ܳହ଺ሻ ൌ ͶͲ ൅ ʹͷ ൌ ͸ͷ
�ହ଻ ൌ ͶͲ ൅ Ͷͷ ൅ ʹͲ ൌ ͳͲͷ�����ହ଼ ൌ ͶͲ ൅ ͷͲ ൅ ʹͷ ൅ ͷ ൌ ͳʹͲ�
��ହଽ ൌ ͳ͸Ͳ�����ହିଵ଴ ൌ ʹ͸Ͳ     �ହିଵଵ ൌ ʹͻͲ�����ହିଵଶ ൌ Ͷ͵Ͳ
Period 6 

�଺଺ ൌ �୭ల ൅ �୦లሺܳ଺଺ െ ܳ଺଺ሻ ൌ ͶͲ
�଺଻ ൌ �୭ల ൅ �୦లሺܳ଺଻ െ ܳ଺଺ሻ ൅ �୦లሺܳ଺଻ െ ܳ଺଻ሻ ൌ ͶͲ ൅ ʹͲ ൌ ͸Ͳ
�଺଼ ൌ ͶͲ ൅ ʹͷ ൅ ͷ ൌ ͹Ͳ������଺ଽ ൌ ͶͲ ൅ ͵ͷ ൅ ͳͷ ൅ ͳͲ ൌ ͳͲͲ���
��଺ିଵ଴ ൌ ͳͶͲ���
��଺ିଵଵ ൌ ʹͲͷ���������଺ିଵଶ ൌ ͵ʹͷ 

Period 7 
�଻଻ ൌ �୭ళ ൅ �୦ళሺܳ଻଻ െ ܳ଻଻ሻ ൌ ͶͲ
�଻଼ ൌ �୭ళ ൅ �୦ళሺܳ଻଼ െ ܳ଻଻ሻ ൅ �୦ళሺܳ଻଼ െ ܳ଻଼ሻ ൌ ͶͲ ൅ ͷ=45

�଻ଽ ൌ ͶͲ ൅ ͳͷ ൅ ͳͲ ൌ ͸ͷ�������������������଻ିଵ଴ ൌ ͶͲ ൅ ͵ͷ ൅ ͵Ͳ ൅ ʹͲ
ൌ ͳʹͷ���� 

�଻ିଵଵ ൌ ͳͶͷ�����������଻ିଵଶ ൌ ʹͶͷ 
Period 8 

�଼଼ ൌ �୭ఴ ൅ �୦ఴሺ଼଼ܳ െ ଼଼ܳሻ ൌ ͶͲ
�଼ଽ ൌ �୭ఴ ൅ �୦ఴሺ଼ܳଽ െ ଼଼ܳሻ ൅ �୦ఴሺ଼ܳଽ െ ଼ܳଽሻ ൌ ͶͲ ൅ ͳͲ ൌ ͷͲ
�଼ିଵ଴ ൌ ͶͲ ൅ ͵Ͳ ൅ ʹͲ ൌ ͻͲ�����଼ିଵଵ ൌ ͶͲ ൅ ͵ͷ ൅ ʹͷ ൅ ͷ ൌ ͳͲͷ��� 
��଼ିଵଶ ൌ ͳͺͷ 

Period 9 
�ଽଽ ൌ �୭వ ൅ �୦వሺܳଽଽ െ ܳଽଽሻ ൌ ͶͲ
�ଽିଵ଴ ൌ �୭వ ൅ �୦వሺܳଽିଵ଴ െ ܳଽଽሻ ൅ �୦వሺܳଽିଵ଴ െ ܳଽିଵ଴ሻ ൌ ͶͲ ൅ ʹͲ

ൌ ͸Ͳ 
�ଽିଵଵ ൌ ͶͲ ൅ ʹͷ ൅ ͷ ൌ ͹Ͳ������ଽିଵଶ ൌ ͶͲ ൅ Ͷͷ ൅ ʹͷ ൅ ʹͲ ൌ ͳ͵Ͳ 

Period 10 
�ଵ଴ିଵ଴ ൌ �୭భబ ൅ �୦భబሺܳଵ଴ିଵ଴ െ ܳଵ଴ିଵ଴ሻ ൌ ͶͲ
�ଵ଴ିଵଵ ൌ �୭భబ ൅ �୦భబሺܳଵ଴ିଵଵ െ ܳଵ଴ିଵ଴ሻ ൅ �୦భబሺܳଵ଴ିଵଵ െ ܳଵ଴ିଵଵሻൌ ͶͲ ൅ ͷ ൌ Ͷͷ 
�ଵ଴ିଵଶ ൌ ͶͲ ൅ ʹͷ ൅ ʹͲ ൌ ͺͷ 

Period 11 
�ଵଵିଵଵ ൌ �୭భభ ൅ �୦భభሺܳଵଵିଵଵ െ ܳଵଵିଵଵሻ ൌ ͶͲ
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�ଵଵିଵଶ ൌ �୭భభ ൅ �୦భభሺܳଵଵିଵଶ െ ܳଵଵିଵଵሻ ൅ �୦భభሺܳଵଵିଵଶ െ ܳଵଵିଵଶሻൌ ͶͲ ൅ ʹͲ ൌ ͸Ͳ 
Period 12 

�ଵଶିଵଶ ൌ ͶͲ 
Step 2 Calculation of  �ୣ ൌ ���ต

୤୭୰��������୲ୀଵǡǥǡୣ
ሺ�୲ୣ ൅ �୲ିଵ�ሻ������ሺ� ൌ

ͳǡ ǥ ǡͳʹሻ��      
�଴ ൌ Ͳ 
�ଵ ൌ ��� �ሺ �ଵଵ ൅ �଴ሻ ൌ ���ሺͶͲ ൅ Ͳሻ ൌ ͶͲ 
�ଶ ൌ ��� �ሺ �ଵଶ ൅ �଴Ƕ�ଶଶ ൅ �ଵሻ ൌ ���ሺͷʹ ൅ Ͳ�Ƕ�ͶͲ ൅ ͶͲሻ ൌ ͷʹ 
�ଷ ൌ ��� �ሺ �ଵଷ ൅ �଴Ƕ�ଶଷ ൅ �ଵ�Ƕ�ଷଷ ൅ �ଶ�ሻ ൌ ���ሺ͸Ͳ ൅ Ͳ�Ƕ�ͶͶ ൅ ͶͲ�Ƕ�ͶͲ ൅ ͷʹሻ ൌ ͸Ͳ 
�ସ ൌ ��� �ሺ �ଵସ ൅ �଴Ƕ�ଶସ ൅ �ଵ�Ƕ�ଷସ ൅ �ଶǶ�ସସ ൅ �ଷ�ሻ ൌ ���ሺͺͶ ൅

Ͳ�Ƕ�͸Ͳ ൅ ͶͲ�Ƕ�Ͷͺ ൅ ͷʹ�Ƕ�ͶͲ ൅ ͸Ͳሻ     = 84 
 

�ହ ൌ ��� �ሺ �ଵହ ൅ �଴Ƕ�ଶହ ൅ �ଵ�Ƕ�ଷହ ൅ �ଶǶ�ସହ ൅ �ଷǶ�ହହ ൅ �ସ�ሻ ൌ ���ሺͳͶͶ ൅ Ͳ�Ƕ�ͳͲͷ ൅ ͶͲ�Ƕ�͹ͺ ൅ ͷʹ�Ƕ�ͷͷ ൅ ͸Ͳ�Ƕ�ͶͲ ൅ ͺͶሻ ൌ ͳͳͷ 
 

�଺ ൌ ��� �ሺ �ଵ଺ ൅ �଴Ƕ�ଶ଺ ൅ �ଵ�Ƕ�ଷ଺ ൅ �ଶǶ�ସ଺ ൅ �ଷǶ�ହ଺ ൅ �ସǶ�଺଺ ൅ �ହ�ሻ ൌ ���ሺʹ͸ͻ ൅ Ͳ�Ƕ�ʹͲͷ ൅ ͶͲ�Ƕ�ͳͷ͵ ൅ ͷʹ�Ƕ�ͳͲͷ ൅ ͸Ͳ�Ƕ�͸ͷ ൅ ͺͶ�Ƕ�ͶͲ ൅ ͳͳͷ�ሻ ൌ ͳͶͻ 
 

�଻ ൌ ��� �ሺ �ଵ଻ ൅ �଴Ƕ�ଶ଻ ൅ �ଵ�Ƕ�ଷ଻ ൅ �ଶǶ�ସ଻ ൅ �ଷǶ�ହ଻ ൅ �ସǶ�଺଻ ൅ �ହǶ�଻଻൅ �଺�ሻ ൌ ���ሺ͵ͺͻ ൅ Ͳ�Ƕ�͵Ͳͷ ൅ ͶͲ�Ƕ�ʹ͵͵ ൅ ͷʹ�Ƕ�ͳ͸ͷ ൅ ͸Ͳ�Ƕ�ͳͲͷ ൅ ͺͶ�Ƕ�͸Ͳ
൅ ͳͳͷ�Ƕ�ͶͲ ൅ ͳͶͻ�ሻ ൌ ͳ͹ͷ 

�଼ ൌ ��� �ሺ �ଵ଼ ൅ �଴Ƕ�ଶ଼ ൅ �ଵ�Ƕ�ଷ଼ ൅ �ଶǶ�ସ଼ ൅ �ଷǶ�ହ଼ ൅ �ସǶ�଺଼ ൅ �ହǶ�଻଼൅ �଺Ƕ�଼଼ ൅ �଻�ሻ ൌ ���ሺͶʹͶ ൅ Ͳ�Ƕ�͵͵ͷ ൅ ͶͲ�Ƕ�ʹͷͺ ൅ ͷʹ�Ƕ�ͳͺͷ ൅ ͸Ͳ�Ƕ�ͳʹͲ ൅ ͺͶ�Ƕ�͹Ͳ
൅ ͳͳͷǶ�Ͷͷ ൅ ͳͶͻ�Ƕ�ͶͲ ൅ ͳ͹ͷሻ ൌ ͳͺͷ 

�ଽ ൌ ��� �ሺ �ଵଽ ൅ �଴Ƕ�ଶଽ ൅ �ଵ�Ƕ�ଷଽ ൅ �ଶǶ�ସଽ ൅ �ଷǶ�ହଽ ൅ �ସǶ�଺ଽ ൅ �ହǶ�଻ଽ൅ �଺Ƕ�଼ଽ ൅ �଻Ƕ�ଽଽ ൅ �଼ሻ ൌ ����ሺͷͲͶ ൅ Ͳ��Ƕ�ͶͲͷ ൅ ͶͲ�Ƕ�͵ͳͺ ൅ ͷʹ�Ƕ�ʹ͵ͷ ൅ ͸Ͳ�Ƕ�ͳ͸Ͳ ൅ ͺͶ�Ƕ�ͳͲͲ
൅ ͳͳͷǶ�͸ͷ ൅ ͳͶͻ�Ƕ�ͷͲ ൅ ͳ͹ͷ�ǶͶͲ ൅ ͳͺͷሻ ൌ ʹͳͶ 

� 
�ଵ଴ ൌ ��� �ሺ �ଵିଵ଴ ൅ �଴Ƕ�ଶିଵ଴ ൅ �ଵ�Ƕ�ଷିଵ଴ ൅ �ଶǶ�ସିଵ଴ ൅ �ଷǶ�ହିଵ଴൅ �ସǶ�଺ିଵ଴ ൅ �ହǶ�଻ିଵ଴ ൅ �଺Ƕ�ͺെͳͲ ൅ �͹Ƕ�ͻെͳͲ ൅ �ͺǶ��ͳͲെͳͲ

൅ �ͻሻ 
 
 

ൌ ����ሺ͸ͺͶ ൅ Ͳ�Ƕ�ͷ͸ͷ ൅ ͶͲ�Ƕ�Ͷͷͺ ൅ ͷʹ�Ƕ�͵ͷͷ ൅ ͸Ͳ�Ƕ 
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�ʹ͸Ͳ ൅ ͺͶ�Ƕ�ͳͶͲ ൅ ͳͳͷǶ�ͳʹͷ ൅ ͳͶͻ�Ƕ�ͻͲ ൅ ͳ͹ͷ�Ƕ͸Ͳ ൅ ͳͺͷ�ǶͶͲ ൅ ʹͳͶሻ ൌ ʹͶͷ 

�ଵଵ ൌ ��� �ሺ �ଵିଵଵ ൅ �଴Ƕ�ଶିଵଵ ൅ �ଵ�Ƕ�ଷିଵଵ ൅ �ଶǶ�ସିଵଵ ൅ �ଷǶ�ହିଵଵ ൅ �ସǶ�଺ିଵଵ൅ �ହǶ�଻ିଵଵ ൅ �଺Ƕ�଼ିଵଵ ൅ �଻Ƕ�ଽିଵଵ ൅ �଼Ƕ��ଵ଴ିଵଵ ൅ �ଽǶ��ଵଵିଵଵ ൅ �ଵ଴ሻൌ 
����ሺ͹͵Ͷ ൅ Ͳ�Ƕ�͸ͳͲ ൅ ͶͲ�Ƕ�Ͷͻͺ ൅ ͷʹ�Ƕ 
�͵ͻͲ ൅ ͸Ͳ�Ƕ�ʹͻͲ ൅ ͺͶ�Ƕ�ʹͲͷ ൅ ͳͳͷǶ�ͳͶͷ ൅ ͳͶͻ�Ƕ�ͳͲͷ ൅ ͳ͹ͷ�Ƕ͹Ͳ ൅ ͳͺͷ�ǶͶͷ

൅ ʹͳͶ�ǶͶͲ ൅ ʹͶͷሻ ൌ ʹͷͷ 

�ଵଶ ൌ ��� �ሺ �ଵିଵଶ ൅ �଴Ƕ�ଶିଵଶ ൅ �ଵ�Ƕ�ଷିଵଶ ൅ �ଶǶ�ସିଵଶ ൅ �ଷǶ�ହିଵଶ ൅ �ସǶ�଺ିଵଶ ൅ �ହǶ�଻ିଵଶ ൅ �଺Ƕ �଼ିଵଶ ൅ �଻Ƕ�ଽିଵଶ ൅ �଼Ƕ��ଵ଴ିଵଶ ൅ �ଽǶ��ଵଵିଵଶ ൅ �ଵ଴Ƕ��ଵଶିଵଶ ൅ �ଵଵሻ ൌ 
���ሺͻͷͶ ൅ Ͳ�Ƕ�ͺͳͲ ൅ ͶͲ�Ƕ�ͳ͹ͺ ൅ ͷʹ�Ƕ�ͷͷͲ ൅ ͸Ͳ�Ƕ�Ͷ͵Ͳ ൅ ͺͶ�Ƕ�͵ʹͷ ൅ ͳͳͷǶ�ʹͶͷ ൅ ͳͶͻ�Ƕ�ͳͺͷ

൅ ͳ͹ͷ�Ƕͳ͵Ͳ ൅ ͳͺͷ�Ƕͺͷ ൅ ʹͳͶ�Ƕ͸Ͳ ൅ ʹͶͷ�Ƕ�ͶͲ ൅ ʹͷͷሻ ൌ ʹ͵Ͳ
ൌ �������������������� 

With MATLAB 
TC= min([954+0  810+40  178+52  550+60  430+84  325+115 

245+149  185+175 130+185 85+214 60+245  40+255])  TC =� 
230 

Step 3   Finding optimal combinations and converting the optimal 
solution �୒ ൌ ��ଵଶ ൌ ʹͻͷ into an optimal ordering plan   

The optimal among the costs are 
�୒ ൌ �୵ϭ୒ ൅ �୵ିଵ
���������ଵଶ ൌ ��ଵଶǡଵଶ�൅�ଵଵ ൌ ʹͻͷ 

The final order which occurs at Period � ൌ ͳʹ� covers the demand 
of Perio2 12 with size 20 

To determine the order prior to the last order : 
�୵ିଵ ൌ �୳ϭ୵ିଵ ൅ �୳ିଵ   w=12

�ଵଶିଵ ൌ �୳ϭଵଵ ൅ �୳ିଵ
�ଵଵ ൌ ʹͷͷ corresponds to �଼Ƭ��ܼଽǡଵଵ then �୳ϭଵଵ ൅ �୳ିଵ ൌ �ଽϭଵଵ ൅ �଼

and u =9 
The order prior to the last order is made at period � ൌ ͻ and covers 

the requirements of periods 9 through 11�� െ ͳ ൌ ͳͳሺ�ଽǡଵଵሻ with size 
10+20+5=35. 

For the order prior to the final order we considered �ଵଵ. 
the 3rd order from the end 
For the 3rd order from the end let us consider �଼���୳ϭ୵ିଵ ൅ �୳ିଵ ൌ �଼ ൌ �଺ϭ଼ ൅ �ହ ൌ ͳͺͷ
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The 3rd order from the end is made for the periods 6 through 8 with 
size 25+20+5=50. 

For the 4th order from the end ,consider �ହ�� �୳ϭ୵ିଵ ൅ �୳ିଵ ൌ �ହ ൌ �ସϭହ ൅ �ଷ ൌ ͳ͹ͷ
The 4th order from the end is made for the periods  4 and 5 with 

size 23. 
For the 5th order from the end ,consider �ଷ�� 

��
�୳ϭ୵ିଵ ൅ �୳ିଵ ൌ �ଷ ൌ �ଵǡଷ ൅ �଴ ൌ ͸ͷ

The 5th order from the end is made for the periods  1,2,3 with size 
18. This is the first order. The horizon is covered.

The orders could be determined from Z's: 
�ଵǡଷǡǡ������ସǡହǡǡ ǡ �଺ǡ଼ǡ����ǡ �ଽǡଵଵ�����ǡ �ଵଶǡଵଶ 

Therefore the algorithm give the following plan which is optimal: 
The 1st order of size 18 for periods 1 through 3 
The second order of size 23 for periods 4 & 5  
The third order of size 50 for periods 6 through 8  
The 4th order of size 35 for periods 9 through 11  
The last order of size 20 for Period 12.  
The results summary is mentioned in the following table: 

Wagner-Whitin Algorithm 

ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
ʹͲ - - ͵ͷ - - ͷͲ - ʹ͵ - - ͳͺ �୲ 
Ͳ Ͳ ͷ ʹͷ Ͳ ͷ ʹͷ Ͳ ͳͷ Ͳ Ͷ ͳ͸ �୲ 

Cost: 

��� ൌ ͷ�୭ ൅ �୦ σ �୲ ൌଵଶ୲ୀଵ ʹͲͲ ൅ ͳሺͳ͸ ൅ Ͷ ൅ڮ൅ ͷ ൅ Ͳ ൅ Ͳሻ ൌ ʹͲͲ ൅ ͻ5=29ͷ
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Example 4-171 
Find the order lot sizes for the time horizon given in the table 

below using Wagner-Whitin  method. If the unit price is $50, the 
ordering cost is $100 and the unit holding cost from one period to the 
next immediate period is $0.02, Also calculate the costs. 

͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳͲ Ͳ ʹͺ ͵͵ Ͳ ͹ͷ �୲ 

Solution 
Step 1   calculations of  Z's from �୲ୣ ൌ �୭ ൅ �୦σ ሺ�୲ୣ୧ୣୀ୲ െ �୲୧ሻ� 

a) 
calculation of �ଵୣǡ � ൌ ͳǡʹǡ Ǥ Ǥ ǡ � ൌ ͸: 
�୭ ൌ ̈́ͳͲͲ�������������୦ ൌ ͲǤͲʹ ൈ ͷͲ ൌ ͳ��������� ��୲ୣ ൌσ �୧୧ୣୀ୲

�ଵଵ ൌ �୭ ൅ �୦෍ሺ�ଵୣ
ୣୀଵ

୧ୀଵ
െ �ଵ୧ሻ ൌ ͳͲͲ ൅ ͳሺ�ଵଵ െ �ଵଵሻ ൌ ͳͲͲ

�ଵଶ ൌ �୭ ൅ �୦෍ሺ�ଵୣ
ୣୀଶ

୧ୀଵ
െ �ଵ୧ሻ ൌ 

ͳͲͲ ൅ �୦ሺ�ଵଶ െ �ଵଵሻ ൅ �୦ሺ�ଵଶ െ �ଵଶሻൌ ͳͲͲ ൅ ͳሺ͹ͷ ൅ Ͳ െ ͹ͷሻ ൅ ͳሺ͹ͷ െ ͹ͷሻ ൌ ͳͲͲ 

�ଵଷ ൌ �୭ ൅ �୦෍ሺ�ଵୣ
ୣୀଷ

୧ୀଵ
െ �ଵ୧ሻ

ൌ ��୭ ൅ �୦ሺ�ଵଷ െ �ଵଵሻ ൅ �୦ሺ�ଵଷ െ �ଵଶሻ൅ �୦ሺ�ଵଷ െ �ଵଷሻ
ͳͲͲ ൅ ͳ൫ሺ͹ͷ ൅ Ͳ ൅ ͵͵ െ ͹ͷሻ ൅ ሺͳͲͺ െ ͹ͷሻ ൅ ሺͳͲͺ െ ͳͲͺሻ൯ ൌ ͳ͸͸ 

�ଵସ ൌ ͳͲͲ ൅ ͳሺ�ଵସ െ �ଵଵሻ ൅ ͳሺ�ଵସ െ �ଵଶሻ ൅ ͳሺ�ଵସ െ �ଵଷሻ൅ ͳሺ�ଵସ െ �ଵସሻ
ͳͲͲ ൅ ͳ൫ሺ͹ͷ ൅ Ͳ ൅ ͵͵ ൅ ʹͺ െ ͹ͷሻ ൅ ሺͳ͵͸ െ ͹ͷሻ ൅ ሺͳ͵͸ െ ͳͲͺሻ൯ ൅ ͳ ൈ Ͳ ൌ ʹͷͲ 

�ଵହ ൌ ͳͲͲ ൅ ͳሺ�ଵହ െ �ଵଵሻ ൅ ͳሺ�ଵହ െ �ଵଶሻ ൅ ͳሺ�ଵହ െ �ଵଷሻ൅ ͳሺ�ଵସ െ �ଵସሻ ൅ Ͳ
                                                           

1 Extracted from Tersine(1994) page 182 
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ൌ ͳͲͲ ൅ ͳ൫ሺͳ͵͸ െ
�ଵ଺ ൌ 
ͳͲͲ ൅ ͳሺ�ଵ଺ െ �ଵଵ൅ ͳ

ൌ ሺ
൅ ሺ

b)calculation of

�ଶଶ ൌ �୭ ൅ �୦
�ଶଷ ൌ ͳͲͲ ൅ ͳ൫ሺ͵͵
�ଶସ ൌ ͳͲͲ ൅ ͳ൫ሺ͵͵
�ଶହ ൌ �୭ ൅ �୦෍

ୣୀହ

୧ୀଶ�୭ ൅ ͳሺ�ଶହ െ �୭�൅ ͳ
�୭ ൅ ͳሺ͸ͳ െ Ͳሻ ൅
�ଶ଺ ൌ �୭ ൅ �୦෍

ୣୀ଺

୧ୀଶ
c)calculation of

d)calculation of

Dynamic Lot Sizing � ���������������������

െ ͹ͷሻ ൅ ሺͳ͵͸ െ ͹ͷሻ ൅ ሺͳ͵͸ െ ͳͲͺሻ ൅ Ͳ൯ ൌ

ଵଵሻ ൅ ͳሺ�ଵ଺ െ �ଵଶሻ ൅ ͳሺ�ଵ଺ െ �ଵଷሻͳሺ�ଵ଺ െ �ଵସሻ ൅ ͳሺ�ଵ଺ െ �ଵହሻሺͳͶ͸ െ ͹ͷሻ ൅ ሺͳͶ͸ െ ͹ͷሻ ൅ ሺͳͶ͸ െ ͳͲͺሻ
ሺͳͶ͸ െ ͳ͵͸ሻ ൅ ሺͳͶ͸ െ ͳ͵͸ሻ ൅ Ͳ ൌ ͵ͲͲ 

calculation of �ଶୣǡ � ൌ ʹǡ Ǥ Ǥ ǡ͸
σ ሺ�ଶୣୣୀଶ୧ୀଶ െ �ଶ୧ሻ ൌ ͳͲͲ+0=100 

൫ሺ͵͵ െ Ͳሻ ൅ ሺ͵͵ െ ͵͵ሻ൯ ൌ ͳ͵͵ 
൫ሺ͵͵ ൅ ʹͺ െ Ͳሻ ൅ ሺ͸ͳ െ ͵͵ሻ ൅ ሺ͸ͳ െ ͸ͳሻ൯ ൌ ͳͺͻ
෍ሺ�ଶୣ
ହ

ଶ
െ �ଶ୧ሻ 

�ଶଶሻ ൅ ͳሺ�ଶହ െ �ଶଷሻ ൅ ͳሺ�ଶହ െ �ଶସሻͳሺ�ଶହ െ �ଶହሻሻ ൅ ͳሺ͸ͳ െ ͵͵ሻ ൅ ͳሺ͸ͳ െ ͸ͳሻ ൅ ͳሺ͸ͳ െ ͸ͳሻ ൌ
෍ሺ�ଶୣ
଺

ଶ
െ �ଶ୧ሻ ൌ ʹʹͻ 

calculation of �ଷୣǡ � ൌ ͵ǡ Ǥ Ǥ ǡ͸

calculation of �ସୣǡ � ൌ Ͷǡͷǡ͸

�������������������208 

൯ ൌ ʹͷͲ 

ሻ

��

൯ ͳͺͻ 

ሻ ൌ ͳͺͻ 
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e)calculation of �ହୣǡ � ൌ ͷǡ͸�ሺ��ହହ �ϭ �ହ଺
�ହହ ൌ �୭ ൅ �୦෍ሺ�ହୣ

ୣୀହ

୧ୀହ
െ �ହ୧ሻ ൌ ͳͲͲ 

�ହ଺ ൌ �୭ ൅ �୦෍ሺ�ହୣ
ୣୀ଺

୧ୀହ
െ �ହ୧ሻ ൌ 

ͳͲͲ ൅ ͳሺ�ହ଺ െ �ହହሻ ൅ ͳሺ�ହ଺ െ �ହ଺ሻൌ ͳͲͲ ൅ ͳͲͲ ൅ ͳሺͳͲ െ Ͳሻ ൅ ͳሺͳͲ െ ͳͲሻ ൌ ͳͳͲ 

f)calculation of  ܈૟૟
�଺଺ ൌ �୭ ൅ �୦෍ሺ�଺ୣ

ୣୀ଺

୧ୀ଺
െ �଺୧ሻ ൌ ͳͲͲ ൅ ͳሺ�଺଺ െ �଺଺ሻ ൌ ͳͲͲ

The following table shows the result of calculating Zte 's: 
�����������������������������ǣ�ܼ௧௘ ,ͳ ൑ ݐ ൑ ݁ ൑ ܰ����Tersine,1994 page 183)�

          e 
t 

ͳ ʹ ͵ Ͷ ͷ ͸ 
ͳ ͳͲ

Ͳ 
ͳͲͲ ͳ͸͸ ʹͷ

Ͳ 
ʹͷͲ ͵ͲͲ 

ʹ  ͳͲͲ ͳ͵͵ ͳͺ
ͻ 

ͳͺͻ ʹʹͻ 
͵   ͳͲͲ ͳʹ

ͺ 
ͳʹͺ ͳͷͺ 

Ͷ    ͳͲ
Ͳ 

ͳͲͲ ͳʹͲ 
ͷ     ͳͲͲ ͳͳͲ 
͸      ͳͲͲ 

Step 2 
calculation of minimum of possible cost in periods 1 through e( �ୣሻǣ
To obtain the minimum of possible cost in periods 1 through e we 

need to calculate for � ൌ ͳǡ ǥ ǡ � ൌ ͸ the following value: 
�ୣ ൌ ���ต

୤୭୰��������୲ୀଵǡǥǡୣ
ሺ�୲ୣ ൅ �୲ିଵ�ሻ  or

�ୣ ൌ ���ሺ�ଵୣ ൅ �଴���ǡ��������ଶୣ ൅ �ଵ���ǡǥǡ�������ǡ����ୣୣ ൅ �ୣିଵ��) � ൌ
ͳǡǥ ǡ � 
�ୣ ൌ ���ሺ�୲ୣ ൅ �୲ିଵ���������)  for   � ൌ ͳǡǥ ǡ͸�������଴ ��ൌ Ͳ����� 
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The table below shows the alternatives of variable costs(�୲ୣ ൅ �୲ିଵ�
 and fe values: 

Values of variable costs (�୲ୣ ൅ �୲ିଵ� and �ୣ�
       e 
t 

ͳ ʹ ͵ Ͷ ͷ ͸ 
 ͳ ͳͲ

Ͳ 
ͳͲ

Ͳ 
ͳ͸͸ ʹͷͲ ʹͷͲ ͵ͲͲ 

ʹ  ʹͲ
Ͳ 

ʹ͵͵ ʹͺͻ ʹͺͻ ͵ʹͻ 
͵   ʹͲͲ ʹʹͺ ʹʹͺ ʹͷͺ 
Ͷ    ʹ͸͸ ʹ͸͸ ʹͺ͸ 
ͷ     ͵ʹͺ ͵͵ͺ 
͸      ͵ʹͺ 

�ୣ ͳͲ
Ͳ 

ͳͲ
Ͳ 

ͳ͸͸ ʹʹͺ ʹʹͺ ʹͷͺ 
Step 3   Finding optimal combinations and converting the optimal 
solution ே݂ into an optimal ordering plan   

Determine the last order by applying Criterion I of step 3 
mentioned in the algorithm : 

In this example �଺ ൌ �୒�corresponds to the combination of
̶�ଶ�����ଷ଺ i.e. according to Criterion I  
�୒ ൌ �୵ǡ୒ ൅ �୵ିଵ ൌ �ଷ଺ ൅ �ଶ�� 
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According to this criterion the final order is planned for Period 
w=3 for the requirement of periods 3 through 6 with lot size of 
͵͵ ൅ ʹͺ ൅ Ͳ ൅ ͳͲ ൌ ͹ͳ 

Determining the order prior to last order by applying Criterion II of 
step 3 mentioned in the algorithm : 
�୵ିଵ ൌ �୳ϭ୵ିଵ ൅ �୳ିଵ  w=3 

�୵ିଵ ൌ �୳ϭ୵ିଵ ൅ �୳ିଵ������ ൌ ͵�������ଶ ൌ �୳ϭଶ ൅ �୳ିଵ
�ଶ was obtained from the combination of �଴�������ଵଶ therefore

� ൌ ͳ ��  The order is placed�at Period 1. This order covers demands in 
periods u through w-1 i.e. periods 1 and 2 with size ͹ͷ ൅ Ͳ ൌ ͹ͷ��. 
These 2 orders  suffice to cover the time horizon. The algorithm ends. 

Therefore the method gives the following  results 

t ͳ ʹ ͵ Ͷ ͷ ͸ sum 
Dt ͹ͷ Ͳ ͵͵ ʹͺ Ͳ ͳͲ ͳͶ͸ 
Qt ͹ͷ - ͹ͳ - - - ͳͶ͸ 
        

Costs: 
������������� ൌ ʹ ൈ ͳͲͲ ൌ10 
Holding cost: 
�୦σ �୲଺୲ୀଵ =ͳሺͲ כ ͳ ൅ Ͳ כ ͳ ൅ ͵ͺ כ ͳ ൅ ͳͲ כ ͳ ൅ ͳͲ כ ͳሻ ൌ ͷͺ� 
��� ൌ �ʹͲͲ ൅ ͷͺ ൌ ʹͷͺ

Example 4-181 
Using the data given in the following table, Find the solution to this 

dynamic lot sizing problem by several methods and compare their 
costs if  

Ch per period= $1     The setup or order cost=CO = $40 

ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 

                                                           

ϭ Based on https://www.isye.gatech.edu/~spyros/courseƐͬ/�ϯϭϬϰͬ^ƵŵŵĞƌ-
Ϭϲͬ,ǁϰ-Solution.doc  

https://www.isye.gatech.edu/~spyros/course
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Solution 
(i�Silver-Meal 
����������ͳ 
���������������ǣͳ 

��ሺ��ሻ ൌ �୓ ൅ �୦ ൈ σ ሺ� െ ͳሻ�୲୨
୲ୀଶ
�

AC(1) = 40 
AC (2) = (40 + 12)/2 = 26 
AC (3) = [40 + 12 + (2)(4)]/3 = 20 
AC (4) = [40 + 12 + (2)(4) + (3)(8)]/4 = 21      Stop 
����������ʹ 
Starting period:Ͷ 
AC (1) = 40 
AC (2) = (40 + 15)/2 = 27.5 
AC (3) = [40 + 15 + (2)(25)]/3 = 35 stop 
����������͵ 
Starting period:͸ 
AC (1) = 40 
AC (2) = (40 + 20)/2 = 30 
AC (3) = [40 + 20 + (2)(5)]/3 = 23.3333 
AC (4) = [40 + 20 + (2)(5) + (3)(10)]/4 = 25 stop 
����������Ͷ 
Starting period:ͻ 
AC (1) = 40 

AC (2) = 
ସ଴�ା�ଶ଴

ଶ ൌ �͵Ͳ 

AC (3) = 
ሾସ଴�ା�ଶ଴�ା�ሺଶሻሺହሻሿ

ଷ ൌ �ʹ͵Ǥ͵͵͵͵ 

AC (4) = 
ሾସ଴�ା�ଶ଴�ା�ሺଶሻሺହሻା�ሺଷሻሺଶ଴ሻሿ

ସ ൌ �͵ʹǤͷͲ  stop. 

Then according to Silver Meal method 5 orders have to be placed 
with sizes  (2+12+4)ˬ(8+15))ˬ(25+205)ˬ(10+20+5 and (20) for Periods 
1,4,6&9 

= (2, 12, 4, | 8,15, | 25, 20, 5, | 10, 20, 5, | 20) 
Cost:     Ch = 1           CO = 40 

ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
ʹͲ - - ͵ͷ - - ͷͲ - ʹ͵ - - ͳͺ �୲ 
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Ͳ Ͳ ͷ ʹͷ Ͳ ͷ ʹͷ Ͳ ͳͷ Ͳ Ͷ ͳ͸ ୲ 

�୦෍ �୲ ൌ ͳሺͳ͸ ൅ Ͷ ൅ ͳͷ ൅ ʹͷ ൅ ͷ ൅ ʹͷ ൅ ͷሻ ൌ ͻͷ
ଵଶ

୲ୀଵ
TVC=ͷ�୭ ൅ �୦σ �୲ ൌଵଶ୲ୀଵ  (5)(40)+95=295.

ii)LUC 
Iteration 1 
Starting period :1 

UC(1) = 40/2 = 20 
UC (2) = (40 + 12)/(2 + 12) = 3.71 
UC (3) = (40 + 12 + 8) /(2 + 12 + 4)  = 3.33 
UC (4) = (40 + 12 + 8 + 24) /(2 + 12 + 4 + 8)  = 3.23 
UC (5) = (40 + 12 + 8 + 24 + 60) /(2 + 12 + 4 + 8 + 15)  = 3.51

Stop. 
Iteration 2 
Starting period :5 
UC (1) = 40/15 = 2.67 
UC (2) = (40 + 25)/(15 + 25) = 1.625 
UC (3) = (40 + 25 + 40)/(15 + 25 + 20) = 1.75        Stop 
Iteration 3 
Starting period :7 
UC (1) = 40/20 = 2 
UC (2) = (40 + 5)/(20 + 5) = 1.8 
 UC (3) = (40 + 5 + 20)/(20 + 5 + 10) = 1.86         stop       
Iteration 4 
Starting period :9 
UC (1) = 40/10 = 4 
UC (2) = (40 + 20)/(10 + 20) = 2 
UC (3) = (40 + 20 + 10)/(10 + 20 + 5) = 2 
UC (4) = (40 + 20 + 10 + 60)/(10 + 20 + 5 + 20) = 2.3636 
S˵olution of LUC� 
= (2, 12, 4, 8, | 15, 25, | 20, 5, | 10, 20, 5, | 20) 
Ch = 1           CO = 40 

 
ͳʹ 

ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
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ʹͲ - - ͵ͷ - ʹͷ - ͶͲ  - - ʹ͸ �୲ 
Ͳ Ͳ ͷ ʹͷ Ͳ ͷ Ͳ ʹͷ Ͳ ͺ ͳʹ ʹͶ ୲ 

Cost 
௛ܥ� σ ௧ܫ ൌଵଶ௧ୀଵ ͳሺʹͶ ൅ ͳʹ ൅ڮ൅ ͷሻ ൌ ͳͲͶ 
TVC=ͷ�୭ ൅ �୦σ �୲ ൌଵଶ୲ୀଵ 5*40+104=304 
iii) LTC   or PPA method
This approach  sets the order horizon equal to the number of 

periods that most closely matches the total carrying cost with the order 
cost, which is $40 in this problem. Therefore, the absolute value of the 
difference between the holding and order costs is calculated  in each 
period and the one with the lowest value is found. 
���������ͳ 
���������������ǣͳ 
Through   holding cost 
Period n  ������������� 

 
1

( 1)
n

n i
i

APP i D


  ��  h nC APP  | |h n oC APP C

1  0 ���������   0  40 � ����������� 
2����������������ͳ ൈ ͳʹ  12  28 
3�����������ͳ ൈ ͳʹ ൅ ʹ ൈ Ͷ  20  20 
4���������������ʹͲ ൅ ͵ ൈ ͺ  44  4 ( closest) 
5  ͶͶ ൅ Ͷ ൈ ͳͷ  104  64 
���������ʹ 
Starting period:ʹ 
Through   holding cost 
Period n  ������������� 

n  
1

( 1)
n

n i
i

APP i D


  �� ��� | |h n oC APP C

5  40  0 
6  25  15 closest 
7  65  25 
Iteration ͵:  starting period:͹ 
n  

1

( 1)
n

n i
i

APP i D


  �� ��� | |h n oC APP C

7  40  0 
8  5  35 
9  25  15 closest 
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10  85  45 
Iteration Ͷ:  starting period:ͳͲ 
n  

1

( 1)
n

n i
i

APP i D


  �� ��� | |h n oC APP C

10  40  0 
11  5  35 
12  45  5     closest 
S˵olution of LUC� = (2, 12, 4, 8, | 15, 25, | 20, 5, 10, | 20, 5, 20)
i.e. 
1st order occurs in Period 1 with size2+12+4+8=26 
2nd order occurs in Period 5 with size25+15=40, 
3rd order occurs in Period 7with size 35, 
Final order occurs in Period 10 with size 20+5+20=45 
The calculations are given below: 
 

��
 

 

Results of PPA or LTC algorithm  
ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
- - Ͷͷ - - ͵ͷ - ͶͲ - - - ʹ͸ �୲ 
Ͳ ʹͲ ʹͷ Ͳ ͳͲ ͳͷ Ͳ ʹͷ Ͳ ͺ ͳʹ ʹͶ ୲ 

Calculations of PPA=LTC algorithm applied to Example 4-18 
ȁ������������ െ ��������������ȁ Demand Included 

Periods 
Iteration 

ȁͲ െ ͶͲȁ ൌ ͶͲ 2 1 1 
ȁͳʹ െ ͶͲȁ ൌ ʹͺ 14 1.2 
ȁʹͲ െ ͶͲȁ ൌ ʹͲ 18 1.2.3 
ȁͶͶ െ ͶͲȁ ൌ Ͷ 26 1.2.3.
ȁͳͲͶ െ ͶͲȁ ൌ ͸Ͷ 41 1.2.3.
ȁͲ െ ͶͲȁ ൌ ͶͲ 15 5 2 
ȁʹͷ െ ͶͲȁ ൌ ͳͷ 40 5.6 
ȁ͸ͷ െ ͶͲȁ ൌ ʹͷ 60 5.6.7 
ȁͲ െ ͶͲȁ ൌ ͶͲ 20 7 3 
ȁͷ െ ͶͲȁ ൌ ͵ͷ 25 7.8 
ȁʹͷ െ ͶͲȁ ൌ ͳͷ 35 7.8.9 
ȁͺͷ െ ͶͲȁ ൌ Ͷͷ 55 7.8.9.
ȁͲ െ ͶͲȁ ൌ ͶͲ 20 10 4 
ȁͷ െ ͶͲȁ ൌ ͵ͷ 25 10.11 
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Cost  
௛ܥ ൌ ͳ ��� and����୭ ൌ ͶͲ 

ܥܸܶ ൌ Ͷ�୭ ൅ �୦෍ �୲ ൌ
ଵଶ

୲ୀଵ
ͳ͸Ͳ ൅ ͳሺʹͶ ൅ ͳʹ ൅ڮ൅ ʹͲ ൅ Ͳሻ ൌ ʹͻͻ 

iv �� EOI�or�POQ  Algorithm 
ഥܦ��� ൌ ଶାଵଶାସା଼ାଵହାଶହାଶ଴ାହାଵ଴ାଶ଴ାହାଶ଴

ଵଶ ൌ ͳʹǤͳ͸ 

଴ܥ ൌ ͶͲ��������������୦ ൌ ͳ 

ܶ ൌ ට ଶ஼೚
ഥൈ஼೓����������������ܶܦ ൌ ට ଶൈସ଴

ଵଶǤଵ଺ൈଵ ൌ ʹǤͷ͸ ؆ ͵� 

ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
- - Ͷͷ - - ͵ͷ - - Ͷͺ - - ͳͺ �୲ 
Ͳ ʹͲ ʹͷ Ͳ ͳͲ ͳͷ Ͳ ʹͷ ͶͲ Ͳ Ͷ ͳ͸ ୲ 

 
 

ܥܸܶ ൌ Ͷ�୭ ൅ �୦෍ �୲ ൌ
ଵଶ

୲ୀଵ
�Ͷ כ ሺܥ଴ሻ ൅� 

௛ܥ כ ሺͳ͸ ൅ Ͷ ൅ ͶͲ ൅ ʹͷ ൅ ͳͷ ൅ ͳͲ ൅ ʹͷ ൅ ʹͲሻ ൌ ͳ͸Ͳ ൅ ͳͷͷ ൌ ͵ͳͷ
v) PPB ��� Algorithm�:

Calculation of PPB algorithm applied to Example 4-18 

1

( 1)
n

n i
i

App i D


    Included 
Periods 
  

Iteration 

Ͳ  ͳ ͳ 
Ͳ ൅ ͳʹ  ͳǤʹ  
ͳʹ ൅ ͺ  ͳǤʹǤ͵  

ʹͲ ൅ ʹͶ ൌ ͶͶ  ͳǤʹǤ͵ǤͶ  
������ ���Ͷ� ���������� ൌ ସ଴

ଵ  ��� ������ � ��� ������ൌͺ൅ͳͷൌʹ͵���
���������������͵�������������������Ǥ�ǤͳǡʹƬ͵� 

Ͳ  Ͷ ʹ 
Ͳ ൅ ͳͷ ൌ ͳͷ  ͶǤͷ  
ͳͷ ൅ ͷͲ ൌ ͸ͷ  ͶǤͷǤ͸  
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Cost  
௛ܥ ൌ ͳ����୭ ൌ ͶͲ�� 

��� ൌ 
ͷ�୭ ൅ �୦σ �୲ ൌଵଶ୲ୀଵ ʹͲͲ ൅ ͳሺͳ͸ ൅ Ͷ ൅ڮ൅ ͷ ൅ Ͳ ൅

Ͳሻ ൌ200+95=295. 

��� ൌ ͷ�୭ ൅ �୦σ �୲ ൌଵଶ୲ୀଵ ʹͲͲ ൅ ͳሺͳ͸ ൅ Ͷ ൅ڮ൅ ͷ ൅ Ͳ ൅ Ͳሻ ൌ200+95=295 
vi�)POS  Method 

������ ���͸� ���������� ൌ ସ଴
ଵ  an order is placed for Periods 

ͶƬͷ����������ൌͺ൅ͳͷൌʹ͵ 
Ͳ  ͸ ͵ 

Ͳ ൅ ʹͲ ൌ ʹͲ  ͸Ǥ͹  
ʹͲ ൅ ͳͲ ൌ ͵Ͳ  ͸Ǥ͹Ǥͺ  
͵Ͳ ൅ ͵Ͳ ൌ ͸Ͳ  ͸Ǥ͹Ǥͺǡͻ  

������ ���ͻ� ������������ ൌ ସ଴
ଵ  an order  of size 

�ൌͷ൅ʹͲ൅ʹͷൌͷͲ�������������������͵�������������������Ǥ�Ǥ͸ǡ͹Ƭͺ 
Ͳ  ͻ Ͷ 
ʹͲ  ͻǤͳͲ  

ʹͲ ൅ ʹሺͷሻ ൌ ͵Ͳ  ͻǤͳͲǤͳͳ  
͵Ͳ൅͸ͲൌͻͲ  ͻǤͳͲǤͳͳ

ǡͳʹ 
 

���������ͳʹ����������� ൌ ସ଴
ଵ  �������������������ൌͳͲ൅ʹͲ൅ͷൌ͵ͷ 

������������������͵�������������������Ǥ�ǤͻǡͳͲƬͳͳǤ 
	�����������������������������������������ͳʹ�����������ʹͲ������
final order. 

The summary of PPB algorithm 
ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
ʹͲ -  ͵ͷ - - ͷͲ - ʹ͵ - - ͳͺ �୲ 
Ͳ Ͳ ͷ ʹͷ Ͳ ͷ ʹͷ Ͳ ͳͷ Ͳ Ͷ ͳ͸ ୲ 
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   Assume the inventory before the horizon begins is 4 units , TL =2 
months,POS=5, safety stock =3 

Results of POS 
ͷ 
May 

Ͷ 
Apr 

͵ 
Mar 

ʹ 
Feb 

ͳ 
Jan 

-ͳ -ʹ Period(t) 

ͳͷ ͺ Ͷ ͳʹ ʹ   Net Requirement(Dt) 
͵ ͳͺ ʹ͸ ͵Ͳ Ͷʹ Ͷ  Available  inventory 

(It) 
    ͶͲൌ 

Ͷͳ-Ͷ൅͵ 
  Received order 

 ͺͲ     Ͷ
Ͳ 

Planned order 

Note That since POS=5, the lot size is derived from the summation 
the requirement of 5 consecutive periods 
଴ܥ ൌ ͶͲǡܥ������௛ ൌ ͳǡ,ܸܶܥ ൌ ͵�୭ ൅ �୦σ �୲ ൌ୲଼ୀଵ ͳʹͲ� ൅ ͵ͲͲ= 420 

Vii ��� Incremental part Period Algorithm(IPPA) 
The calculations are given in the following table. 
The sign * in the table means that the iteration has not arrived at the 

stop point i.e to the period for which nIPP  EPP  

where
40

1

CoEPP
Ch

   and ( 1)n nIPP n D 

Results of POS(continued) 
sum 
 

ͳʹ 
Dec 

ͳͳ 
Nov 

ͳͲ 
Oct 

ͻ 
Sep 

ͺ 
Aug 

͹ 
July 

͸ 
June 

t 

ͳͶ͸ ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ Net 
Requirement(Dt) 

 ͵ ʹ͵ ͵ ʹ͵ ͵͵ ͵ͺ ͷͺ Available  
Inventoryሺ�୲ ) 

ͳͶ͸  ʹͷ     ͺͲ Received Order 
    ʹͷ    Scheduled order 
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Calculations of Example 4-18 by IPPA  

͹ ͸ ͷ Ͷ ͵ ʹ ͳ t Iteration Q 
ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt   
   Ͷ ͵ ʹ ͳ n� ͳ  
  ͸Ͳ ȗʹͶ ȗͺ ȗͳʹ Ͳ 

( 1)
n

n

IPP

n D



  
  

      ʹ൅ͳʹ൅ 
Ͷ൅ͺൌʹ͸ 

  Qͳ 

͵ ʹ ͳ     n ʹ  
ͶͲ ȗʹͷ Ͳ*     IPP =(n-1)Dn n    

��

Calculation of IPPA (continued) 
ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ t Iter.  
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ Dt   
       ͳͷ+ 

ʹͷ+ 
ʹͲ=͸Ͳ 

  Qʹ 

  ͵ ʹ ͳ    n ͵  
  ͶͲ ȗͷ Ͳ*    IPP =(n-1)Dn n    
    ͵ͷ      Q͵ 
ʹ ͳ       n Ͷ  
ʹͲ Ͳ       IPP =(n-1)Dn n    

��
��

���������������������������������������������Ͷ-ͳͺ 
 ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
 ʹͷ - - ͵ͷ - - ͸Ͳ - - - ʹ͸ �୲ 
Ͳ ʹͲ Ͳ ʹͲ ͵Ͳ Ͳ ʹͲ Ͷͷ Ͳ ͺ ͳʹ ʹͶ �୲ 

�଴ ൌ ͶͲ��������������୦ ൌ ͳ 
��� ൌ ͵ כ �଴ �൅ �୦ כ ሺʹͶ ൅ ͳʹ ൅ ͺ ൅ Ͷͷ ൅ ʹͲ ൅ ͵Ͳ ൅ ʹͲ ൅ ʹͲሻ ൌ ͳʹͲ ൅ ʹͲͻ�=329 
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viii�) With Lingo software 
The model of Example 4-18 typed in Lingo environment: 

min = 
40*(z1+z2+z3+z4+z5+z6+z7+z8+z9+z10+z11+z12)+1*(i1+i2+i3+i4+i5+i6+i7+i8+
i9+i10+i11+i12); 

i0+Q1=i1+2; 
i1+Q2=i2+12; 
i2+Q3=i3+4; 
i3+Q4=i4+8; 
i4+Q5=i5+15; 
i5+Q6=i6+25; 
i6+Q7=i7+20; 
i7+Q8=i8+5; 
I8+Q9=i9+10; 
I9+Q10=i10+20; 
I10+Q11=i11+5; 
I11+Q12=i12+20; 
Q1<=146*z1; 
Q2<=146*z2; 
Q3<=146*z3; 
Q4<=146*z4; 
Q5<=146*z5; 
Q6<=146*z6; 
Q7<=146*z7; 
Q8<=146*z8; 
Q9<=146*z9; 
Q10<=146*z10; 
Q11<=146*z11; 
Q12<=146*z12; 
@BIN( z1);@BIN( z2);@BIN( z3); @BIN( z4);@BIN( z5);@BIN( z6); 
@BIN( z7);@BIN( z8); 
@BIN( z9);@BIN( z10);@BIN( z11);@BIN( z12); 
i0=0;i1>=0;i2>=0;i3>=0;i4>=0;i5>=0;i6>=0;i7>=0;i8>=0;I9>=0;I10>=0; 
I11>=0;I12=0;end 
Global optimal solution found at iteration:  507 
 Objective  value:  295.0000 

  Variable    Value    Reduced Cost 
  Z1   1.000000    40.00000 
  Z2   0.000000   -106.0000 
  Z3   0.000000   -252.0000 
  Z4   1.000000    40.00000 

���.. 
I0  0.000000  0.000000 
Q1  18.00000  0.000000 
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Q2  0.000000  0.000000 
Q3  0.000000  0.000000 
Q4  23.00000  0.000000 
Q5  0.000000  0.000000 
Q6  50.00000  0.000000 
Q7  0.000000  0.000000 
Q8  0.000000  0.000000 
Q9  35.00000  0.000000 
Q10  0.000000  0.000000 
Q11  0.000000  0.000000 
Q12  20.00000    0.000000 
 

 Results of Lingo     ����୦ ൌ ͳ�������������୭ ൌ ͶͲ  
sum ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 
ͳͶ͸ ʹͲ ͷ ʹͲ ͳͲ ͷ ʹͲ ʹͷ ͳͷ ͺ Ͷ ͳʹ ʹ Dt 
 ʹͲ Ͳ Ͳ ͵ͷ Ͳ Ͳ ͷͲ Ͳ ʹ͵ Ͳ Ͳ ͳͺ Qt 
 Ͳ Ͳ ͷ ʹͷ Ͳ ͷ ʹͷ Ͳ ͳͷ Ͳ Ͷ ͳ͸ It 

Costs 
>> i1=16; i2=4; i3=0; i4=15; i5=0; i6=25; 

i7=5;i8=0;i9=25;i10=5;i11=0;i12=0;i0=0; 
>>z1=1; z2=0; z3=0; z4=1; z5=0; z6=1; z7=0; z8=0;z9=1;z10=0;z11=0;z12=1; 
>>TVC= 

40*(z1+z2+z3+z4+z5+z6+z7+z8+z9+z10+z11+z12)+1*(i1+i2+i3+i4+i5+i6+i7+i8+
i9+i10+i11+i12) 
ܥܸܶ ൌ ͷ כ ଴ܥ �൅ �୦ሺͳ͸൅ǡ ǡ ǡ ൅ͷሻ=200+95=295 
The costs of the solution of the algorithms applied to Example 4-18 

are inserted in the following Table for comparison 
�����������������̵����������������������Ͷ-ͳͺ 

Lingo  IPPA Wagner  
whitin 

PPB POQ= 
EOI 

PPA= 
LTC 

LUC Silver 
Meal 

Method 

ʹͻͷ ͵ʹͻ ʹͻͷ ʹͻͷ ͵ͳͷ ʹͻͻ ͵ͲͶ ʹͻͷ TVC 

Exercises 

1-What is meant by dynamic lot sizing? 
2-Compare  POQ and EOQ methods. 
3-What is the difference between PPA and IPPA methods. 
4-The requirements for the next 6 months are as follows: 



Chapter 4  Dynamic Lot Sizing � ��������������������� 222 

 

t ͳ ʹ ͵ Ͷ ͷ ͸ 
�୲ Ͳ ͳͲ ͵Ͳ ͶͲ ͸Ͳ ʹͲ 

The holding cost per unit product for each period is $5.  The ordering  
cost for the first period is  $70 and for the other periods is $200.  The  
lead time is one month.  Use the LUC method and another approach to 
find the order lot sizes.  Which method is better? Why? 

5-( Tersine, 1994p199) An item has a unit purchase price of $45,an 
ordering cost of $110 and the carrying cost fraction per period is 
2.5%.  Determine the order sizesusing PPB , IPPA and Silver-Meal 
algorithms. Which method is better? Why?  

6-The requirements of a 12-period time horizon are given in the 
following table.   The holding cost fraction is 2%.  The ordering 

cost per period is $200. Determine the order sizes using LTC, LUC & 
Silver-Meal  algorithms.   Also solve this problem by Lingo software. 
Which method is better? Why? 

ͳʹ ͳͳ ͳͲ ͻ ͺ ͹ ͸ ͷ Ͷ ͵ ʹ ͳ t 

ͳͲ Ͳ ͶͲ Ͳ ʹ͹Ͳ ʹͷͲ ͳͺͲ ͹Ͳ ͳʹͲ Ͳ Ͳ ͳͲ Dt 
Solve example 4-1 with Lingo, assuming that 8 units is necessary 

after the last period 
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ͷǤͳ�Introduction  

      As mentioned in chapter 1, the uncertainty condition could 
be divided into complete uncertainty conditions and risk 
conditions.  The so-called completer uncertainty condition in 
inventory planning will be dealt at the end of this chapter.  In 
risk conditions there is some records of past data which enable 
us to calculate the occurrence probability of the occurrence of 
the inventory model parameters.  In what follows you will find 
inventory models such as single period inventory, FOI=(R,T)�and 
FOS =(r,Q� models under risk conditions.  

ͷ.ʹ Single Period Inventory Model with 
Probabilistic demand 

   The single period inventory model described here are used in 
situations where a kind of  raw material  or a finished product is 

Chapter ͷ 

Inventory Control under Uncertainty 

Aims of the chapter 

    This chapter deals addresses the problem of inventory control under 
uncertainty  which is  an important  issue in supply chain management 
across industrial and commercial firms.  In this regard such inventory 
models as  single period inventory,(R,T)�and(r,Q� are introduced . The 
end of chapter deal with the application of decision making  in 
complete uncertainty in inventory control. 

  



227  Classical topics   in inventory control and Planning 

ordered based on the probabilistic demand for it.  The demand is a 
random variable where occurs in only a single period. The objective of 
the problem is to find that level of inventory before the start of the 
period(R) which maximizes profit.  This model  which is often called 
the newsboy problem or Christ- mas tree problem is used for 
perishable or seasonal items that could be ordered once  or have a 
short period of consumption  such as bread , flower, fruit, vegetable, 
newspaper, new year cards, deteriorating items, the items that are 
produced once  and cannot be carried in inventory and sold in future 
periods. 

In this model 

-The demand is a random variable, 

-The period of consumption is relatively short, and one order for 
purchase or production is placed  to be received at the beginning of 
the period. 

-The salvage price is very low compared to the initial price. 

- The objective in this problem is to determine an optimal level for the 
maximum inventory which maximizes profit. 

Symbols 

A The position of inventory before placing an 
order 

X �� D Demand  
f(x) 

( )Df x
The probability density function of variable 
demand 

F(x)= Pr(X ≤ x) 
����
୙ሺ�ሻ Unit loss normal integral 
�
ൌ �¶
െ � 

The actual holding cost of one item not sold 
during the period 

H� The cost of disposal of one unit at the end of 
period 
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K(R) ܲሺܴ െ ሻܫ ൅ܴܪ ൅ ሺܸ ൅ ߨ ൅ܪሻන ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

L Salvage or sale value of one unit 
p Service level (Pr(X ≤ R) 
P Unit price or unit cost of production 

஽ܲሺݔሻ The probability function for discrete demand 
R The level of inventory after receiving the order 
 Optimal R כ�
U The sales revenue during the period 
V The value earned per unit sold  
Y The cost during the period(purchase/production ,holding 

&shotage) 
Z The profit during the period 
ʌ Unit shortage cost(lost profit not included) 

Note that: 

It is assumed the cost of holding for the units sold during the period is 
ignorable . 

H, the actual holding cost for each unsold unit at the end of the period, 
is equal to the differencebetween the disposal cost(H') and the salvage 
or sale price(L) i.e. 

H=H�-L  (5-1). 

H� and L could be zero or positive; therefore H could be negative, 
zero or positive. 

Let the shortage cost of one unit be denoted by ð.  In this model there 
is no time-depended shortage cost because there is only one period. 
By the way if in the case of shortage it is said that there is only lost 
profit per each shortage unit during the period then let ð=0. 

  As mentioned before in this model we would like to determine the 
inventory level after receiving the order (R) in such a way the the 
profit is maximized.  For the period let 

Y denotes the purchase, holding and shortage cost 
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U  denotes sales revenue 

Z =the profit during the period or�ܼ ൌ ܷ െ ܻ�� ฺ � 
ሺܼሻܧ ൌ ሺܷሻܧ െ  ሺܻሻǤ                             ;ϱ-ϮͿܧ

It is obvious if the demand is more than R the sales amount is R : 

Sales volume random variable=�ൌ ቄܦ���������������ݔ ൏ ܴ
ܦ���������������ܴ ൒ ܴ�                         

To deal with the model two cases are distinguished 

a)The order cost or setup cost (CO)  is ignorable, 
b) CO  is considerable.

5.2.1 Single Period Inventory Model �order/setup cost 
ignorable 

 Let us denote the revenue per unit sold be V then 
the average revenue =ܸ ൈ �������������������� 

ͷ.ʹǤͳǤͳ������������������������ Model ǣ࢕࡯ ؆ ૙ & continuous 
demand  

    If  the order / setup cost (CO)  is ignorable and the demand 
is a continuous  random variable with probability density 
function܎�ሺܠሻ�then: 

Average sale volume= 

ൌ න ሺ�����������ሻ݂ሺݔሻ݀ݔ
ஶ

଴
ൌ න ݔሻ݀ݔሺ݂ݔ

ோ

଴
൅ න ܴ݂ሺݔሻ݀ݔ

ஶ

ோ
�ฺ 

Average sales volume=׬ ஶݔሻ݀ݔሺ݂ݔ
଴ െ ׬ ஶݔሻ݀ݔሺ݂ݔ

ோ ൅
׬ ܴ݂ሺݔሻ݀ݔஶ
ோ ൌ ሻܦሺܧ ൅ ׬ ሺܴ െ ஶݔሻ݀ݔሻ݂ሺݔ

ோ  

Average sales revenue=��ሺ�ሻ ൌ ሻܦሺܧܸ ൅ ܸ ׬ ሺܴ െ ஶݔሻ݀ݔሻ݂ሺݔ
ோ  or 

Average sales revenue�ൌ ��ሺ�ሻ ൌ ሻܦሺܧܸ െ ܸ ׬ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔஶ
ோ ����ሺ�ͷ െ ͵ሻ 

The total cost Y was defined as: 
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Y=purchase/production cost +holding cost+ shortage cost. 

The unsold units at the end of the single period is a function of 
the demand : 

unsold unitsൌ ��݃ሺݔሻ����������������������������ሺͷ െ Ͷሻ 
If the actual holding cost per unsold unit is H, then: 

The average holding cost= 

නܪ ݃ሺݔሻ݂ሺݔሻ݀ݔ
ஶ

଴
ൌ ܪ ቈන ሺܴ െ ݔሻ݀ݔሻ݂ሺݔ

ோ

଴
൅න Ͳ݂ሺݔሻ݀ݔ

ஶ

ோ
቉ฺ 

The average holding cost of  the periodൌ ܪ ׬ ሺܴ െ ோݔሻ݀ݔሻ݂ሺݔ
଴ . 

Let the shortage which is a function of the demand be denoted 
by b(x): 

ܾሺݔሻ ൌ ቄͲܦ�������������������� ൏ ܴ
ݔ െ ܦ������������ܴ ൐ ܴ� ����������������ሺͷ െ ͷሻ 

For continuous demand, the average  shortage volume for the 
period denoted by  തܾሺܴሻ� is equal to : 

തܾሺܴሻ ൌ න ܾሺݔሻ݂ሺݔሻ݀ݔ
ஶ

଴
ൌ න Ͳ݂ሺݔሻ݀ݔ

ோ

଴
൅න ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ

ஶ

ோ
 

This relationship after simplification is inserted in the following 
table as well as a similar relationship for the discrete demand. 

Demand Average shortage volume for the period  
continuous �തሺ�ሻ ൌ න ሺ� െ �ሻ�ሺ�ሻ��

ஶ

ୖ
 

 
ሺͷ-͸ሻ 

Discrete 
�തሺ�ሻ ൌ ෍ ሺ� െ �ሻ�ୈሺ�ሻ

ஶ

୶ୀୖାଵ
 

 
ሺͷ-͹ሻ 
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Where ݂ሺݔሻ is the probability density function for continuous demand 
and ஽ܲሺݔሻ is the probability function for discrete demand. 

If the cost per unit shortage is Ɏ�then: 

Average shortage cost for the period ൌ Ɏ�തሺ�ሻ ൌ Ɏ׬ ሺ� െ �ሻ�ሺ�ሻ��Ǥஶ
ୖ  

Let the position of inventory before placing an order be A.  If the unit 
price is P then 

 Production /purchase cost ൌ �ሺ� െ �ሻ 

Average total cost ൌ �ሺ�ሻ ൌ �ሺ� െ �ሻ ൅ ׬� ሺ� െ �ሻ�ሺ�ሻ��ୖ
଴ ൅ 

නߨ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
�ฺ 

ሺܻሻܧ ൌ ܲሺܴ െ �ሻ ൅ නܪ ሺܴ െ ݔሻ݀ݔሻ݂ሺݔ
ஶ

଴
െ නܪ ሺܴ െ ݔሻ݀ݔሻ݂ሺݔ

ஶ

ோ
൅ නߨ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ

ஶ

ோ
�

ฺ 

ሺܻሻܧ ൌ ܲሺܴ െ �ሻ ൅ නܴܪ ݂ሺݔሻ݀ݔ
ஶ

଴
െ නܪ ݔሻ݀ݔሺ݂ݔ

ஶ

଴
െ නܪ ܴ݂ሺݔሻ݀ݔ

ஶ

ோ
൅ නܪ ݔሻ݀ݔሺ݂ݔ

ஶ

ோ
൅ නߨ ݔሻ݀ݔሺ݂ݔ

ஶ

ோ
െ නܴߨ ݂ሺݔሻ݀ݔ

ஶ

ோ
ฺ 

ሺܻሻܧ ൌ ܲሺܴ െ �ሻ ൅ ܴܪ െ ሻܦሺܧܪ െ ሺߨ ൅ ሻනܪ ܴ݂ሺݔሻ݀ݔ
ஶ

ோ
൅ ሺߨ ൅ ሻනܪ ݔሻ݀ݔሺ݂ݔ

ஶ

ோ
ฺ 

Finally: 
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ሺܻሻܧ ൌ ܲሺܴ െ �ሻ ൅ ൫ܴܪ െ ሻ൯൅ܦሺܧ ሺߨ ൅ ሻܪ ׬ ሺݔ െஶ
ோܴሻ݂ሺݔሻ݀ݔǤ�

Average profit is given by: 

ሺܼሻܧ ൌ ሺܷሻܧ െ  ሺܻሻܧ

�ሺ�ሻ ൌ ሻܦሺܧܸ ൅ ܸන ሺܴ െ ݔሻ݀ݔሻ݂ሺݔ
ஶ

ோ
 

ሺܼሻܧ ൌ ሻܦሺܧܸ ൅ ܸන ሺܴ െ ݔሻ݀ݔሻ݂ሺݔ
ஶ

ோ
െ ܲሺܴ െ �ሻ െ ܴܪ

൅ ሻܦሺܧܪ െ��� 

ሺߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

ሺܼሻܧ
ൌ ሺܸ ൅ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥܦሺܧሻܪ

�ୢ୭ୣୱ�୬୭୲�ୢୣ୮ୣ୬ୢ�୭୬�ோ�

െ ቈܲሺܴ െ �ሻ ൅ ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
቉ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ 

Now let� 
�ሺ�ሻ ൌ �ሺ� െ �ሻ ൅ �� ൅ ሺ� ൅ Ɏ ൅ �ሻ ׬ ሺ� െ �ሻ�ሺ�ሻ��ஶ

ୖ  (5-8) 

Then 

ሺܼሻܧ ൌ ሺܸ ൅ ሻᇣᇧᇧᇧᇤᇧᇧᇧᇥܦሺܧሻܪ
ୢ୭ୣୱ�୬୭୲�ୢୣ୮ୣ୬ୢ�୭୬�ோ

െ ሺܴሻ���ሺͷܭ െ ͻሻ 

Our objective is to determine a value for R which maximizes 
E(Z) or equivalently minimizes K(R) which plays a significant 
role in the cost of  
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this model.

of 3 non- 

minimum.  
minimum 

Example 5.1

In a single period decision model 
ܪ ൌ ͲǤͳ and  

If the demand  
[10,20], draw the function  K(R) ,

 If the demand  
mean 20 and variance 

Solution  
a) 

ሺܴሻܭ ൌ ܲሺܴ െ �ሻ
ܲ ൌ ͲǤʹǡ ܣ ൌ Ͳ

                                    Classical topics   in inventory control and Planning

this model.  Note that 
డమ௄ሺோሻ
డோమ ൌ ሺܸ ൅  ሺܴሻ is the product݂ܪሻߨ

 negatives then 
డమ௄ሺோሻ
డோమ ൒ ͲǤ��Therefore ܭ

 Figure 5.1 shows a typical function K(R) 

Fig 5.1  A typical function K(R) 

5.1 

n a single period decision model ܲ ൌ ͲǤʹǡ ܣ ൌ Ͳǡܸ ൌ
 

If the demand  for the period is uniformly distributed over 
draw the function  K(R) ,�ͳͲ ൏ ܴ ൏ Ͷͷǡ 

If the demand  for the period is normally distributed with 
 and variance 9, draw the function  K(R) ,�Ͳ ൏ ܴ

ሻ ൅ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

Ͳǡܸ ൌ ʹǡ ߨ ൌ Ͳǡܪ ൌ ͲǤͳǡ ݂ሺݔሻ ൌ ଵ
ଶ଴ିଵ଴ ǡ ݔ א ሾͳͲ�ʹͲሿ , 

in inventory control and Planning 

is the product 

 ሺܴሻ�hasܭ

) and its 

 

ʹǡ ߨ ൌ Ͳǡ

s uniformly distributed over 

s normally distributed with 
൏ ʹͲǡ 
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ሺܴሻܭ ൌ ͲǤʹሺܴ െ Ͳሻ ൅ ͲǤͳܴ
൅ ሺʹ ൅ Ͳ ൅ ͲǤͳሻන ሺݔ െ ܴሻ ͳͳͲ ݔ݀

ଶ଴

௫ୀோ
ൌ ͲǤ͵� ൅ ʹǤͳͶͲ ሺ͵Ͳ െ ܴሻ

ଶ 

The following command in MATLAB draws Fig 5.2: 
R=10:.01:45;K=.3*R+2.1*(30-R).^2/40;plot(R,K) 

Fig 5-2 Function K(R) for Example 5.1 (uniform demand) 
b) 

Substituting the data yields 

ሺܴሻܭ ൌ ͲǤ͵ܴ ൅ ʹǤͳන ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

Where ݂ሺݔሻ is the pdf of a normal distribution with ρ ൌ ʹͲƬߪ ൌ ͵Ǥ 
According to Eq. 5-1 in Sec. 1.5.1  we could write 

න ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
ൌ ɐ
୙ሺ�ሻ�������� ൌ � െ ρ

ɐ
Where 


୙ሺ�ሻ is given  by Table A at the end of the book or by the
following MATLAB command: 


୙ሺ�ሻ ൌexp(-k.^ ˻�˻ )/sqrt(˻*pi)-k.*(˺-normcdf(k)) 

10 15 20 25 30 35 40 45
8

10

12

14

16

18

20

22

24

26

R

K
(R

)
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Then ܭሺܴሻ ൌ ͲǤ͵ܴ ൅ ʹǤͳɐ
୙ ቀୖିଶ଴ଷ ቁǤ 

Fig 5.3 is the plot of K® versus R   drawn by the following 
MATLAB commands: 

R=0:.01:20; k=(R-20)/3; 

KR=.3*R+2.1*3*exp(-k.^2/2)/sqrt(2*pi)-k.*(1-normcdf(k));plot(R,KR) 

 

Fig 5-3 Function K(R) for Example 5.1(normal demand ) 

ͷ-ʹ-ͳ-ͳ-ͳ Optimal value of maximum inventory(כࡾ) 

We are in search of that value of maximum inventory (R) 
which maximizes the profit E(Z) or that value of R which satisfy 
ௗாሺ௓ሻ
ௗோ ൌ ͲǤ 
ሺܼሻܧ݀
ܴ݀ ൌ Ͳ�� ฺ െܲ െܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ݂ሺݔሻ݀ݔ

ஶ

ோ
ൌ Ͳ������ ฺ 

ܲ ൅ ܪ െ ሺܸ ൅ ߨ ൅ܪሻሾͳ െ ሻሿכሺܴܨ ൌ Ͳ������ ฺ 

If demand is continuous, the optimal value of R is derived from: 

0 5 10 15 20
6

6.5

7

7.5

8

8.5

9

R

K
(R

)
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ሻכሺܴܨ ൌ ௏ାగି௉
௏ାగାு                   (5-10) 

The answer exists if  Ͳ ൑ ୚ା஠ି୔
୚ା஠ାୌ ൑ ͳ and shortage is allowed. 

Note that  

-The differentiation under integral sign has used  Leibniz's Rule. 

According to this rule if  ܨሺݕሻ ൌ ׬ ݂ሺݔǡ ��௛ሺ௬ሻݔሻ݀ݕ
௚ሺ௬ሻ ǡ ���� 

 

	ᇱሺ�ሻ ൌ �ᇱሺ�ሻ�ሺ�ሺ�ሻǡ �ሻ െ �ᇱሺ�ሻ�ሺ�ሺ�ሻǡ �ሻ ൅ න μ�ሺ�ǡ �ሻ
μ� ��

୦ሺ୷ሻ

୥ሺ୷ሻ
Ǥ 

-the difference V-P  is the profit of one unit, 

-If the distribution of consumption during the period is denoted 
by X then  

Shortage probability for the period � �����ሺ� ൐ ሻכܴ ൌ ��ͳ െ
 .ሻכሺܴܨ�
-What is sometimes called service level is equal to: 

������݌�������� ൌ ���ሺ� ൑  ሻכܴ
ͷ-ʹ-ͳ-ͳ-ʹ������������������������������������model 

 If  A≥R*  i.e. � the inventory level before placing an order is 
greater than or equal to R*, no order is placed; and if A<R* an 
order is placed with the quantity  

Q*=R*-A                       (5-11) 

Needless to say that A is deducted from R* only if the units are 
usable for the period ad are not things such as newspaper which 
is not usable for the coming period . 
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Some comments: 

-When ʌ ൌ Ͳ we have ܨ�ሺܴכሻ ൌ ௏ି௉
௏ାுǤ  In this case it obvious that 

there exists an answer for כ� only  if   V≥P which is 
economically true. 

- When  the range of the demand is restricted to interval  [a    b], if  	ሺכ�ሻ ൌ
ͳ then set כ� ൌ �; if  a negative value was calculated for 	ሺכ�ሻ 
set כ� ൌ � and if shortage is not permitted in the model (Ɏ ൌ
λሻthen 	ሺכ�ሻ ൌ ͳ� and כ� ൌ �Ǥ  
ͷ-ʹ-ͳ-ͳ-͵  average shortage cost in the single period model 

     Shortage occurs when the demand over the period (X) exceeds R; 
other wise we would not face with shortage and we have no cost  
incurred due to shortage.  

 unit shortage costൌ ൜ߨ�������ሺܺ ൐ ܴሻ
Ͳ������ሺܺ ൑ ܴሻ � 

The expected  value of shortage cost = 

Ɏ×ܲݎሺܺ ൐ ܴሻ ൅ Ͳ ൈ ሺܺݎܲ ൑ ܴሻ= Ɏ×ܲݎሺܺ ൐ ܴሻ 
Example   5-2 

    The weekly demand of a kind of liquid follows a Weibul 
distribution with parameters A=0, B=1000 lit  C=2.  If the liquid is not 
consumed within a week ,it would be considered salvage and no one 
buys it and its cost of dis- posal is $0.1 per  one liter  unsold.  There 
no shortage cost except the lost profit.  The liquid is bought $0.2 per 
liter and sold $2 per liter. Find the opti- mal order quantity. 

Solution 

Weekly ̱ܦ����ሺܤ ൌ ͳͲͲͲǡ ܥ ൌ ʹሻ   ܲ ൌ ଴
ଶ ǡܸ ൌ ʹ�ǡߨ��� ൌ Ͳǡ� 

ܪ ൌ ƍܪ െ ܮ ൌ ͲǤͳ െ Ͳ ൌ ͲǤͳ 
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ሻכሺܴܨ ൌ ܸ ൅ ߨ െ ܲ
ܸ ൅ ߨ ൅ܪ ൌ ʹ ൅ Ͳ െ ͲǤʹ

ʹ ൅ Ͳ ൅ ͲǤͳ ൌ
ͳǤͺ
ʹǤͳ����ฺ 

��ͳ െ ݁ିሺ଴Ǥ଴଴ଵோכሻమ ൌ ͳǤͺ
ʹǤͳ �ൌ �ͲǤͺͷ͹ͳ���ฺ�ܴכ ؆ ͳ͵ͻʹǤ��� 

Or with MATLAB: 

כܴ��� ൌ ሺǤݒ݈ܾ݊݅ݓ ͺͷ͹ͳǡͳͲͲͲǡʹሻ ൌ ͳ͵ͻʹ� 

����Q*=R*-A�����=�ͳ͵ͻʹ � ˹� ͳ͵ͻʹ�  

Example   5-3 

    In a one period model  an item is sold $20 per unit where the unit 
pur- chase price is $12.  Shortage incur no cost except the lost profit. 
The unsold units have no value and cost at the end of the period. there 
is 5 units available at the beginning of the period.  Find the optimal 
order quantity  for the following cases: 

   a)The demand of the item in the one period model  follows a 
uniform distribution over(0, 100) 

   b) The demand  is exponentially distributed with parameter ߣ ൌ ͲǤͲͳǤ  

Solution  

  In this problem there is no shortage cost i.e.  ߨ ൌ Ͳǡ since there is no 
cost except the lost profit and H�=0	L=0  ��since there is not any  cost 
and revenue for the unsold units 

ሻכሺܴܨ ൌ ܸ ൅ ߨ െ ܲ
ܸ ൅ ߨ ൅ܪ ൌ ʹͲ ൅ Ͳ െ ͳʹ

ʹͲ ൅ Ͳ ൅ Ͳ ൌ ͲǤͶ 

a)For the uniform distribution: 
 

ሻݔሺܨ ൌ ௫ି଴
ଵ଴଴ି଴   

ሻכሺܴܨ ൌ ͲǤͶ �������������������ሳልልልልሰ כܴ െ Ͳ
ͳͲͲ െ Ͳ ൌ ͲǤͶ������ �������������������ሳልልልልሰ��ܴכ ൌ ͶͲ 
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optimal order quantity =ܳכ�=(R*-A)=�40-5=35. 

b) 
ͳ െ ݁ି଴Ǥ଴ଵோכ ൌ ͲǤͶ��     ܴכ=������ሺͲǤͶǡͳͲͲሻ ൌ =51

 Optimal order quantity =51-5=46 

ͷ.ʹǤͳǤʹ��������period Inventory model :࢕࡯ ؆ ૙ & discrete demand 

    In this section the above single-period model  is retreated under 
assumption that the demand for the period is not continuous and the 
setup/order cost is negligible.  In this case relationships similar to 
those developed for continuous demand case are obtained .  The 
difference lies on the use of sigma sign (σ )sign instead of integral 
sign(׬ ): 

ሺܴሻܭ ൌ ܲሺܴ െ ሻܫ ൅ ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻܪ ෍ ሺݔ െ ܴሻ ௑ܲሺݔሻ
ஶ

௫ୀோାଵ

οܭሺܴሻ ൌ ሺܴܭ ൅ ͳሻ െ ሺܴሻܭ �� ����������������ሳልልልሰ 

οܭሺܴሻ ൌ ܲ ൅ ܪ ൅ ሺܸ ൅ ߨ
൅ ሻܪ ൝൥ ෍ ሺݔ െ ܴ െ ͳሻ ௑ܲሺݔሻ

ஶ

௫ୀோାଶ
൩

െ ൥ ෍ ሺݔ െ ܴሻ
ஶ

௫ୀோାଵ
௑ܲሺݔሻ൩ൡ ��ฺ 

οܭሺܴሻ=�ܲ ൅ ܪ ൅ ሺܸ ൅ ߨ ൅ܪሻሼ��ሾ ௑ܲሺܴ ൅ ʹሻ ൅ ʹ ௑ܲሺܴ ൅ ͵ሻ ൅͵ ௑ܲሺܴ ൅ Ͷሻ ൅ڮ ሿ െ ሾ ௑ܲሺܴ ൅ ͳሻ ൅ ʹ ௑ܲሺܴ ൅ ʹሻ ൅ ͵ ௑ܲሺܴ ൅ ͵ሻ ൅ڮ ሿሽ 

οܭሺܴሻ=P+H൅ሺܸ ൅ ߨ ൅ ሻ�ሼെܪ ௑ܲሺܴ ൅ ͳሻ െ� ௑ܲሺܴ ൅ ʹሻ െ ௑ܲሺܴ ൅ ͵ሻ െڮሽ����������������ሳልልልሰ 

οܭሺܴሻ ൌ ܲ ൅ ܪ െ ሺ�ܸ ൅ ߨ ൅ ሻܪ ௑ܲሺܺ ൐ ܴሻ
We would like to minimize the discrete function K(R). 
Assuming ο�ሺ�ሻ≥0 we could write: 

οܭሺܴሻ ൌ ܲ ൅ ܪ െ ሺ�ܸ ൅ ߨ ൅ ሻܪ ௑ܲሺܺ ൐ ܴሻ ൒ Ͳ
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௑ܲሺܺ ൐ ܴሻݎܲ�ݎ݋���ሺܦ ൐ ܴሻ ൑ ܲ൅ܪ
ܸ൅ߨ൅ܪ ���֜ 

ͳ െ ܦሺݎܲ ൐ ܴሻ ൒ ͳ െ ௉ାு
௏ାగାு���orܨ�ሺܴሻ ൒ ͳ െ ௉ାு

௏ାగାு

Where  	ሺ�ሻ   is the cumulative distribution function of demand. 
The best value of  R denoted by ܴכ is the smallest R value 

which satisfies the following  inequality(based on Peterson 
&Silver, 1991  page 395) 

D��������������������	ሺ�ሻ ൒ ୚ା஠ି୔
୚ା஠ାୌ  ( 5-12). 

This  כ� minimizes the cost function �ሺ�ሻǤ 
Optimal Policy 

 is the smallest R value which satisfies כܴ

If  A≥R*  i.e. �the inventory level before placing an order is greater than or 
equal to R*, no order is placed; and if A<R* an order is placed with the 
quantity Q*=R*-A .       

Example 5-4 

   A single-period item is bought $3000 per unit and sold $5000 
per unit; There is no shortage cost except the lost profit.  The 
actual holding cost of one unsold item is H'≈0 i.e. negligible. 
The sale cost at the end of the period is: L=2000. 

 The demand is discrete with the probabilities given below: 

14 13 12 11 10 9 8 7 6 demand 

0.05 0.05 0.1 0.2 0.2 0.2 0.1 0.05 0.05 Prob. 

Find the optimal order quantity and the probability of shortage. 
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Solution 

14 13 12 11 10 9 8 7 6 D  or X 

0.05 

0.05 

0.1 

0.2 

0.2 

0.2 

0.1 

0.05 

0.05 

Probability 

1 0.95 

0.9 

0.8 

0.6 

0.4 

0.2 

0.1 

0.05 

( )DF x

஽ሺ�ሻܨis the smallest value which satisfies כܴ ൒ ௏ାగି௉
௏ାగାு

Since there is no shortage cost then ߨ ൌ Ͳ�Ǥ 
ܪ� ൌ ᇱܪ െ ܮ ൌ Ͳ െ ʹͲͲͲ 
Shortage probability = 

��ሺܺ ൐ ሻכܴ ൌ ͳ െ ሻכ஽ሺܴܨ ൌ ܲ ൅ ܪ
ܸ ൅ ߨ ൅ܪ ൌ ͵ͲͲͲ െ ʹͲͲͲ

ͷͲͲͲ െ ʹͲͲͲ ൌ
ͳ
͵ 

ሻכ஽ሺܴܨ ൒ ܸ ൅ ߨ െ ܲ
ܸ ൅ ߨ ൅ ܪ ൌ ͷͲͲͲ ൅ Ͳ െ ͵ͲͲͲ

ͷͲͲͲ ൅ Ͳ െ ʹͲͲͲ ൌ ͲǤ͸͸ 

The smallest value which satisfiesܨ஽ሺܴכሻ ൒ ͲǤ͸͸ is the answer. 
According to the table  ܴכ ൌ ͳͳǤ  
5.2.2 Single Period Model �order/setup cost (CO�
considerable  

   In this section the single-period model is studied subject to 
nonzero order/setup cost 

Symbols 

A inventory level at the beginning of the period 
R�� inventory level after receipt of the order 
r0�� The smallest root of  ܲݎ�଴ ൅ ଴ሻݎ�ሺܮ െ ைܥ െ ܴܲ଴ െ ሺܴ଴ሻܮ ൌ Ͳ
ሺܴሻܮ ሺܴሻܮ ൌ ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ

ஶ

ோ
 

Ԣሺܴሻܭ Ԣሺܴሻܭ ൌ ܴܲ ൅  ሺܴሻܮ
R0��

The point where functions ܭሺܴሻǡܭԢሺܴሻ are minimized derived 
from ܨሺܴ଴ሻ െ ௏ାగି௉

௏ାగାு ൌ Ͳ
L(A) The cost during the period if no order is placed 
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In the previous section where order/setup cost  was 
negligible (ܥ௢ ؆ ͲሻǤ  K(R) in the relationship given for profit 
sometimes equals the cost which we want to minimize.  In this 
section the cost including the order/setup cost ܥ௢ would be: 

If R<A  no order is placed no calculations is needed. 

If � ൒ �,the cost of period equals  ܥ௢  as well as the cost in the 
previous section i.e.ܭ�ሺܴሻ ൌ ܲሺܴ െ ሻܣ ൅  ሺܴሻ whereܮ

ሺܴሻܮ ൌ ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

Then the cost of the period:ܥை ൅ ሺܴሻܭ ൌ ைܥ ൅ ܲሺܴ െ ሻܫ ൅
ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻܪ ׬ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔஶ

ோᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௅ሺோሻ

�� 

If we let  ܭƍሺܴሻ ൌ ܲ ൈ ܴ ൅  = ሺܴሻ then the cost of periodܮ

ைܥ ൅ ܲሺܴ െ ሻܣ ൅ ሺܴሻܮ ൌ ைܥ ൅ ܲ ൈ ܴ ൅ ሺܴሻܮ െ ܣܲ ൌ ைܥ ൅ Ԣሺܴሻܭ െ ܣܲ

Now let focus on function  ܭԢሺܴሻ which plays a major role in 
the cost  

ሺܴሻܭ ൌ Ԣሺܴሻܭ െ �����������ܣܲ ՜������ ܭԢሺܴሻ ൌ ሺܴሻܭ� ൅  ܣܲ

The product of the unit price and the inventory at the 
beginning of the period(A) is positive, then  if ܴ଴ is the point at 
which the minimum of K(R) occurs,  the minimum of function 
,Ԣሺܴሻ occurs at the same point �଴Ǥ  Now note that when R=Aܭ
no order is placed i.e.ܥ�ை ൌ Ͳ . Substituting ܥை ൌ Ͳ�Ƭܴ ൌ  in ܣ
the above relationship yields the cost of the inventory system 
when ܴ ൌ  .ܣ

the cost of period =ܥை ൅ ܲሺܴ െ ሻܣ ൅  ሺܴሻܮ

The cost for (R=A)= 
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Ͳ ൅ ܲሺܣ െ ሻܣ ൅ ܫܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ݔሻ݀ݔሻ݂ሺܣ
ஶ

ூ
 

Denoting the above cost with  L(I), we could write: 

ሻܣሺܮ ൌ ܣܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ݔሻ݀ݔሻ݂ሺܣ
ஶ

ூ
 

The following figure shows an example of the function  

Ԣሺܴሻܭ ൌ ܴܲ ൅  Ԣሺܴሻܭ ሺܴሻ.  R is on the horizontal axis andܮ
on the vertical axis. 

 

Fig. 5.4 A typical plot of  function ܭԢሺܴሻ ൌ ܴܲ ൅  ሺܴሻܮ
    The minimum of function ܭԢሺܴሻ happens at the same point 
where K(R) is minimized i.e. a point such as ܴ଴ derived from 

ሺܴ଴ሻܨ െ ௏ାగି௉
௏ାగାு ൌ ͲǤ 

   Assume point  0r be that value of R that minimizes "�୓ ൅
�Ԣሺ�ሻ�.  The minimum of �Ԣሺ�ሻ is �Ԣሺܴ଴ሻ��������̶�������������
�୓ ൅ �Ԣሺ�ሻ��� is ���� �୓ ൅ �Ԣሺܴ଴ሻ�.   As Fig 5-4 shows  this value on 
the vertical corresponds to 2 values  on the horizontal axis; 
however , the smaller value is of our interest in this case. 
Another words ݎ୭�� the  smallest  value�(ݎ୭ �൏ ܴ୭) which satisfies: 
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ைܥ ൅ ܲ�୭ ൅ ሺ�୭ሻܮ ൌ ܭ ൭ 0r ൱ ൌ ܲ 0r ൅ ܮ ൭ 0r ൱Ǥ

 ୭ and the inventory at the beginning of the period(A) play aݎ
role in determining the optimal policy in this case.  3 states  are 
distinguished here: 

State I: A>ܗ܀� 
Substituting ܴ ൌ � in  ܭԢ  yields ܲܣ ൅  ሺ�ሻǤ   Referring toܮ

Fig 5.5 it is obvious that ܭᇱሺܴሻ ൌ ܴܲ ൅ ሺܴሻܮ ൐ ܣܲ ൅  .ሻܣሺܮ
Adding the positive number CO to the both sides does not 
change the direction of the inequality symbol:ܥ�ை ൅ ܴܲ ൅ܮሺܴሻ ൐ ܣܲ ൅ ሻܣሺܮ �֜ ைܥ ൅ ܲሺܴ െ ሻܣ ൅ ሺܴሻܮ ൐ ሻܣሺܮ

The right had side of the inequality is the cost of the 
inventory system when no order us placed and the left hand of 
the inequality when A<R and an order of size R-A is placed. 
Since the latter cost is greater the former cost, then we have to 
place no order.   

 

Fig 5.5  Single �period model ܥ�ை ് Ͳ and A>�୭ 

State II: ܗܚ ≤ A ≤ܗ܀��   for R>A 

 With the assumption ܥை ൅ ƍሺܴ଴ሻܭ ൐ ��ƍሺ�ሻܭ
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For any R in the interval 0 0  r I R R ;&ŝŐ͘�ϱ͘ϲͿ we could write: 

 

Fig 5-6 Single period model  ܥ�ை ് ͲƬ 0r  ≤ A ≤ܴ଴
ைܥ ൅ ܴܲ ൅ ሺܴሻܮ ൐ ܣܲ ൅ ሻܣሺܮ �֜ ைܥ ൅ ܲሺܴ െ ሻܣ ൅ ሺܴሻܮ ൐ ሻܣሺܮ

The right hand side of the lat inequality the cost of the 
inventory system if no order is placed. Again here ( 0 0r A R  ) 

the cost of the inventory system if no order is placed is less than 
the cost if an order is placed; then we have to place no order. 

Note since practically R A the state 
0 0r R A R    is not 

applicable. 

State III  ࡭ ൏  (Fig 5.7)࢕࢘
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Fig 5-7 State III(A<࢕࢘  in single period model having ࢕࡯ 

Remembering the definition of ݎ௢ , in this state ܭԢሺܣሻ ൐ Ԣሺܭ 0r ሻ. 
Referring to Fig 7-5 we could write: 

ܲ 0R ൅ ܮ ቀ 0R ቁ ൌ Ԣܭ� ቀ 0R ቁ   ,    ܲ 0r ൅ ܮ ቀ 0r ቁ ൌ Ԣܭ ቀ 0r ቁ  

Ԣሺܭ 0r ሻ ൏          ሻܣԢሺܭ
ைܥ ൅ ܲ 0R ൅ ܮ ቀ 0R ቁ =�ܲ 0r ൅ ܮ ቀ 0r ቁ            

ܲ 0r ൅ ܮ ቀ 0r ቁ ൏ ܫܲ ൅ ሻܣሺܮ �֜ 

ைܥ ൅ ܲ 0R ൅ ܮ ቀ 0R ቁ ൏ ܣܲ ൅  ሻܣሺܮ

ைܥ ൅ ܲ ቀ 0R െ ቁܣ ൅ ܮ ቀ 0R ቁ ൏  ሻܣሺܮ

    The right hand side of the lat inequality is the cost of the inventory 
system when no order is placed which was previously calculated.  The 
left hand side is the cost when  an order is placed with size �୭ െ �Ǥ  
Therefore if we place an order our cost decreases . 

Optimal strategy for single period Model having order cost 

If  A ≥rϬ place no order; 
where  

A is the inventory at the beginning of the period, 
r0 is the smallest root of the following equation solved for r0: 
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଴ݎ�ܲ ൅ ைܥ଴ሻെݎ�ሺܮ െ ܴܲ଴ െ ሺܴ଴ሻܮ ൌ Ͳǡ�������������������������(5-12) 

ܴ଴ is the point where the function ܭሺܴሻ ൅ Ԣሺܴሻܭ�ݎ݋�ܣܲ ൌ
ܴܲ ൅  :ሺܴሻ is minimized.;  it is  obtained fromܮ

ሺܴ଴ሻܨ െ ௏ାగି௉
௏ାగାு ൌ Ͳ��������������� (5-13), 

ሺܴ଴ሻܮ ൌ ଴ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴ଴ሻ݂ሺݔሻ݀ݔ
ஶ

ோ
��ሺͷ െ ͳͶሻ 

݂ሺݔሻ is the probability density function of the demand. 

If  A <r0, place an order of size 
Q= R0-A                (5-15) 

This  is a kind of  the so-called continuous review  policy 
denoted by (r, Q)  which is frequently used in industry. 

Example 5-5 

An item is sold in a single period.  The unit purchase and 
selling prices are $12 and $20 respectively.  Shortage cause no 
cost except lost profit. The unsold units at the end of the period 
have  no cost and no revenue.  The demand for the period is 
uniformly distributed over (0,100).  The initial inventory is 5 
useable units. Find the optimal order strategy  if the fixed order 
cost is  a)  CO=160   b)  CO=200. 

 Solution 

We have to find   ܴ଴ݎ�����଴��ǣ 

ሺܴ଴ሻܨ ൌ ܸ ൅ ߨ െ ܲ
ܸ ൅ ߨ ൅ ܪ

ߨ ൌ Ͳ  since no shortage cost is incurred. 

ܸ ൌ ʹͲǡ � ൌ ͳʹǡ � ൌ Ͳǡܪᇱ ൌ Ͳ�� 
ܪ ൌ ᇱܪ െ ܮ ൌ Ͳ െ Ͳ ൌ Ͳ 
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ሺܴ଴ሻܨ ൌ ܸ ൅ ߨ െ ܲ
ܸ ൅ ߨ ൅ ܪ ൌ ʹͲ ൅ Ͳ െ ͳʹ

ʹͲ ൅ Ͳ ൅ Ͳ ֜ ሺܴ଴ሻܨ ൌ ͲǤͶ��� 

Since the demand is uniformly distributed on the interval [0 
100] then  

ሺܴ଴ሻܨ ൌ ܴ଴ െ Ͳ
ͳͲͲ െ Ͳ ฺ ͲǤͶ ൌ ܴ଴

ͳͲͲ ฺ�ܴ଴ ൌ ͶͲǤ 

To find 0r for part (a)   we have to solve the following equation 

for 0r : 

଴ݎ�ܲ ൅ ଴ሻݎ�ሺܮ ൌ ைܥ ൅ ܴܲ଴ ൅ ሺܴ଴ሻܮ
���ܴ଴ ൌ ͶͲ������ ൌ ͳʹܥ������ை ൌ ͳ͸Ͳ �ሺܴ଴ሻܮ�,�

ሺܴሻܮ ൌ ܴܪ ൅ ሺܸ ൅ ߨ ൅ ሻනܪ ሺݔ െ ܴሻ݂ሺݔሻ݀ݔ
ஶ

ோ
 

The probability distribution function of a uniformly distributed 

demand is 
ଵ
ଵ଴଴  �ሼͲ�ͳͲͲሻ݁ݒ݋��

ሺܴ଴ሻܮ ൌ ሺͲሻሺͶͲሻ ൅ ሺʹͲ ൅ Ͳ ൅ Ͳሻන ሺݔ െ ͶͲሻ ൬ ͳ
ͳͲͲ൰݀ݔ ൌ ͵͸Ͳ

ଵ଴଴

ସ଴
 

To derive ݎ�଴��������������������������ܴ ൌ � ሺܴሻǣܮ�଴�݅݊ݎ

଴ሻݎሺܮ ൌ ሺͲሻሺݎ଴ሻ ൅ ሺʹͲ ൅ Ͳ ൅ Ͳሻන ሺݔ െ ଴ሻݎ ൬ ͳ
ͳͲͲ൰݀ݔ

ଵ଴଴

௥బ
 

଴ݎ�ܲ ൅ ଴ሻݎ�ሺܮ ൌ ைܥ ൅ ܴܲ଴ ൅ ሺܴ଴ሻܮ ������������������ሳልልልልሰ

ͳʹݎ଴ ൅ ʹͲන ሺݔ െ ଴ሻݎ ൬ ͳ
ͳͲͲ൰݀ݔ

ଵ଴଴

௥బ
ൌ ͳ͸Ͳ ൅ Ͷ כ ͳʹ ൅ ͵͸Ͳ�֜ 
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଴ݎ�12 ൅ ͳͲͲͲ െ ʹͲݎ଴�+
2

0r

ଵ଴ ൌ ͳͲͲͲ ������������������ሳልልልልሰ ଴ݎ ൌ Ͳ��ǡ ͺͲ 

We have to choose the smallest root i.e.ݎ�଴ ൌ ͲǤ 
�଴ ൏ ܣ ൌ ͷ� ������������������ሳልልልልሰ ��������������������Ǥ 
Solution of part b is similar to part a: 

଴ݎ�ܲ ൅ ଴ሻݎ�ሺܮ ൌ ைܥ ൅ ܴܲ଴ ൅ ሺܴ଴ሻܮ ������������������ሳልልልልሰ

ͳʹݎ଴ ൅ ʹͲන ሺݔ െ ଴ሻݎ ൬ ͳ
ͳͲͲ൰݀ݔ

ଵ଴଴

௥బ
ൌ ͳͲͲ ൅ ͶͲ כ ͳʹ ൅ ͵͸Ͳ�֜ 

଴ݎ12 ൅ ሺͳͲͲͲ െ ʹͲݎ଴�+
2

0r
ଵ଴ ሻ ൌ ͳͲͲ ൅ ͶͺͲ ൅ ͵͸Ͳ ֜

2
0r
ଵ଴ െ ͺݎ଴ ൅ ͹Ͳ ൌ Ͳ 

������֜ �଴ ൌ �����ሺሾͲǤͳݏݐ݋݋ݎ െ ͺ��������͹Ͳሿሻ ֜ ଴ݎ ൌ��8.4,   71.68

The smallest root is 8.4 

Since ܣ�� ൏ ଴ݎ ൌ ͺǤͶ��, an order of size ܳ ൌ ͶͲ െ ܣ ൌ ͵ͷ��� has 

to be placed.End of example  

Exercises 

1.(Tersine, 1994 page 327) 

The Parker Flower shop promises its customers to deliver within 4 
hours on all flower orders. All flowers are purchased on the previous 
day and delivered to Parker by 8 a.m. in the next morning. Parker's 
daily demand for roses is as follows: 

Dozens of roses ͹ ͺ ͻ ͳͲ 
Probability ͲǤͳ ͲǤʹ ǤͶ ͲǤ͵ 
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Parker purchases roses for $ 10 per dozen and sells them at $ 30 All 
unsold roses are donated to a local hospital. How many dozens of 
roses should parker order each evening to maximize its profits? What 
is the optimum expected profit? 

2.(Tersine,1994 page 228) 

You are having a new furnace installed.  The dealer offers to sell  you 
spare fuel pumps at $20 each if you buy them during installation.  The 
pumps sell for $50 retail.  Manufacturer records indicate the following 
probability of fuel pump failures during the furnace's lifetime. 

Failures 0 1 2 3 4 
Probability % 10 30 40 10 10 

Ignoring installation and holding cost, how many spare fuel pumps 
should be purchased during installation? What is the expected 
purchase cost? 

Hint: 

Solve the problem with Single period model; treat the failures 
as demand and substitute  ܲ ൌ ʹͲǡܸ ൌ ͷͲǤ 
3.(Extracted from Peterson &Silver,1991 page 418) 

A local vendor of newspapers feels that dissatisfaction of 
customers leads to future lost sales. In fact, he feels that the 
average demand (ߤ)for a particular newspaper is related to the 
service level(p) as follows: ߤ ൌ ͳͲͲ ൅  The demand is  . ݌
normally distributed and the standard deviation (per period) s 
equal to 200, independent of the service level. The ordering cost 
is negligible and the other (possibly) relevant factors are: 

Cost per paper (for vendor)=P=$0.07 

Selling price per paper=V=$0.15 

Salvage value per paper=L=$0.02, �ᇱ ൌ Ͳ 
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If shortage has no cost except  lost profit, 

 a)What is the optimal value for maximum inventory( R ) 

b)Solve Part a if the unit  shortage cost is $2. 

c) What average profit is the vendor losing if  he proceeds as
in (a) instead of as in (b)? 

Hint: estimate of service level =݌�Ƹ ൌ ��ሺܺ ൑ ܴሻǤ 
4. In a single period model similar to that of Example 5-5  The
following data is available : 

The setup cost ܥை ൌ ͷ 

The demand is uniformly distributed over [0 100] ݂ሺݔሻ ൌ ͲǤͲͳ 

The actual holding per unit remained at the end of 
the period 

ܪ ൌ ͵ 

The production cost per unit Wсϭ 

Unit shortage cost  (lost profit not included) ߨ ൌ ʹ 

The unit selling price sсϱ 

Find ��଴�ϭ��଴. 

Ans :��଴ ൌ ͷǤͻǡ �଴ ൌ ͸Ͳ 

5. Given the following data in a single-period model, Find ݎ�଴�Ƭܴ଴.
What is the optimal strategy, 

The ordering cost ܥை ൌ ͺͲͲ 

The demand is exponentially distributed with mean 
10000 units 

݂ሺݔሻ ൌ ͲǤͲͳ 

The actual holding cost per unit  unsold at the end of the period ܪ ൌ െͻ 

The purchase cost per unit P=ϮϬ 

Unit shortage cost  (lost profit not included) ߨ ൌ0 

The unit selling price     V=ϰϱ 

Ans :��଴ ൌ ͳͲ͸͹Ͷǡ �଴ ൌ ͳͳͺͷ͸ 

Ifܣ� ൏ ଴ �Place an order of size �ܴ଴ݎ െ  �to minimize cost   ܣ

Ifܣ�� ൐  .଴���� No order is placedݎ
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ͷǤ͵�Probabilistic Continuous and Periodic 
review models- introduction  

    A continuous review system, which is sometimes called a 
fixed order size system, is  one in which inventory is monitored 
at a continuous rate and whenever the inventory reaches a value 
such as r an order of size say Q is placed. The symbol for this 
model is FOS ��  and (r  Q�.  In periodic review model stock is 
reviewed at fixed and specific intervals of time (say every T 
days ), and an order is placed with the quantity necessary to 
achieve the desired maximum inven-tory denoted here by R. 
The later model is denoted by FOI=(R,Q). Some of the 
applications of these 2 models are: 

-FOS is advised for contingency stocks as demand is 
usually highly unpredictable and also may be used for 
expensive items and those which need precise control. 

- FOI may be  applied to items with more regular demand. 

- whenever several items have to be ordered from the same 
provider, FOI system is advised. 

Note that: 

 -Shortage probability in FOI policy is less than that in FOS. 

     At a fixed service level (p=1- shortage probability) the safety stock, 
the average shortage level and the average inventory level in 
FOI. policy is more than those in FOS  and also the shortage 
cost. 

 -Classic EOQ model is both �R,T� and ��� r ,Q). 

-Due to more safety stock, the holding cost in FOI policy is 
more than that in FOS policy. 
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 In (R,T) policy the order quantity is more than that in (r 
Q�; therefore when the ordering cost (ܥ௢ሻ is high it is advised to 
use �(R,T� policy and when ܥ௢ is low,  (r  Q� is advised. 

- In (r  Q)�policy� ,the order quantity is fixed and the cycle 
time (T) is variable while in (R,T ) policy the cycle time is fixed 
and the order quantity is variable. 

Before giving more details about the two probabilistic 
models, some definitions are reminded below. 

Definitions 

5-3-1 Safety stock 

   Safety stock is an extra quantity held in the inventory by a 
retailer or a manufacturer to cope with unexpected increase of 
demand and the variation of lead time.   

 5-3-2 Service Level 

    The service level represents the desired probability of not 
getting a stock-out during the lead time(TL) in other words the 
probability that the amount of stock during the TL is sufficient 
to meet expected demand. The more this probability which is 
dented by p, the less the probability of stockout, which equals 1-
p and sometimes called risk level.  

   At a fixed, the following  values in FOS policy are less those 
in FOI system: the average shortage level, the holding cost and 
the shortage cost. 

Theorem 5-1:The relationships for mean and variance of the 
lead time demand 

    If in FOS policy, the demand(D) and lead time(TL) are 
independent random variables with mean and variance �ρୈ��
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,ɐୈଶ �,�ρ୐��,ɐ୐ଶ�  respectively then, regardless of their statistical 
distributions,  the following relationship hold: 

௅ሻܦሺݎܸܽ ൌ ௅ଶߪ஽ଶߤ ൅               ஽ଶߪ௅ߤ

Furthermore if  D and TL are independent or at least un 
correlated, then ܧሺܦ௅ሻ ൌ ௅ߤ஽ߤ ��
Proof of the first relationship 

Let divideܦ௅ the consumption during the  lead time(L), into L 
elements ܦ௜ ǡ ݅ ൌ ͳǡʹǡ ǥ Ǥ ௜ሻܦሺܧ ǡ with meanܮ ൌ ஽and varianceߤ
௜ሻܦሺݎܸܽ ൌ ܺ ஽ଶ. Thenߪ ൌ ௅ܦ ൌ σ ௜௅௜ୀଵܦ .  If the lead time is a
random variable with mean ߤ௅ ��  E(L) & variance ܸܽݎሺܮሻ ൌ �௅ଶߪ  
then assuming  ܦ௜Ԣݏ  are independent and using  the  equality 
���ሺ�ሻ ൌ �ሺ���ሺ�ȁ�ሻ ൅ ���ሾ�ሺ�ȁ�ሻሿሻ  we could write: 

���ሺ�ሻ ൌ ���൭෍�୧
୐

୧ୀଵ
൱ ൌ � ൥���൭෍ ��୧ȁ� ൌ �

୬

୧ୀଵ
൱൩൅ ��� ൥�൭෍ ��୧ȁ� ൌ �

୬

୧ୀଵ
൱൩

ൌ �ሺ�ɐୈଶ ሻ ൅ ���ሺ�ρୈሻ
����������ሳልሰ

Now assuming the demand (D)and the lead time(L  � TL ) are 
independent 

���ሺ�୐ሻ ൌ ρ୐�ɐୈଶ ൅ ρୈଶ �ɐ୐ଶ    or ߪ�஽ಽ ൌ ඥߤ஽ଶߪ௅ଶ ൅ .�஽ଶߪ௅ߤ
End of proof . 

Note that 

- the above relationship is valid regardless of the statistical 
distributions of the demand and the lead time. 

-when  either the  demand (D) or the  lead time (L) is not 
random variable zero is substituted for the its standard deviation. 
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Theorem 5-2: 

If  in FOI policy, the demand(D) and lead time(L=TL) are 
independent random variables with mean and variance �ρୈ� �
,ɐୈଶ �,�ρ୐,ɐ୐ଶ�  respectively then, regardless of their statistical
distributions,  the following relationships are hold for the 
variance and mean of the quantity consumed during � ൅ ��: 

2 2 2( )L T T L D D T LV ar D       

The proof is similar to that presented in Theorem 5-1. 

Furthermore if D andL =TL are independent or at least 
uncorrelated, then ���ሺ�୐ା୘ሻ ൌ ሺρୈሻሺρ୐ା୘ሻǤ��������������������������
End of theorem 

Note the above two relationship are valid, regardless the type 
of the statistical distributions of  D and L+T. 

ͷǤͶContinuous Review Inventory Model 

 or  (r, Q ) policy or FOS system 

    This section deals with continuous review inventory systems which 
is denoted by (r,Q) or FOS. 

Symbols 
ܾሺݔሻ Bereft function in each cycle 
തܾሺݎሻ Average shortage in each cycle 
 ሻ Average shortage per yearݎതሺܤ
X �� 
௅ܦ

The demand(consumption) during ௅ܶ 

 ௅ሻ Average consumption) during �୐ܦሺܧ
஽݂ಽሺݔሻ pdf of consumption  during ௅ܶ
 ௎ሺ݇ሻ Normal loss integralܩ
m Number of cycles per year 

௕ܰ Average number of cycles with shortage per year 
p Service level, probability of lack of shortage 
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P Purchase price 
 Reorder point ݎ

*r  Optimal reorder point 
T Cycle time 

௕ܶ
The mean time between "2 successive cycles with 
shortage" 

V Selling price 
ͳ െ  Shortage probability in each cycle ݌
 Total shortage cost per unit

0 unit shortage cost (lost profit not included)

In continuous review policy denoted by (r,Q) or FOS, whenever the 
inventory reaches say r m an order or quantity Q is placed.� 

5.3.1 Order quantity in (r,Q) system 

In continuous review system, the order quantity might be 
determined based on the experience and judgment or  from 

Wilson-Harris formula ۿ ൌ ට૛۲۱۽
ܐ۱ . If annual demand (D) is a 

random variable, its average i.e. E(D) replaces D in the formula. 
Take note not to confuse E(D) with E(DL), the average demand 
during the lead time. 

5-3.2  Safety stock in (r,Q) system 

Let DL denote the demand during the lead time and let r 
denote the reorder point; stockout occurs when DL>r .  If the 
reorder point coincides the average demand during the lead time 
i.e. r=E(DL) and no safety stock is available, after the time TL has 
expired  and just before arrival of the quantity ordered, it is 
expected that 50% of the times we do encounter stockout and 
50% do not i.e. pൌ ۺሺ�۲ܚ۾� ൏ ሻ=50% if the consumption࢘
during TL is normally distributed. 

if the consumption during TL is exponentially distributed then �� ൌ
���ሺ��୐ ൏ ݎ ൌ ሻߠ ൌ ͳ െ �ିಐಐ ൌ ͲǤ͸͵͵ǡ ��ሺ��୐ ൐ ݎ ൌ ሻߠ ��ൌ �ͲǤ͵͸͹
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To reduce the risk of shortage or to increase the safety level 
(p) an amount known as safety stock(SS) is added to E(DL), 
Therefore in this model  

(5-16) r= E(DL)+SS  Reorder point 

(5-17) SS=r-E(DL) Safety stock 
(5-18) = r+Q  (if TL =0)  Max inventory 

Furthermore, the  average holding cost equals ۱ܐ ൈ ቀۿ૛ ൅  ቁǤ܁܁
The maximum demand that could be satisfied during TL equals 
r. Therefore SS is an extra amount of inventory as well as
E(DL) kept in reserve to make sure we satisfy the maximum 
demand and service level(p) and do not run out of stock i.e. 
SS=r-E(DL).  Let ࡰࡲ denote the cumulative distribution function 
of consumption during TL and assume the service level is p : 

� ൌ ��ሺ��������������������୐�ሻ
� ൌ ��ሺ�୐ ൑ �ሻ  (5-19) 

Therefore 

ሻݎ஽ಽሺܨ ൌ ௅ܦሺݎܲ  =  or  1-p      ݌ ൐ ሻݎ ൌ ͳ െ ,ሻݎ஽ಽሺܨ

p=� )( rF
LD

→   r= )(1 pF
LD
  (5-20) 

ܵܵ ൌ ݎ െ ௅�ሻܦሺܧ െ ሺ�ǡ �ሻ������ ������������   (5-21) 

Note  : 

Make sure that the variables have the same dimension when 
being substituted in the relationships.  For example if the unit 
time given for one variable is month and for the other  one is 
year, change both to year or both to month. 
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Example 5-6 

In  an FOS policy the average consumption during the one-
week lead time is 45 and the desired service level is p=95% . 
Using the following figure find the reorder point and the 
necessary safety stock. 

 

Solution 

ሻݎ஽ಽሺܨ ൌ ݌ ൌ ͲǤͻͷ�ǡ ͳ െ ሻ =0.05ݎ஽ಽሺܨ
���������ி௥௢௠�௙௜௚௨௥௘�������ሳልልልልልልልልልልልልልሰ ݎ ൌ ͻͲ 

ܵܵ ൌ ݎ െ ௅�ሻܦሺܧ ൌ ͻͲ െ Ͷͷ ൌ Ͷͷ
Example 5-7 

The demand for a product is uniformly distributed over [50 
150].  Using a service level 90% find the reorder  and the safety 
stock. 

Solution 

ሻܠሺ܆over [a b]then ۴ ܌܍ܜܝ܊ܑܚܜܛܝ܌�ܡܔܔܕܚܗ܎ܑܖܝ�ܛܑ�܆�܎۷ ൌ܉ିܠ
௅ܦሺݎܲ Ǥ܉ି܊ ൑ ሻݎ ൌ ͲǤͻ ൌ ሻݎ஽ಽሺܨ
௅̱ܷሺͷͲǡͳͷͲሻܦ ሻݎ஽ಽሺܨ���ฺ��� ൌ

ݎ െ ͷͲ
ͳͲͲ ൌ ͲǤͻ���� ฺ ݎ� ൌ ͳͶͲݏݐ݅݊ݑ� 

௅ሻܦሺܧ ൌ ହ଴ାଵହ଴
ଶ ൌ ͳͲͲǡ�������ܵܵ ൌ ݎ െ ௅ሻܦሺܧ ൌ ͳͶͲ െ ͳͲͲ ൌ ͶͲ
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Example 5-8 

A small shop uses FOS =(r,Q) policy.  The demand for a 
product  during the lead time is approximately Poisson with 
mean 2 units.  With a risk of 2% find the reorder point and the 
safety stock.  Furthermore if the annual demand is uniformly 
distributed over [0   10] and ܥ௛ ൌ Ͷ��������� and the ordering 
cost is $80 per order.  Find the optimal order quantity. 

Solution 

ͳ െ ݌ ൌ ͲǤͲʹǡ� ܧሺܦ௅ሻ ൌ ʹ                  
���ሺܦ௅ ൑ ሻݎ ൌ ͲǤͻͺ���ǡ ߣ ൌ ʹ 

Using MATLAB command   r=Poissinv(0.98,2) 

or Poisson Table at the end of the book  results in ݎ ൌ ͷ. 

ܵǤ ܵ ൌ ݎ െ ௅ሻܦሺܧ ൌ ͷ െ ʹ ൌ ͵ 

ሻܦሺܧ ൌ ଴ାଵ଴
ଶ ൌ ͷ������������������ܳכ �ൌ ටଶൈହൈ଼଴

ସ ���ฺ������� כܳ ؆ ͳͶ  

Example 5-9 

Using the data in the table and service level of 87.5% related 
to an FOS policy, find the safety stock. 

�    
ͳ ͵Ͳ ͲǤͲʹͷ ͲǤͲʹͷ 
ʹ ͶͲ ͲǤͳ ͲǤͳʹͷ 
͵ ͷͲ ͲǤʹ Ͳ͵ʹͷ 
Ͷ ͸Ͳ ͲǤ͵ͷ ͲǤ͸͹ͷ 
ͷ ͹Ͳ ͲǤʹ ͲǤͺ͹ͷ 
͸ ͺͲ ͲǤͳ ͲǤͻ͹ͷ 
͹ ͻͲ ͲǤͲʹͷ ͳǤͲͲ 
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Solution 

��ሺܦ௅ ൑ ሻݎ ൌ ͺ͹ǤͷΨ�� ฺ ݎ� ൌ ͹Ͳ

ܵܵ ൌ ݎ� െ ௅ሻܦሺܧ ൌ ͹Ͳ െ෍ܦ௅೔
଻

௜ୀଵ
ሺܲ஽ಽ೔ሻ ൌ ͹Ͳ െ ͸Ͳ ൌ ͳͲ 

If the service level is not found in the table the greater service 

level in the  table should be chosen.

Example 5-10 

If the shortage probability in an FOS policy is 30% and the 
probability of the demand during the lead time (ܦ௅)  is as shown 
in the following table, find the safety stock.   

 

 

 

 

 

Solution 

ܵǤ ܵ ൌ ݎ െ ௅ሻܦሺܧ
௅ሻܦሺܧ ൌ ሺͺͲሻሺͲǤ͵ሻ ൅ڮ൅ ሺͳͲͷሻሺͲǤͳሻ ൌ ͻͲ

Shortage probability =0.3   
��������ሳሰ ݌� ൌ ͲǤ͹ 

��ሺܦ௅ ൑ ሻݎ ൌ ͲǤ͹�ฺ ݎ�� ൌ ͻͷ
ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ��֜ ܵܵ ൌ ͷ 

�୐ probability Cum. Probability 
ͺͲ ͲǤ͵ ͲǤ͵ 
ͺͷ ͲǤʹ ͲǤͷ 
ͻͲ ͲǤͲͷ ͲǤͷͷ 
ͻͷ ͲǤʹ ͲǤ͹ͷ 
ͳͲͲ ͲǤͳͷ ͲǤͻ 
ͳͲͷ ͲǤͳ ͳ 
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Example 5-11 
ሺ���������������ǡʹͲͲ͸ǡ������ʹͶͷሻ 

The daily demand for a product is deterministic and equals 20 
units.  The policy used is FOS and the probability distribution of 
the lead time follows the data given in the following table.  Find 
the safety stock for a service level of 0.85 

Solution 
Since ܦ௅ ൌ ܦ ൈ �୐then we have the following probabilities: 

 

 
 

 

݌ ൌ ��ሺܦ௅ ൑ ሻݎ ൌ ͲǤͺͷ� ฺ ݎ ൌ ͺͲ. That is whenever the 
ŝŶǀĞŶƚŽƌǇ�ůĞǀĞů�ƌĞĂĐŚĞƐ�ϴϬ�ƵŶŝƚƐ�ĂŶ�ŽƌĚĞƌ�ŝƐ�ƉůĂĐĞĚ. 

ܵܵ ൌ ݎ െ  ௅ሻܦሺܧ
௅ሻܦሺܧ ൌ ʹͲ ൈ ͲǤͳ ൅ڮ൅ ͳʹͲ ൈ ͲǤͲͷ ൌ ͸ͳ 

ฺ �ܵܵ ൌ ͺͲ െ ͸ͳ ൌ ͳͻ  

Example 5-12 

The demand during the lead time in a FOS policy is 
uniformly distributed over[0 100], the order quantity is 40 units, 
the average demand is 400 units per year and the service level is 
90% . Find SS. 
Solution 

ሻݔ஽ಽሺܨ ൌ ��ሺܦ௅ ൑ ሻݔ ൌ ൝
ݔ െ Ͳ
ͳͲͲ െ Ͳ �����������������������Ͳ ൑ ݔ ൑ ͳͲͲ
Ͳ�����������������������������������������

� 

�୐������ 1 2 3 4 5 6 
Probability 0.05 0.1 0.15 0.35 0.25 0.1 

�୐ ൌ � ൈ � probability Cumulative 
probability 

ʹͲ ͲǤͳ ͲǤͳ 
ͶͲ ͲǤʹͷ ͲǤ͵ͷ 
͸Ͳ ͲǤ͵ͷ ͲǤ͹ 
ͺͲ ͲǤͳͷ ͲǤͺͷ 
ͳͲͲ ͲǤͳ ͲǤͻͷ 
ͳʹͲ ͲǤͲͷ ͳ 
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��ሺܦ௅ ൑ ሻݎ ൌ ͲǤͻ ฺ ݎ
ͳͲͲ �ൌ ͲǤͻ� ฺ ݎ� ൌ ͻͲ 

௅ሻܦሺܧ ൌ ଴ାଵ଴଴
ଶ ൌ ͷͲ�ǡݎ��� ൌ ௅ሻܦሺܧ ൅ ܵǤ ܵ�� ฺ ܵǤ ܵ ൌ ͶͲ

5-4-4 Reorder point and safety stock for normally 
distributed ۲ۺ in FOS Policy 
    If �୐ǡthe demand during the lead time in a FOS policy, is 
normally distributed with mean and standard deviation ߤ஽ಽ&�
஽ಽthenߪ

݌ ൌ ௅ܦሺݎܲ ൑ ௅ܦሺݎܲ ሻ�� orݎ ൐ ሻݎ ൌ1- p ฺ ݎܲ ൬ܼ ൐ ௥ିఓವಽ
ఙವಽ

൰ = 1-p ฺ ௥ିఓವಽ
ఙವಽ

ൌ Z1-p=k. 

ݎ ൌ ௅ሻܦሺܧ ൅ ܼଵି௉ߪ�஽ಽ  (22-5)�������������݈ܽ݉ݎ݋�ϝΎϣήϧǣ�݊ۺ��������۲
Since ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ then if  ܦ௅ is normally distrusted :

�� ൌ �ଵି୔�ıୈై ������������������  ( 5-23) 
norminv(p) gives the values of ܼଵି௉ in MATLAB.  Also the following 
table gives the value of ܼଵି௉ for some values of service level p 

p
��

50 5
5 

60 65 70 75 80 82 84 86 88 

ܼଵି௣ 0 0.12
6 0.253 

0.385 

0.524 

0.675 

0.842 

0.915 

0.995 

0.108 

1.175 

p
��

90 92 94 95 96 97 98 99 99.5 99.9 99.99 

ܼଵି௣ 1.282 

1.405 

1.555 

1.645 

1.751 

1.888 

2.054 

2.326 

2.576 

3.09 

3.719 

In what follows we would like to deal with the cases in FOS 
policy where the service level p and the distribution of demand 
and/or that of TL are known to determine reorder point and 
safety stock. 

5.4.5 Determining safety stock and reorder point  in (r,Q) 
system when demand and/or lead time is  probabilistic  

The aim of this section is to distinguish the cases in which the 
demand per unit time or the lead time or both are probabilistic in 
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order to calculate their mean and standard deviation and then to 
calculate the reorder point and safety stock in an FOS system. 

Again it is reminded not to use demand per unit time(D) 
whose mean and variance are � ( )D E D  �	  2( ) DDVar  ,�instead 

of the demand during the lead time (ܦ௅ ) whose mean and 
variance are denoted  by � ( )LE D �	  ( )LVar D . 

To calculate the mean and variance of ܦ௅, assuming D and TL 
are independent, consider the 4 following cases: 

ͻ-ͺ-ͻ-ͷǣ�C����ͷǣ����������������������ȋD�&L=TL) probabilistic 
and independent  

    Suppose the demand (per year, month�) D is  a random variable 
with� ( ) DE D  �	  2( ) DDVar  and the  lead time (L=TL) is also proba- 

bilistic with mean
L �	  variance 2( ) LVar L  . If these 2 variables are 

independent, then 

௅ሻܦሺܧ ൌ  (௅                  ;ϱ-Ϯϰ-ϭߤ஽ߤ

And according to theorem 1-5: 

஽ಽߪ ൌ ඥߤ஽ଶߪ௅ଶ ൅  ஽ଶǤ      (5-24-2)ߪ௅ߤ

In the special case in which the demand during the lead 
time(ܦ௅) is normally distributed, given service level (p): 

݌� ൌ ��ሺܦ௅ ൑ ሻݎ ൌ ��ቆܼ ൑ ݎ െ ௅ߤ஽ߤ
஽ಽߪ ቇ ǡ 

Since  
௥ିఓವఓಽ
ఙವಽ

ൌ ܼଵି௣ then  

ݎ                             ൌ ௅ߤ஽ߤ ൅ ܼଵି௣ߪ஽ಽ ������������ሺͷ െ ʹͷ െ ͳሻ���� ܵܵ ൌ ݎ െ ௅ߤ஽ߤ ൌ ܼଵି௣ߪ஽ಽ �����ሺ�ͷ െ ʹͷ െ ʹሻ 
Where ܼଵି௣ is a number related to standard normal 

distribution with probability greater than 1-p: Pr(Z>�ܼଵି௣ሻ ൌ ͳ െ  Ǥ݌
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Example 5-13 

The annual demand for a product has a mean of 3600 tons 
and a  standard deviation of 30  tons.  The lead time is normally 
distributed with mean  15 days and standard deviation 1 day.    If 
there  are 360 working days  in a year, what is the mean and 
standard deviation of the demand during the lead  time? 

Solution  

The mean of the  lead time is 
ଵହ
ଷ଺଴�� in year and the standard 

deviation is 
ଵ
ଷ଺଴ yr; then 

௅ሻܦሺܧ ൌ ௅ߤ஽ߤ ൌ ͵͸ͲͲ ൈ ଵହ
ଷ଺଴ ൌ ͳͷͲ 

஽ಽߪ ൌ ටߤ஽ଶߪ௅ଶ ൅ ஽ଶߪ௅ߤ ൌ ඨሺ͵͸ͲͲሻଶ כ ൬ ͳ
͵͸Ͳ൰

ଶ
൅ ൬ ͳͷ͵͸Ͳ൰ כ ሺ͵Ͳሻଶ ൌ ͳͳǤ͹͵ 

End of example

   Note that since in the unit conversion of some parameters 
such as ߪ஽ಽwe could  write;

஽ಽߪ ൌ ටሺ͵͸ͲͲሻଶ כ ቀ ଵ
ଷ଺଴ቁ

ଶ ൅ ቀ ଵହଷ଺଴ቁ כ ሺ͵Ͳሻଶ ൌ
ටቀଷ଺଴଴ଷ଺଴ ቁ

ଶ ൈ ሺͳሻଶ ൅ ሺͳͷሻ ൈ ቀ ଷ଴
ξଷ଺଴ቁ

ଶ
,

Then the following point has to be mentioned. 

ͷ-Ͷ-ͷ-ͳ-ͳ Some points on the unit conversion of demand's 
variance and standard deviation 

 When the variance of demand i.e. Var( )D  is expressed in 

(
୳୬୧୲ୱమ

୳୬୧୲�୲୧୫ୣ) and
D in �ሺ ୳୬୧୲

ξ�୳୬୧୲�୲୧୫ୣሻ then to convert the standard 

deviation of  monthly demand to that  of  yearly demand, 
multiply it by ξͳʹ�, because: 
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஽ߪ ൌ ���� ൬�݅݊ǣ ������
ξ������൰ ൌ ���� ݏݐ݅݊ݑ

ට���� ൈ ͳ
ͳʹ

ൌ ξͳʹ�ൈ ����� ቆ��ǣ �����ඥ����ቇǤ 

 e.g. ɐୈ ൌ ͳͲunits/month is equivalent to  ɐୈ ൌ ͳͲξͳʹ�����units 
per year.  
   To covert the variance of  monthly demand to that  of  yearly 
demand, multiply it by 12 ; also to convert the variance of  daily 
demand to that  of  yearly demand, multiply it by N= no. of 
working days in a year. To covert the standard deviation  of  

daily demand to that  of  annual demand, multiply it by ξ�Ǥ  
  To covert the standard deviation  of  annual demand to that  of  

daily or monthly demand, divide it by ξݎ݋���ξͳʹ respectively. 
   For calculating ߪ஽ಽ, it is easier to state the mean and standard 

deviation of the lead time(L) in terms of the time units given for 
the demand D.  For example if we have annual demand and the 
mean and standard deviation of  L is given in units/(day or 
month); divide the mean and the standard deviation by 12 or N. 
 
 Example 5-14 
   A warehouse uses an  FOS policy with the service level p=%97. The 
monthly demand is estimated to be 300 tons on average with a 
standard deviation of 8.67.  The unit price per ton of the product is 
$8000, the  ordering cost is $3000 per order, the insurance+ tax _ 
money blockade +� is calculated in interest rate of 20%.  The lead 
time is normally distributed with mean 15 days and standard deviation 
of 1 day.   D and TL are independent and DL is  normally distributed 
Find  a)the reorder point and SS  b)the quantity for each order.  There 
are 360 working days and 12 30-day month in a year. 

Solution   
ܵܵ ൌ ܼଵି௣ߪ஽ಽ ൌ ܼ଴Ǥ଴ଷߪ஽ಽ��� 
஽ಽߪ ൌ ඥߤ஽ଶߪ௅ଶ ൅ ஽ଶ=ൌߪ௅ߤ ට͵ͲͲଶ כ ቀ ଵଷ଴ቁ

ଶ ൅ ቀଵହଷ଴ቁ כ ሺͺǤ͸͸ሻଶ=11.73 

Based on Section 5-4-5-1-1 we have the following unit 
conversion: 
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஽ߪ ൌ ͺǤ͸͹ ൈ ξͳʹ ൌ ͵Ͳ��tons����per yr 
஽ߤ�  =͵ͲͲ ൈ ͳʹ ൌ3600�tons/yr .
Since according to theorem 5-1  

஽ಽߪ ൌ ටߤ஽ଶߪ௅ଶ ൅ ஽ଶߪ௅ߤ

஽ಽߪ ൌ ටሺ͵ͲͲ ൈ ͳʹሻଶ כ ቀ ଵ
ଷ଺଴ቁ

ଶ ൅ ቀ ଵହଷ଺଴ቁ כ ሺ͵Ͳሻଶ ൌ11.73 

௅ሻܦሺܧ ൌ ሺܧሻܦሺܧ ௅ܶሻ ൌ ͵͸ͲͲ ൈ ͳͷ
͵͸Ͳ ൌ ͳͷͲǤ 

The variable LD  here is the product of 2 normally distributed 

variables i.e. D  and LT . If the  distribution of LD  be 

approximated  with  L .D ~ N(150,11 73) then: 

ܵǤ ܵ ൌ ܼ଴Ǥ଴ଷ ൈ ஽ಽߪ ൌ ͳǤͺͺ ൈ ͳͳǤ͹͵ ؆ ʹʹ
ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ ൌ ͳ͹ʹ

Furthermore the following value is proposed for the order 
quantity: 

ܳ ൌ ඨʹߤ஽ ൈ ௛ܥைܥ ൌ ඨʹ ൈ ͵͸ͲͲ ൈ ͵ͲͲͲͲǤʹ ൈ ͺͲͲ ��ൌ ͵͸͹ 

That is whenever the inventory reaches r=172, place an order 

of quantity 372 units. 

5-4-5-2   Case 2: Demand(D)  Deterministic but lead time (L=TL) 
probabilistic  
In this case: 

஽ߤ ൌ ሻܦሺܧ ൌ ��������ǡܦ ஽ߪ ൌ Ͳ
௅ܦ ൌ ܦ ௅ܶ 

௅ሻܦሺܧ ൌ ஽ߤ ൈ ௅ߤ ൌ ௅ߤܦ ����ሺͷ െ ʹ͸ሻ

஽ಽߪ ൌ ඥߤ஽ଶߪ௅ଶ ൅ ஽ଶ=ටߪ௅ߤ 2D ௅ଶߪ ൅ ௅ߤ ൈ Ͳ ฺ

஽ಽߪ ൌ ௅������������������������ሺͷߪܦ െ ʹ͹ሻ 

In the special case where �୐�has the normal distribution��ሺρ୐ǡ ɐ୐ሻ 
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We have: 
௅ܦ ൌ ܦ ൈ ௅̱ܶܰሺߤܦ௅ ǡ  ௅ሻǤߪܦ

Calculation of reorder point: 
ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ 

ܼଵି௉ ൌ ݎ െ ௅ሻܦሺܧ
஽ಽߪ

 

ݎ ൌ ௅ሻܦሺܧ ൅ ܼଵି௣ ൈ ஽ಽߪ  
Then 
ݎ                         ൌ ௅ߤܦ ൅ ܼଵି௉ ൈܦ� ൈ ௅ߪ ���ሺͷ െ ʹͺሻ 
and 

��ܵܵ ൌ ݎ െ ௅ሻܦሺܧ ൌ ܼଵି௉ߪܦ�௅�Ǥ������������������ሺͷ െ ʹͻሻ 
Example 5-15 

A shop uses an  FOS policy with the service level p=%97.5. 
The annual dement for a product is 1000 units and the lead 

time is normally distributed mean 1 month and standard 
deviation 0.2 month. Find reorder point and the required safety 
stock. 
Solution   
௅̱ܶܰሺߤ௅ ൌ �ͳ݄݉ݐ݊݋�ǡ ௅ߪ ൌ �ͲǤʹ�݄݉ݐ݊݋ሻ  
௅ߪܦ= ஽ಽߪ ൌ ͳͲͲͲ ൈ ଴Ǥଶ

ଵଶ ൌ ͳ͸Ǥ͸͹ݎ݋����� ൌ 
ଵ଴଴଴
ଵଶ ൈ ଶ

ଵ଴=16.67       
ܵܵ ൌ ܼଵି௣ߪ�஽ಽ ൌ ܼ଴Ǥ଴ଶହ ൈ ͳ͸Ǥ͸͹ǡ ܼ଴Ǥ଴ଶହ ൌ ሺͳݒ݊݅݉ݎ݋݊ െ ͲǤͲʹͷሻ=1.96 
ܵܵ ൌ ͳǤͻ͸ ൈ ͳ͸Ǥ͸͹ ൌ ͵ʹǤ͸͸ 

ݎ ൌ ௅ሻܦሺܧ ൅  SS  =ݎ ൌ ͳͲͲͲ ൈ ଵ
ଵଶ ൅ ͵ʹǤ͸͸ ൌ ͳͳ͸  

ͻ-ͺ-ͻ-͹   �����͹ǣ�������ȋ�Ȍ��probabilistic  but lead time 
deterministic 

If  the (monthly , annual,�)demand is a random variable 
with meanߤ�஽ and standard deviation ߪ஽ but the lead time is 
either fixed or has a small variations compared to its mean then  
௅ߤ ൌ ሺܧ ௅ܶሻ ൌ ௅ܶ���������ǡ ௅ߪ������ ؆ Ͳ�� 
௅ܦ ൌ ܦ ௅ܶ 

�ሺܦ௅ሻ ൌ ௅ܶߤ஽��������������������ሺ�ͷ െ ͵Ͳሻ 
஽ಽߪ ൌ ටߤ஽ଶߪ௅ଶ ൅ ஽ଶߪ௅ߤ ൌ ටߤ஽ଶ ൈ Ͳ ൅ ௅ܶߪ஽ଶ ฺ 

஽ඥߪ=஽ಽߪ ௅ܶ������������������������������ሺͷ െ ͵ͳሻ 
In special case in which �̱ܰሺߤ஽�ǡ ஽ሻ andߪ ௅ܶ is fixed then 
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௅ܦ ��̱ܰሺߤ஽ಽ ൌ ௅ܶߤ஽�ǡ ஽ಽߪ ൌ ஽ඥߪ ௅ܶ)
ݎ ൌ ௅ሻܦሺܧ ൅ ����

�� ൌ ܼଵି௉ߪ஽ඥ ௅ܶ .  (5-32) 

Example 5-16 

    A distributer uses FOS policy with a service level of p= 97.5%for a 
product whose annual demand is normally distributed with mean 8000 
and standard deviation of 1000.  The lead time is approximately one 
half of a month. Find  the safety stock and the reorder point. 

Solution 

The problem satisfies the conditions Eq. 5-32 i.e. 

�� ൌ ܼଵି௉ߪ஽ඥ ௅ܶ ൌ ܼଵି଴Ǥଽ଻ହ �ൈ ��ͳͲͲͲඥͲǤͷȀͳʹ ��
ൌ ͳǤͻ͸ ൈ �ʹͲͶǤͳʹ ൌ ͶͲͲ 

ݎ ൌ ௅ሻܦሺܧ ൅ ௅ሻܦሺܧ��������������� ൌ ሺܧሻܦሺܧ ௅ܶሻ ൌ ଼଴଴଴
ଵଶ ൈ ଵ

ଶ����ൌ ͵͵͵�
ݎ ൌ ͵͵͵ ൅ �ͶͲͲ ൌ ͹͵͵

5-4-5-4  Case 4: Both demand and lead time deterministic 

When both D and TL are deterministic 
௅ሻܦሺܧ ൌ ܦሺܧ� ௅ܶሻ=ܦ� ௅ܶ ஽ಽߪ������ ൌ Ͳ
ݎ ൌ ௅ሻܦሺܧ ൅ ����
In chapter 2 we saw if both D and TL are fixed: 
ܦ�=ROP=ݎ ௅ܶ ǡ  then   �SS=0�� 
In fact we have  a classic EOQ model 

5-4-6 On Lost sale and stockout  in FOS systems 

In continuous review system, shortage occurs when the 
demand during the lead time exceeds the reorder point.  Given a 
service level of p  in a continuous review system, the shortage 
probability equals ��ሺܦ௅ ൐ ሻݎ ൌ ͳ െ Ǥ   In fact in every n݌
cycles, the  ratio of "number of cycles encountered  with 
stockout" to the total number of the cycles i.e. n, equal to 1-p; 
e.g. if p=0.88. On the average there are 12 cycles (out of 100 
cycles) in which a lost sale or shortage occurs.  

Let b(x) denote the shortage function in each cycle of our FOS 
system then: 
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�ሺ�ሻ ൌ ቄͲݔ��������������� ൑ ݎ
ݔ െ ݔ�������ݎ ൐  (33-5)  �ݎ

where 
x = the demand during the lead time 

 The average of shortage function: 

If the demand is  continuous with density function of  ஽݂ಽሺݔሻ  then

׬=ሻሿݔሾܾሺܧ ܾሺݔሻ ஽݂ಽሺݔሻ݀ݔ�
ି� ൌ ׬ Ͳ ஽݂ಽሺݔሻ݀ݔ௥

ି� ൅ ׬ ሺݔ െ ሻݎ ஽݂ಽሺݔሻ݀ݔ�
௥

Since this value depends on r, The average of the shortage 
function is denoted by  തܾሺݎሻ, then  

തܾሺݎሻ ൌ ׬ ሺݔ െ ሻݎ ஽݂ಽሺݔሻ݀ݔஶ
௥                (  5-26)

Where 

஽݂ಽሺݔሻ is the pdf of the demand during the lead time

 തܾሺݎሻ is the average shortage during each cycle(b  stands for bereft).
if the demand is  discrete with probability function of  ݌஽ಽሺݔሻ  then

തܾሺݎሻ ൌ σ ሺݔ െ ሻ௫வ௥ݔ஽ಽሺ݌ሻݎ Ǥ    (5-27) 
If the order quantity in each cycle is Q and the annual demand for the 
product I is D then annual average shortage denoted by ܤതሺݎሻ�݅ݏǣ 

Annual average shortage: 

�ഥሺ�ሻ ൌ ୈ
୕ �തሺ�ሻ ൌ

ୠഥሺ୰ሻ
୘ ൌ ��തሺ�ሻ, (5-28) 

where  ݉ ൌ ଵ
்  is the number orders per year. 

Therefore as much as 
஻തሺ௥ሻ
஽ ൈ ͳͲͲ percent of the annual 

demand the inventory system encounters  lost sale or shortage. If 
p is given as the service level , the shortage probability is 1-p 
and according the concept of probability, the average of the 
annual number of the cycles in which shortage occurs is: 

௕ܰ=
஽
ொ ሺͳ െ �ሻ ൌ �ሺͳ െ �ሻ����(5- 29 ) 

Then on the average  every ௕ܶ ൌ ଵ
ே್ years  a shortage occurs. 

The above results are summarized in the following table: 
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Type of 
demand 
distribution 

௅ܦሺܧ ൐ ����ሻݎሻZË തܾሺݎ ��௕ܰ�

continuous തܾሺݎሻ ൌ
׬ ሺݔ െ ሻݎ ஽݂ಽሺݔሻ݀ݔஶ
௥�(5- 26) 

=ሻݎതሺܤ
݉തܾሺݎሻ ൌ ௕തሺ௥ሻ

்

(5- 28) 

௕ܰ= 
ܦ
ܳ ሺͳ െ ሻ݌
ൌ ݉ሺͳ െ  ሻ݌

(5- 29) 

discrete തܾሺݎሻ ൌ
σ ሺݔ െ ሻ௫வ௥ݔ஽ಽሺ݌ሻݎ  
(5- 27) 

 

Fig. 5-9 The time between 2 consecutive shortages in an FOS system 

Figure 5-9 illustrates the time between two consecutive 
shortages. The mean of this time , denoted by ௕ܶ  ,is derivable 
from: 

௕ܶ=
ଵ
ே್=

ொ
ୈሺଵି୮ሻ  (  5-  30) 

There fore  the shortage probability equals: 

௕ܶ=
ଵ
ே್=

ொ
ୈሺଵି୮ሻ  (5-  31) 

therefore 
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��������������������΍ ൌ ͳ െ �=
ே್
ವ
ೂ
������    (5-31)

The  service level i.e. the probability of the  lack of  shortage is 
estimated from 

�p ൌ ͳ െ ொே್
ୈ  (5-32) 

Note that  since � ൌ ටଶఓವ஼ೀ
஼೓  then: 

-An increase in ordering cost (ܥ௢ሻ݈݈݅ݓ���increase  Q and 
will decrease average annual shortage in FOS pliocy i.e. 
��ഥሺ�ሻ
--A decrease in holding cost (ܥ௛ሻ��� will decrease Q and 
will increase �ഥሺ�ሻ.
What will be the effect of an increase in demand on �ഥሺ�ሻ.?

Example 5-17 

An FOS inventory  system reports   2 shortages per year on  the 
average.  The quantity per order is 800 and the average annual 
demand is 8000. Estimate the service level ? 

Solution 

�ො ൌ ͳ െ ொே್
୉ሺୈሻ ൌ ͳ െ ଼଴଴ൈଶ

଼଴଴଴ ൌ ͲǤͺͲ End of example 

Example 5-18 

   The demand during the lead time in an FOS system is 
uniformly distributed over [0 100].  If  the survive level is 90% 
and order of 40 units are placed, what is the ratio of " annual 
average shortage " to " annual demand" ? 



Chapter 5      Inventory  control under uncertainty  272 

 

Solution 

ሻݎതሺܤ
ܦ ൌǫ 

ሻݎതሺܤ ൌ ஽
ொ തܾሺݎሻ,  തܾሺݎሻ ൌ ׬ ሺݔ െ ሻݎ ஽݂ಽሺݔሻ݀ݔஶ

௥

�ሺ�ሻ ൌ � ଵ
ଵ଴଴ ���Ͳ ൑ � ൑ ˺˹˹���������	ሺ�ሻ ൌ � ୰ି଴

ଵ଴଴ି଴����   

Prሺܦ௅ ൑ ሻݎ ൌ ݌ ൌ ͲǤͻ������ ௥ି଴
ଵ଴଴ି଴ ൌ ͲǤͻ���� ฺ ݎ�� ൌ ͻͲ 

തܾሺݎሻ ൌ ׬ ሺݔ െ ͻͲሻ ଵ
ଵ଴଴݀ݔ

ଵ଴଴
ଽ଴ сϬ.ͷ 

�஻തሺ௥ሻ஽ ൌ ௕തሺ௥ሻ
ொ =���଴Ǥହସ଴=ͳǤʹͷΨ  

Example 5-19 

    The demand during the lead time in an FOS system is 
according the  data in the following table, If the safety stock is 
three tons .  What is the average shortage per cycle ? 

�୐ሺ���ሻ 6 7 8 9 10 11 12 13 14 15 16 

Probability(%) 5 5 5 5 2 2 2 5 5 5 5 

Solution 

തܾሺݎሻ ൌ σ ሺݔ െ ሻ௫வ௥ݔ௑ሺ݌ሻݎ ������������� ǡ ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ  ,

௅ሻܦሺܧ ൌ ͸ ൈ0.05+�+ͳ͸ ൈ0.05=11ݎ� ൌ ͳͳ ൅ ͵ ൌ ͳͶ���������� ฺ
തܾሺݎሻ ൌ σ ሺݔ െ ͳͶሻ ௑ܲሺݔሻ௫வଵସ ൌ ሺͳͷ െ ͳͶሻሺͲǤͲͷሻ ൅ ሺͳ͸ െ ͳͶሻሺͲǤͲͷሻ=0.15
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ͻ-ͺ-ͼ-ͷ�Calculation of average shortage in FOS systems when DL is 
normally distributed using normal loss integral 

If the demand during the lead time (DL) is normally distributed 
with mean ߤ஽ಽ and standard deviation ߪ஽ಽand density function 

஽݂ಽሺݔሻ ൌ ଵ
ఙವಽξଶగ

݁
ିቀೣషഋವಽቁ

మ

మ഑ವಽ
మ

 then the average shortage per cycle 

which is derived from 

തܾሺݎሻ ൌ න ሺݔ െ ሻݎ
ஶ

௫ୀ௥
ͳ

ߨʹ஽ಽξߪ
݁ି

൫௫ିఓವಽ൯
మ

ଶఙವಽమ  ݔ݀�

Is calculabled from(see Sec. 1.5.1 ): 
തܾሺݎሻ ൌ ݇       ௎ሺ݇ሻܩ஽ಽߪ ൌ

௥ିఓವಽ
ఙವಽ

        (  5-  33) 

����� 

݇ ൌ ܼଵି௉ ൌ ௥ିఓವಽ
ఙವಽ

. 

The function ܩ௎ሺ݇ሻ which is called unit loss normal integral is a 
function of k=Z1-P , known some times as safety coefficient; the 
more this coefficient the less ܩ௎ሺ݇ሻ and the less the shortage. 
The values of this function could be calculated using MATLB 
command exp(-k^2/2)/sqrt(2*pi)-k*(1-normcdf(k)); some its 
values are given below: 

Some values of  ܩ௎ሺ݇ሻ��
p(%) ϭ-p k ܩ௎ሺ݇ሻ 
ϵϵ͘ϵ Ϭ͘ϬϬϭ ϯ͘ϰϱ Ϭ͘ϬϬϬϬϳϭϮϳ 
ϵϵ Ϭ͘Ϭϭ Ϯ͘ϯϯ Ϭ͘ϬϬϯϯϱϮ 
ϵϳ͘ϱ Ϭ͘ϬϮϱ ϭ͘ϵϲ Ϭ͘ϬϬϵϰϰϱ 
ϵϱ Ϭ͘Ϭϱ ϭ͘ϲϰ Ϭ͘ϬϮϭϭϰ 
Ϭ͘ϵϯ Ϭ͘Ϭϳ ϭ͘ϰϴ Ϭ.ϬϯϬϳϬ 
ϵϮ͘ϱ Ϭ͘Ϭϳϱ ϭ͘ϰϰ Ϭ͘Ϭϯϯϱϲ 
ϵϬ Ϭ͘ϭ ϭ͘Ϯϴ Ϭ͘ϬϰϳϱϬ 

Example 5-20 
In an FOS system, the average demand is 200 units,  orders 

are placed with quantity Q= 30 units. The consumption during 



Chapter 5      Inventory  control under uncertainty  274 

 

the lead time is normally distributed : 

 
L LL D DD ~ N ì = 58.3,ó =13.1 .  Find b(r) , ROP,��SS��, bT � 

Solution 

b

Q 30
T = = = 2 yr

D(1-p) 200(1-0 / 925)
This means that on average every 2 years the systems 

encounter a shortage and the average number of shortages is  

b
b

1 1
N = = yr.

T 2
 

LL 1-p D

(1-0 /925)

ROP = r = E(D ) + Z ó =

58.3 + z ×13.1 = 58.3 +1.44 13.1 = 77.16

SS = 1.44 13.1 = 18.9




Since DL is normally distributed: 

( ) ( ) 1.48L

L

L

D
D U

D

r
b r G k k







     

k=1.48;exp(-k^2/2)/sqrt(2*pi)-k*(1-normcdf(k))ฺ ͲǤͲ͵Ͳ͹ 
b(r) = (13.1)(0.0307) = 0.44  

Example  5-21 
In An FOS system, the demand during the lead time is 

normally distributed with mean 58.3 and standard deviation 
13.1.  Assuming a service level of 90%, find the average 
shortage per cycle. What is the reorder point? 
Solution   
݇ ൌ ܼଵି௣ ൌ ܼ଴Ǥଵ ൌ ሺͳݒ݊݅݉ݎ݋݊ െ Ǥͳሻ ൌ ͳǡʹͺͳ͸
തܾሺݎሻ ൌ ௎ሺ݇ሻܩ஽ಽߪ ൌ ͳ͵Ǥͳ כ ௎ሺͳǤʹͺሻܩ ൌ ͳ͵Ǥͳ ൈ ͲǤͲͶ͹ͷͲ ൌ ͲǤ͸ʹ
ݎ ൌ ௅ሻܦሺܧ ൅ ஽ಽߪ݇ ൌ ͷͺǤ͵ ൅ ሺͳǤʹͺሻሺͳ͵Ǥͳሻ ൌ ͹ͷǤͲ͹

 5-4-7  Average inventory in FOS system 

The  inventory average( I ) and the mean of holding
cost in continuous review systems are as follows: 

I ൌ ொ
ଶ ൅ ܵǤ ܵ                (5-34)
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���������������������� ൌ � hI C    ;ϱ-ϯϱͿ 

Example  5-22 

In an FOS inventory model, as well as the data in the 
following table , we know that the average demand is 4000 per 
year, the order size is fixed, the annual unit holding cost is $10, 
the service level is 90% and the ordering cost is $50. Find the 
optimal order quantity, the reorder point, the safety stock 
holding cost, the average inventory and its annual holding cost   

Solution 

* o

h

2C E(D) 2 × 50 × 4000
Q = = = 200

C 10
 

  

L

L

5

L i i
i=1

L

*

Pr(D r) = 0.9 ROP = r = 17

SS = r - E(D )

E(D ) = x p = 11×0.1+...+19×0.1 = 15

SS = r - E(D ) = 17 -15 = 2

Q 200
I = +SS= + 2 = 102

2 2

 



 
SS annual holding cost =SS × hC   SS 2 10 20   

average annual holding cost= 1  0 1 0 2 0I   
 
 
 
      

Cumulative probability ip
 iL iD x  i 

0.1 0.10 11 1 
0.3 0.20 13 2 
0.7 0.40 15 3 
0.9 0.20 17 4      
1 0.10 19 5 
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 5-4-8  Other ways for determining reorder point in 
 FOS systems 

To determine  the reorder point, in an FOS inventory model 
where demand (D) and/or the lead time(TL) are probabilistic, 
as well as  

i-using  Eq. 5-19 i.e.݌� ൌ ��ሺܦ௅ ൑ ሻwhich uses the serviceݎ
level and the probability distribution of lead time consumption, 

there are 2 other was as follows  
ii-using average lead time and maximum annual demand 
ݎ ൌ ሻܦሺݔܽ݉ ൈ ሺܧ� ௅ܶሻ                         (5-35)
iii- using maximum lead time and average demand 
ݎ ൌ ���ሺ ௅ܶሻ ൈ ሻǤ      (5-36)ܦሺܧ

In any case  ܵܵ ൌ ݎ െ .௅ሻܦሺܧ
The above 3 ways are illustrated below. 

Determining  reorder point given the service level and lead time 
consumption distribution 
 Example  5-23 
      Given the following table of frequencies and a fixed  
 weekly demand of 6 units,  determine the safety stock of .95 (or 

 more) service level in an FOS system. 

 Solution 

um 7 6 5 4 TL(week) 
50 6 12 18 14 frequency 

1 0.12 0.24 0.36 0.28 probability 

 ௅ܦ 24 30 36 42

0.12 0.24 0.36 0.28 probability 
1 0.88 0.64 0.28 Cum. Prob 
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SS = r -E(D )L
E(D ) = 0.28×24+...+0.12×42 = 31.2L
Pr(D r) ³ 0.95 Þ r = 42L 

� 
SS=42-31.2=10.8

Determining  reorder point given the average consumption  and 
the maximum of lead time 

 Example  5-24 

     The demand for a product in an FOS model is fixed and 
equal to 12 per 6-day week. The following frequencies of the 
lead time is also available.  

TL(day) 4 5 6 7 
frequency 14 18 12 6 

Find the reorder point and the safety stock 

i) based on  the service level of at least 95%.

ii)based on the maximum of the lead time if 

 Solution 
i)Since the consumption during  TL is given by ܦ௅ ൌ ܦ ൈ

௅ܶthen we
have: 

��ሺܦ௅ ൑ ሻݎ ൌ ͲǤͻͷ� ฺ ݎ�� ൌ ͳͶ 

Cum. 
frequency relative 

frequency 
frequency ܦ௅

0.28 0.28 14 8 
0.64 0.36 18 10 
0.88 0.24 12 12 
1 0.12 6 14 



Chapter 5      Inventory  control under uncertainty                               278 

 

ii) 
ݎ ൌ ���ሺ ௅ܶሻ ൈ  ሻܦሺܧ
ܴܱܲ ൌ ݎ ൌ ௅ܶ೘ೌೣ ൈ ܦ ൌ ͹ ൈ ଵଶ

଺ ൌ ͳͶ  

௅ሻܦሺܧ ൌ ͺ ൈ ͲǤʹͺ ൅ڮ൅ ͳͶ ൈ ͲǤͳʹ ൌ ͳͲǤͶ 

ܵǤ ܵ ൌ ݎ െ ௅ሻܦሺܧ ൌ ͳͶ െ ͳͲǤͶ ൌ ͵Ǥ͸  
 

Example  5-25 

   In an FOS model the lead time and the demand are 
independent.  The following data are available. Find the safety 
stock based on the maximum of the lead time and the average 
demand. 

8 7 6 5 4 3 2 1 period 
50 70 50 60 30 50 60 30 demand 
4 4 5 6 3 7 5 6 TL (day) 

Solution
30 ... 50�( ) ( ) ( ), ( ) 50

8
6 ... 4� ( ) 5

8
max( ) ( ) 7 50 350

L L

L

L

SS r E D r E D E T E D D

E T

r T E D

 
       

 
 

    

350 5 50 100SS      

Determining  reorder point given the demand maximum  and the 
lead time average 

Example  5-26  

  Solve the previous example again using  max( ) ( )r D E T
L

   

Solution 

SS = r - E(D ) r = max(D)E(T ) = 70×5 = 350,
L L
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E(D ) = E(D)E(T ) = 50×5 = 250
L L

( ) 350 - 250 = 100SS r E D
L

  

It worth mentioning that the maximum inventory in FOS 
model is r+Q; e.g. in the previous example if the order quantity 
is 520 the maximum of the inventory would be 870. 

Example  5-27 

The frequencies of TL in an FOS system  in given below. The 
demand is fixed and equal to 6 per week.  Find the safety stock 
and reorder based on maximum demand .  There 6 working days 
in a week. 

TL(day) 4 5 6 7 
frequency 14 18 12 6 

Solution 

max( ) ( ), max( ) ,Lr D E T D  
6 1
6

 

4 14 5 18 6 12 7 6 260� ( ) 5.2
50 50LE T

      
    

ݎ ൌ ͳ ൈ ͷǤʹ ൌ ͷǤʹǤ 
Since the demand  per day is equal to one, the lead time 
consumption(ܦ௅)  and the related frequency would be 

DL 4 5 6 7 

frequency 14 18 12 6 

.
4×14+5×18+6×12+7×6�( ) ( ) =5 2

50L LSS r E D E D  

. .SS=52-5 2=0
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At the end of this  section some useful  relations used in 
contiguous review model  are given below:    

Some relations related  to  (r,Q)=FOS model 

( )
* O

h

C E D
Q

C


2

 
Desired order quantity 

( )
( )

*
b r

B r D
Q

   annuual average 
shortage 

1( )
( )

*
B r

b r
D Q

  ratio of shortage to 
demand 

*
2

QI S S   Average Inventory 
* *

(1 )
Pr( )L

D D p
N D r

b Q Q


    Average number of 

shortages per year 
* ( ) ( )LSS r E D b r    Safety stock in lost 

sale FOS 
L Lp D DSS Z k  1  Safety stock in FOS--

 ௅ normallyܦ
distributed 

( ) ( )U
L

b r G kD   Average shortage per 
period-�୐ normally 
distributed 

ͷ-ͷ  Two-bin or max-min policy 

A special case of continuous review (r,Q) model is what is 
called two-bin or max-min model.  In this model ௅ܶ ൏ ܶ  and 
there are two bins either physically or virtually; one  is  used for 
supplying current demand and the other for satisfying demand 
during the lead time. When the first bin which is greater is 
depleted; an order is placed as much as the capacity of this bin. 
The demand during the lead time is satisfied from the small bin. 
When the order quantity arrives, the small bin is filled at the 
beginning and the rest is poured into the great bin. It is possible 
to  use one  bin with a sign on it as the reorder point( Fig5-10). 
An application of this policy is for the  goods with low price and 
small lead time. 
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Fig. 5. 10   Two-bin  inventory system 

In this system whenever the inventory reaches r an order is 
placed with a quantity equal to Q.  The size of the small bin is 
the average demand during the lead time as well as the safety 
stock i.e  ݎ ൌ ௅ሻܦሺܧ ൅ ܵܵ  

whereܧ�ሺܦ௅ሻ  is the consumption during the lead time and SS  
is the safety stock. 

An  advantage of this policy to the general FOS model is 
preventing running out of stock and saving time and money.    

 

Shortage in inventory systems 

      It is  important in inventory control to determine what to do 
when a costumer arrives and  there is no inventory temporarily. 
Two possible alternative are available either (Peterson, 
Silver,1991,p209) 

-Complete backordering i.e.to permit shortage in the system.  
The demands during  out stock are backordered and filled as 
soon as new  replenishment arrives. 

-Complete Lost sale i.e. the demands during  out stock are  
lost and we incur costs due to lost sale. 
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 The above two alternatives are investigated below for 
continuous   review model (r,Q).   

ͷǤ͸Back ordering in FOS system 
In continuous review systems with back-ordering, the 

demands  during this  time are not lost but are backordered and 
filled as soon as adequate-sized order arrive.  This policy is 
more common in industry1. 

The order quantity (Q)  could be calculated from Wilson 
formula. To determine the optimal   reorder point ሺכ�ሻ, we 
assume r is not dependent on Q and distinguish  two 
cases(Tersine, 1994 page  218): 
-the stockout cost per unit is known 
- the stockout cost per outage  is known 

 

5-6-1 Backordered (r Q) - Stockout cost/ unit (࣊)known 

In  (r Q) or FOS systems with back-ordering, shortage 
happens  when�������୐  i.e. the consumption during the lead 
time, exceeds r.  In this case, when ߨ ,i.e. the cost per each time 
the stockout happens, is fixed and known, the expected annual 
safety stock cost   (TCss) is: 

TCss= holding cost + stockout cost  or: 

   ( ) ( )SS h

D
TC C ss b r

Q
    ( 5-37) 

Where ʌ is the cost per outage, SS is the units of safety stock 
and ( )b r is  the average stockout units (backordered units) per 
cycle. SS and ( )b r  are calculated from: 

Backordered FOS  
( )Lss r E D   (5-38) 

                                                           

ϭ ŚƩƉƐ͗ͬͬǁǁǁ͘ƐĐŝĞŶĐĞĚŝƌĞĐƚ͘ĐŽŵͬƐĐŝĞŶĐĞͬĂƌƟĐůĞͬƉŝŝͬ^ϬϯϳϳϮϮϭϳϭϭϬϬϭϯϱϰ 
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( ) ( ) ( ) ( ) ( )
L DL

Dr
x r

b r x r f x dx or x r p x




  
 

(5-39) 

 where x is the demand during the lead time. 

By taking derivative of Eq. 5-37 with respect to r,the 
following optimizing relationship results(Tersine, 1994, Proof in 
Johnson&Montomeri,1974 p59)L 

 

or:  

FOS: Back-order case(࣊  known)
�

               ;ϱ-ϰϬͿ�������� 

  ��
The above  relationship is valid for both continuous and discrete 
probability distributions of lead time demand (Tersine, 1994 p 219).     

 It is obvious if 1hC Q

D
  or (if  ܳ ൌ ܳ௪ሻ ܶܥ௪ ൐  there is no ܦߨ

solution  to the equation.  this means that the cost of stockout is 
very low such  that we prefer to have always backorder! 

Notice not to mistake E(DL>r)�for�E(DL). E(DL) is the expected  

demand during the lead time computable from: 

          
0

( ) ( ) ( )
L DL

L D
x

E D xf x dx or xp x


  . 

        ( ) ( )Lb r E D r   is derived from: 

        
( ) ( ) ( ) ( )

( ) ( ) ( )

L

DL

L Dr

x r

b r E D r x r f x dx or

b r x r p x





   

 




 

* 02
0 Pr( )ss h

L w
h

TC DCC Q
D r Q Q

r D C


     


* *( ) Pr( ) 1
L

h
D L

C Q
F r D r

D
   
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  where  
 

LDf  is the pdf of continuous lead time demand 

DL
p is the probability function of discrete lead time demand. In 

this Policy, safety stock is derived from(Winston,1994 p917): 

 (5-41) 

Example  5-28( Winston,1994 page 917) 
 The annual demand is normally distributed with a mean of 1000 
units and 40.8D  . The ordering cost is ch� =10. The 

backorderin 
incur a cost of ð =$20 per unit.  Find the reorder point  and 
safety stock if  

TL is fixed and equal to 2 weeks 

TL is a random variable with
LT

1
( )=2 weeks ó = yr

52LE T  

In each case determine the service level. 
 Solution 

 * 2(1000)(50)
Q = =100

10
 

*
hðD=20×1000>C Q =(10)(100) ;therefore the problem has a solution. 

 *
L

(10)(100)
Pr(D >r )= =0/05

(20)(1000)
Part i 

Since  the lead time is constant and equal to ௅ܶ ൌ ଶ
ହଶ ൌ

ଵ
ଶ଺ ݎݕ��

and the annual demand is normally distributed, therefore the 
lead time demand  (ܦ௅ ൌ ܦ ൈ ௅ܶ) is also normally distributed 
with mean and variance : 

L L L

2 2 2
L D L L D

1
E(D )=E(DT )=E(D)×E(T )=1000× =38/46

26

Var(D )=ó ì + ó ì
L

2
L D

1ÞVar(D )=(40/8) × +0 ó =8
26




 

Then 

* ( )LSS r E D 

*r
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*
* ( )

( ) Pr[ ] 0.05
L

L
L

D

r E D
Pr D r Z




    

L

*
*L

0.05
D

r -E(D )
z =1.65 38.46+8×(1.64)=51.58

ó
r    

Whenever the inventory reaches 51 units an order of  100 
units is placed. This  reorder point assures a service level of 
p=1-0.05=0.95. 

L

L

*
L 1-p D

1-p D

*
L

SS=r -E(D ) = z ×ó

SS= z ×ó = (8)(1.65)=13.12

SS= r -E(D )=51.58-38.46=13.12

normal

Part ii 

LL T

1
E(T )=2 weeks ó = yr

52
 

஽௅ߪ ൌ ටߤ஽ଶߪ௅ଶ ൅ ஽ଶߪ௅ߤ

2 2 21 1
(1000) ( ) +(40.8) ( )=20.43

52 26LD  . 

Now suppose the lead time demand(DL)is normally 
distributed: 

0.05
1

1000×
26

Pr( ) 0.05

( ) ( ) ( ) z

L

L p DL L

D r

r E D z E D E T

  

   1
norminv(0.95)

  =1.6449

×(20.43)

r=38.46+33.60 72

 

Whenever the inventory reaches 72 units an order of  100 units 
is placed.  Backordering is allowable . This  reorder point 

assures a service level of p=0.95. 

5-6-2 Backordered (r Q) - Stockout cost/ outage 
(g)known 

  To determine r and Q in back-order case of continuous 
review model service level if the cost per outage(g) and the 
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probability density function of lead time demand,
 

 are 

known, then the total cost of safety stock is(Martin&Miller,1962 
page 63): 

Pr( ) ss
ss h L

TCD
TC C SS g D r

Q r

 
        

0

FOS: Backorder case   , cost per outage known 

(5-42)���������������*( )
L

h
D

C Q
f r

gD
��

( )LSS r E D    (5-43) 

To compute SS replaces r in Eq. 5-43. Q is the order 
quantity at the reorder point.  Eq.5-42 is developed for a 
continuous distribution m but bfrquently integer values of 
inventory are possible.  When the optimum reorder point lises 
between 2 integer  values, the integer with the  larger *( )

LDf r  is 

selected(Tersine, 1994 page 219). 

Example  5-29 

   Weekly demand is normally distributed with mean 20units and 
standard deviation  of 4 units. Back ordering is applied when 
shortage occurs. When- ever shortage occurs it incurs $ 10. The 
annual holding cost is $ 5 per unit. The ordering quantity is 
26units per order.   Find the optimal reorder point and  safety 
stock if the lead time is  1 week in a 52-week year. 

Solution 

The model is a continuous review with  back-ordering.  Since 
TL is fixed and 

( )
LDf x

*r
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D is normally distributed, then is also normally 

distributed with a mean and standard deviation  as follows: 
( ) ( ) ( ) 1×20=20L L LE D E DT T E D per week  

( )L D L L DVar D     2 2 2 2( ) (4) ×1+0

4
L

L

D

V ar D

per week

   



    Needles to say, that  we did not need to do the above 
calculations; because 

DL is the demand for one week and we have the weekly 
demand. The density function of the lead time in  point   is: 

* 26
( ) =

10( 20)

5× 0.0125
52×L

h
D

C Q
f r

gD
  

*

2

*

*

2ð

2.038
2 ×0.0125

2.038 2.038 4 28.15 , 11.85

0.0125
L

L

L L

L L

D

D

D D

D D

r DL

DLe

r
Ln

ROP r








 

 

 
   
 
 



 


   

      

2

1
2

2

1

1

20
Choosing  * 28r  is more cautious than the other answer. 
Therefore whenever the inventory reaches 28 an order of size 26 

is placed.  * ( ) 28-20=8LSS r E D SS    

Example  5-30(Tersine,1994 page222) 

Weekly demand for a product follows a Poisson distribution 
with mean of  5 units. The annual holding cost is $5.  The 
backorder cost is $5 per outage. What is the optimum reorder 
point if TL is 1 week and the order quantity is 13 units. 

Solution 

DL is the demand for one week and we have the distribution 
of weekly demand. Then DL is poison distributed with 5  . 
 :is calculated  as follows כ�

L LD DT

*r
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*r -5
*

*

5 ×135 ×e 52( ) =0.05
r ! 5×5DL

hC Q
p r

gD
    

The left hand side of the equation is the probability function 
of poisson  distribution denoted by posspdf in  MATLAB: 

poisspdf(rstar, 5)=0.05

The  answer to the  above   equation could be found 
graphically . Using  running the following MATLAB command, 
plots the  a figure which is helpful to find the solution. 

x=0:1:10;forI=1:length(x); pd(I)=poisspdf(x(I),5);end;plot(x,pd) 

This figure gives two values (near  x؆ 2 and  x؆ 9) for the 
probability 0.05. 

The second answer r*= 9 is chosen. 
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ͷ-͹   Lost  sale case  in FOS system

   As  it is clear in  the lost dale case all stock-outs are lost 
and not satisfied  later.  The order quantity is determined 

empirically or by * 2 ( )o

h

C E D
Q

C
 . 

To determine  the optimum reorder point here , two case are 
distinguished i.e. lost sale cost  expressed per unit or lost sale 
cost per outage. These two  treated as follows, assuming r and Q 
are independent.    

5-7-1 Lost sale (r Q) - Stockout cost/ unit (࣊)known 

 In continuous review systems  when we have complete lost 
sale and the cost per unit lost  (ʌ) is known, thenכݎ��� is 
calculated from: 

*
Pr( *)

* ( )
h

L
h

C Q
D r

C Q E D
 


 (5-45) 

In which 

0 V P    �������������������(5-44) 

Where 

If D is constant, D replaces E(D). 

ͻ-ͽ-ͷ-ͷ��������������in  (r Q) - Lost Sale case 

When the lead time demand (ܦ௅  ሻ is less than theݔ�ݎ݋��
reorder point, the quantity of product left  is ݎ െ  with mean ݔ

0

0

( ) ( )

( ) ( ) ( ) ( )

L

L L

r

D

D Dr

r x f x dx

r x f x dx r x f x dx
 

  

  


 

P Purchase price per unit 
V Sale price perunit 

 ι Lost sale cost/unit  (other than  lost profits)ߨ
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                  Therefore  in the optimum state  

   
* ( ) ( ) ( ) * ( ) ( )

LL D Lr
SS r E D x r f x dx r E D b r


        ̊̌�̋�� ) 

 
for (r Q) systems with lost sale when the lost sale cost per unit 
is known, * ( )LSS r E D    has also been introduced (Winston 

1994, page 917); however the first one is more accurate because   
it takes shortage into consideration. 
 
 Example  5-31(Winston,1994 pagep17)  
  
   Annual demand for a product which independent from the  
  lead  time is normally distributed: D DD~N(ì =1000,ó =40).  

 Continuous review model with lost sale is used and we have: 

L o h 0T =2 weeks C =50 C =10/yr V=50 P=30 ð =20 . 
Find the order quantity, the optimal reorder point, and the 

safety stock. 
Solution 

0 V P   =20+50-30=40 

O

h

h
L

h

2C E(D)
Q*= =100

C

C Q* 10×100
Pr(D >r*)= = =0.024

C Q*+ðE(D) 1000+(20+50-30)(1000)  

L

L

L

D D

2 2 2 2 2
D D L L D D L D

2
D D L D L 52D

1000×2ì =1000 /yr ì = =38.46
52

ó = ó ì +ó ì = ó ×ì +0×ì

ó =40/yr ó =ó ì =ó T =40 8



 
 

L
L L D

*

L 0.024

D =DT ~Normal(38.46,ó =8)

r -38.46r*-38.46Pr(D >r*)=Pr(Z> )=0/024 =Z
8 8


 

0 0
( ) ( ) ( ) ( )

L L LD D Dr
r f x dx xf x dx r x f x dx

  
      

( ) ( ) ( )
LL Dr

SS r E D x r f x dx


   
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Using MATLALB command norminv: 
  *

0.024Z =norminv 1-0.024 =1.9774 r =54.3
. 

Table D could be used instead of MATLAB command norminv. 
*r =54.3  states Whenever the level of inventory  reaches 54 

units,place an order of 100 units. 
Calculation of safety stock: 

* ( )LSS r E D    54 / 3 - 38 / 46 15 / 84 16
More accurately : 

* ( ) ( )LSS r E D b r  
Since the lead time demand is normally distributed: 

From Table A 0.009

.024 U

( ) ( )

Z =1.98 b(r)=8× G (1.98) =0.072

L
UD

b r G k

k




 



* ( ) ( ) 54.3-38.46+0.07 15.91LSS r E D b r    

 Example  5-32 

 The annual demand and order quantity are fixed and equal to 

D=420 and Q=60.  ߨ ൌ ̈́ͳͲ per unit.  The lead time demand�
 :୐� Is as followsܦ�

17 16 15 14 13 12 11 10 �୐ 
0.03 0.07 0.1 0.150.150.2 0.2 0.1 Probabil. 

A continuous review system with lost sale is used.  Which of the 
following choices do you recommend to use as a reorder point in 
order to have an average annual  shortage cost near 25? 

a)14      b)15     c)16      d)17 

 Solution 
   If the reorder point is taken 14 and ܦ௅ equals 10,11, 

12,13,14 we do not encounter shortage.  But if it equals  15,16, 
17 shortage will happen. The following  table shows ( )b r , and 
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its cost for  this case  and cases  r=13,  15,16 and 17.  Note that 
the number of lead time in a year is approximately 420

60 7D
Q   . 

     Average annual shortage costs are shown in the last row of 
the table. The average annual shortage cost near 25 belongs to 
r=14.  Therefore choice "a" is the right choice  

5-7-2 Lost sale (r Q) - Stockout cost/ outage (ࢍ) known 
In continuous review systems with lost sale if the shortage 

cost per outage and the pdf of the lead time density function is 
known, the relationship for optimum reorder point is(Tersine, 
1994, page 225): 

*

*

( )

( )
L

L

D h

D

f r C Q

F r gD
                  (ϱ-ϰϳ) 

Proof: 

Let  a denote the expected  number of shortages occurring in 
a year and the 

ssTC  denote the cost related to SS and shortage; 

then  ss hTC =C ×SS mean+g×a   .

��������ܴܱܲሺ�ሻ ՜ 13 14 15 16 17 
௅ܦ  causing 
shortage 

14,15,16,17 15,16,17 16,17 17 - 

Average 
shortage in 1 
lead time 

( )b r  

1×0.15+

2×0.1+

3×0.07+

4×0.03=0.68

1×0.1+

2×0.07+

3×0.03=0.33

1×0.07+

2×0.03

=0.13
.1×0.03  0 

Average 
shortage cost 10×0.68

=6.8

10×0.33

=3.3

10×0.13

=1.3

10×0.03

=0.3 0 

Average annual 
shortage cost

6.8×7

=47.6
 

3.3×7

=23.1

7×1.3

=9.1

7×0.3=

2.1
0 

( )b r

( ) /b r D Q  
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Although the average number of cycles in a year is 
( )

D

Q b r

(Tersine,  1994 page 22)but usually it  is approximated with 
D

Q
.  

Therefore 

Pr( ) ( )
LL Dr

D D
a D r f x dx

Q Q


                    (5-48) 

 ss hTC =C × ( ) ( ) ( ) +g× ( )
L LL D Dr r

D
r E D x r f x dx f x dx

Q

 
   

Pr( ) ( )
L

ss
h h L D

dTC D
C C D r g f r

dr Q

 
       

 
0 0  

The optimum  reorder point (כݎ)  has a value which satisfies 
the following relationship1: 

*

*

( )

( )
L

L

D h

D

f r C Q

F r gD
                  (5-49) 

Example  5-33  
    The  annual demand for product is normally  distributed with mean 
200 and standard deviation of 4.  A continuous review system with  
lost sale is used. The lead time demand is exponentially distributed 
with  mean 50.  The shortage  cost per outage is  g=$1. The order 

quantity is  hQ=26 and C =$0.077/yr . Find safety stock and optimal 

reorder point. 
 
Solution 

                                                           

ϭThe differentiation under integral sign used Leibniz's Rule.     
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-

*
*

*

-

1 *r
1 50e( ) 0.077×2650 = r =55

1( ) 1×200*r
501-e

L

L

D h

D

f r C Q

F r gD
    

( ) ( ) ( )
LL Dr

SS r E D x r f x dx


     

-
¥

55

1 x
1 50SS 55 50 (x-55) e dx

50
     

  
1 1-¥ - ¥ ¥ -x 150 50

50 5055 55 55

xx1 50(x-55) e dx= e dx-55 - e dx50  

1 55
- -¥

1 50 50
5055

55 - e dx=55e  

- -¥ ¥
x

5055 55

- -¥¥
55 55

x x
x 50 50=u e dx=dv e dx= udv=
50

55x x -
x 50 50 50(-50)e ] - -e dx=105e
50

 



 

-¥
1
5055

55 551 - -
50 50 50SS=5+ (x-55) e dx=8+105e -55e =21.64   

 
Example  5-34 
      The inventory system for a product is continuous review with lost 
sale. The weekly demand is uniformly distributed over  [0 100]. The 
lead time is 2 weeks and Q=26.  Find the optimum reorder point if 
g=$1and the annual holding cost per unit is  $7. 
 
Solution 
  Using moment generating it  could  easily  be shown that the 
product of a constant number c and  a  uniform random variable 
over the interval [a b] has a uniform distribution on [ca   cb].  
Therefore  

L LD DT  is uniformly distributed over [0   100]. 
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L

L

*
D h

*
D

1
f (r ) C Q 200 7×26= = r* 14

r*-0 100+0F (r ) gD 1× ×52
200 2

    

*

* *

100
1

20014

SS ( ) ( ) ( )

SS=14-50+ (x-14) dx 19

LL Dr
r E D x r f x dx


   

 

ͷǤͺ  Periodic Review Inventory Model 
 or  (R, T ) policy or FOI system 

This section is concerned with continuous review inventory 
systems which is denoted by (R,T) or FOI. Figure 5-11 shows 
this model shematically  

Symbols 
A The inventory level at reorder point 
തܾሺܴሻ Average shortage in each cycle 
ഥܤ� ሺܴሻ Average shortage per year 
௅ା் The demand(consumption) during ௅ܶܦ ൅ ܶ  

����� ஽݂೅శಽሺǤ ሻ pdf of consumption  during � ൅ ௅ܶ
g Shortage cost per outage 
L Lead time 

 ௎ሺ݇ሻ Normal loss integralܩ���������
p  Service level, probability of lack of shortage during T+ ௅ܶ

P Purchase price 

Qt order quantity at time t 

R=E=Qm Desired  maximum level of inventory 

T the review interval  ( cycle time), the time between 
2 successive orders 

TL Lead time 
 shortage cost per unit
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Fig 5-11 Periodic review(R, T) or FOI model 

In this system every T time an order is placed in such a way 
that the order quantity makes the inventory level to a 
predetermined value denoted by R or Qm.  R has is equal to a 
value that is sufficient for time T; however when w place an 
order at the beginning of the lead  time as much the lead time 
demand is deducted from the inventory at  the time of  placing 
the order. Therefore the predetermined value R is such that it 
covers the demand during the review interval  ( cycle time) and 
the lead time(T �TL). With minor modification, the relationships 
given in the previous section for continuous review system can 
be  used here.  Since by definition, the service level is 

Pr( )T Lp D R  , then given a service level p. the dished R is 

calculated from: 

Demand 
Continu. ( )

T LDF R p


 (5-50) 

Discrete ( )
T LDF R p


 (5-51) 

Where (.)
T LDF


 is the cumulative distribution function of 

 .ା௅, i.e. the demand during T �TL்ܦ
The safety stock in this system is: 

ܵܵ ൌ ܴ െ  ௅ା்ሻ  (5-52)ܦሺܧ
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Later it will be shown that if ܦ௅ା் is normally distributed 
with mean 

T LD 
 and standard deviation 

T L
D


then: 

1L T L Tm D p DR Q Z 
     (5-53) 

The ordering Quantity is given by: 

t mQ Q A R A     (5-54) 

Where 
A The inventory level at reorder point 
Qt The ordering quantity 
R=E=Q Maximum inventory level

The inventory level will never reach the maximum unless the 
lead time is negligible. 

5-8-1 Determination of review interval(T) in (R,T) 
model 

The review interval  ( cycle time) is often set to: 

ܶ ൌ ொೢ
ாሺ஽ሻ                                 (5-55)

or may be determined empirically.  Note to set Co when 
equal to the ordering cost plus the per cycle cost of reviewing 
the level  of  inventory . 
Example  5-35 

  In a period inventory  system, it costs $500 to review the 
inventory and 5000 dollars to place an order for a kind of product. 
The average annual demand is 990 units. The holding  cost per unit is 
$100 annually.  What is your suggestion for the review interval.   

Solution 
D

D

Q
WT Q

W



 0

h

2 C= C

2×990×(5000+500) 330 1
=330 T= = yr

100 990 3wQ 

or 0

h D

2C 2×5500
T= = =0.33yr

C ì 100×990
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5-8-2 Calculation of  maximum inventory(R) 

Given some service level (p) and the distribution of the 
demand during the lead rime plus the review time ( ࡸࡰାࢀሻ, the 
maximum inventory(R) is calculated from the following 
relationship: 

1Pr( ) ( )L TD R p R F p
       (5-56)� 

5-8-3 Mean and Variance of L+T demand (ࡸࡰାࢀ) 

To deal with the mean and variance of consumption during 
the lead time plus the review time, 4 cases are distinguished as 
follows 

Case 1: Demand(D) and the lead time(L =TL) are 
independent random variables, 

Case 2: Demand(D) constant, the lead time(L =TL)  random 
variable,  

Case 3: Demand(D) random variable , the lead time(L =TL) 
constant, 

Case 4: Demand(D) and the lead time(L =TL)  constant, 
    When using the relationships given in each case, be careful 

to differentiate between the mean and  the variance of "annual or 
daily or weekly" demand and the mean and  the variance of 
"T+L" demand. 

ͷ-ͺ-͵-ͳ�Demand(D) and the lead time(L =TL) independent 
random variables 

 According to Theorem 5-2, if the "annual or daily or 
weekly" demand denoted by D and the lead time denoted by 
L=TL are independent random variables, then the mean and 
variance of L TD   the  demand   related to T L , are  : 

( ) ( ) ( )L TE D E D E T L     (5-57) 
2 2 2( )L T T L D D T LV ar D         (5-58) 

Note that  
T  is not probabilistic, then 2 2

T L L   , 
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T could determined from 

 02

( )
w

h D

Q C
T

D or E D C 
   (5-59) 

Furthermore in this model 

L+T

L+T

L

R=E(D ) +SS   (5-60) 

SS=R-E(D ) (5-61) 

Var(T+L)=Var(L) (5-62) 

E(T+L)=T+ì (5-63) 

Special case:�۲܂ାۺ�normally distributed 
If  ۲܂ାۺ is  normally distributed, the for a given service level 

( )
Pr

T L

L T

D

R E D
Z p





 

   
 

 then 

Relationship for maximum inventory  
௠ܳ�ݎ݋���ܴ ൌ ஽ಽశ೅ߤ ൅ ܼଵି௣ߪ஽ಽశ೅  (5-64�

Where 
2Var( ) Var( )

L TD T L DD T L 
    . 

Relationship for safety stock 
Since ( )L TSS R E D   then according to Eq. (5.64): 

                SS=�ଵି୮ɐୈైశ౐          ሺͷ-͸ͷ) 
Note: when replacing the values of the parameters in the 

equations be sure to have the same dimensions. 
Example  5-35  

In a periodic review inventory system, the lead  time(L) is 
normally distributed :Normal( 1 week, half week), the weekly 
demand is also normally distributed: Normal(400, 25) and 
independent  from the lead time.  The  annual holding cost per 
unit is �୦ ൌ ͲǤ͸ͷ. Find the maximum inventory for a review 
time of 4 weeks and 95% service level.  
Solution 

1
2( ) , ~ ( , ) ~ N(5, )L T L L LD D T T T N T T    1

21  

( )
T LDF R p



According to Theorem 5-2 
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( ) [ ( )] ( ) ( ) 400 5=2000L T L LE D E D T T E D E T T       
2Var( ) Var( )T L D

T L
D T LD   


  

஽ಽశ೅ߪ ൌ ටͷ ൈ ʹͷଶ ൅ ͶͲͲଶ ൈ ଵ
ସ=207.7� 

Since both LT T and D are normally distributed, Sec. 1-6-1 

allows us to  approximate �୐ା୘ with ~ (2000,207.7)L TD N
 

then 

Pr( )L TD R p     ( )
Pr 1-0.95

L T

L T

D

R E D
Z





 

   
 

 

% . .( ) 2000+1 6445×207 7=2342
L TL T DR E D Z R
   5

ͷ-ͺ-͵-ʹ Demand(D) random variables and the lead time(L 
=TL) constant 

 ( )L T LD D T T   .  If  D �� and L=TL are independent: 

������������� ( ) ( )T LE D D E T L    (5-66)����� 
2Var( ) ( )T LD D Var T L     (5-67) 

�ͷ-͹-͵-͵ Demand(D) constant and the lead time(L =TL) 
random variables 

( ) 0V ar T L  , 

If  D �� and L=TL are independent: 
( ) ( ) ( )L TE D E D T L      (5-68) 

2( ) ( )L T DVar D T L     (5-69) 

Special case:�۲���normally distributed 
       If demand is normally distributed, the  consumption 

during �T+L� 
 Will be normally distributed: 

~ ( ( ) , )D Normal T L T LL T D D       
and 
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1( ) ( )m pQ R T L E D Z T LD      �  (5-70)

 ( )SS R E DT L    (5-71) 

 1SS Z T LDp     (5-72)

Note 
As  mentioned in Sec  5-4-5-1-1,the variance of demand i.e. 

Var(D) is expressed in (
୳୬୧୲ୱమ

୳୬୧୲�୲୧୫ୣ)  and D  in �ሺ ୳୬୧୲
ξ�୳୬୧୲�୲୧୫ୣሻ then

to convert the standard deviation of  monthly demand to that  of 
yearly demand, multiply it by ξͳʹ� . For example  ɐୈ ൌ ͳͲ 
units/month is equivalent to  ɐୈ ൌ ͳͲξͳʹ��units per year. To 
convert the variance of  monthly  or daily demand to that  of 
yearly demand, multiply it by 12 or N= no. of working days in a 
year respectively.5-8-3-4 Demand(D) and the lead time(L =TL) 
constant 

If demand and TL are non-probabilistic then 
( ) ( ) ( ) 0L TSS R E D D T L D T L         . 

Let  A  denote the inventory level  at the time of placing an 
order. R has to cover the demand during T+L, then 

( ) ( )t L LQ DT A DT D T T A         � 5-73)

5-7-4  Average shortage 

 Let ( )DT L
f x


 denotes the pdf of  continuous ݎ݋����୘ା୐ (the 

demand during T+L) and ( )
T LDp x


 denotes the probability 

function of  discrete ݎ݋����୘ା୐.  ( )b R ,the average  shortage 
related to one cycle is calcu- 

lated from the following integral or summation depending  on 
the continuity or discreteness o�����୘ା୐Ǥ 

( ) ( )

( )

( ) ( )

D

R

D
x R

T L

T L

x R f x dx

b R

x R p x












 
 




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The annual amount  of shortage is derived from 1
( ) ( )B R b R

T
 

. 
where T is the review time in year. 

ͻ-ͽ-ͺ-ͷ����������������ǡ������������������ǡ��������������
when ࡸࡰାࢀ  is normal 

If the demand during L+T is normally distributed with mean 
and standard deviation ( )E DT L , DT L




then the average shortage 

in a cycle is: 

തܾሺܴሻ ൌ න ሺݔ െ ܴሻ
ஶ

ோ
ͳ

ߨʹ௅ା்ξߪ ݁
ିቀ௫ିఓವಽశ೅ቁ

మ

ଶఙವಽశ೅మ  ݔ݀�

Using   normal Loss  integral mentioned in Sec 1-5-1: 
തܾሺܴሻ ൌ ݇    ௎ሺ݇ሻܩ஽ಽశ೅ߪ ൌ

ோିఓವಽశ೅
ఙವಽశ೅

�  (5-76) 

Where 

݇ ൌ ܼଵି௣ ൌ ோିఓವ೅శಽ
ఙವ೅శಽ

 ௎ሺ݇ሻ is the loss normal intergralܩ�݀݊ܽ��

whose value is obtained from Table A or the following command 
GUk=exp(-k^2/2)/sqrt(2*pi)-k*(1-normcdf(k)). 

The following table summarized some of the above 
relationships. 

FOI system�� R  T�Some relationships used in ��

02* W

D h D

Q C
T

C 
 

 
= Review time 

തሺܴሻܤ ൌ തܾሺܴሻ
 Annual shortage =כ�

ഥሺܴሻܤ
ܦ ൌ ഥܾሺܴሻ

 The ration of annual =כܶܦ
shortage to annual demand 

*
2

DTI SS = Average inventory 

* *

1 1
Pr( )L T

p
N D R

b T T


  = 

Average no. of 
shortages in a year 

* 1
1
T

p N
b




= Average time between 2 
successive shortages 
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SS ( )L TR E D  = Safety stock 

L Tp DZ 
1= SS if �୐ା୘is normal 

( ) ( )
L TD Ub R G k


 = Average shortage in a 
cycle if �୐ା୘ is normal 

Note 
-If safety stock is not requited in a periodic review system 

then ( ) ( )T L T LR E D SS E D   
- In FOI model the order quantity for all cycles  is not the 

same. 
- Using the following  transforms FOS relationships are 

converted into FOI ones(Sabahno,2008, page 4): 
 

 

Example  5-37 

The annual demand for a product is 18000, each order costs 
$5000, annual holding cost per unit is $25 and the lead time is 2 
days for a kind of product which is ordered every  fixed  time T . 
Assuming a 90% service level in (R T) model, find  economic T, 
maximum inventory, average inventory, average shortage per 
cycle and per year. The demand during t days is approximated 
with N(ȝ ൌ ͳͷ�ǡ ı ൌ Ͷξ�ሻǤ  There are 360 working days in a 
year. Calculate safety stock as well. 

Solution 

* 2 2×5000

25×18000

150 150* yr= ×360 50
1000 1000

o

h

C
T

DC

T days

  

 

FOI� (R    T) FOS� ( r   Q) 
L+T ื L 
R ื � 
DT ื Q 
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0.1

( )

R-1300
=1.28 1337

4 52

L T

L T

D

m

R E D
k Z

R Q





 

  

Note in this problem the lead time is constant as well as the 
review time; then T+L is constant and fixed. 

L+TD ~Normal(ì=15(L+T),ó=4 L+T )  

L+T

L+T

L+T

D

L+T
L+T

D

E(D )=15(2+50)=1300

ó =4 L+T =4 52 28.8

R-E(D )
Pr(D R)=p=0.90 Pr Z> =1-p=0.1

ó
 

    
 

  

Every 50 days an order with the following quantity has to 
placed   

1337t m mQ Q A R A R Q       

SS=?  L+TD ~Normal  

/ 1.28×4 52 37D L D LSS k Z     0 1

U 1-p 0.025

U

T+L
(R)= ×G (k) k=Z =Z =1.28D

G (1.28)=0.0475:Table A

b(R)=4 52×0.0475 1.37

ób



* 50
360

1 1
B(R)=b(R)× =1.37× 10

T

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Example  5-381 

    A product  is ordered every T time to reach the inventory 
to its maximum R.  If the monthly demand(D) is variable with 
mean E(D)and the lead time is deterministic, find an expression 
for the mean inventory( I ): 

Solution 
 

T+L

Q DT
I= +SS= +SS SS=R-E(D )=R-(L+T)×E(D)

2 2
T×E(D) T T

I= +R-L×E(D)-T×E(D), I=R-L×E(D)- ×E(D)=R-E(D)[L- E(D)]
2 2 2

   

End of example  

Example  5-392  
    A kind of product is ordered every 3 months.  The lead time is one 
month. The demand during t days is approximated with N(ρ ൌ �ǡ ɐ ൌ
ͳͲξ�ሻǤ With a service level of 90%, calculate the maximum inventory. 

   
Solution 

  In this problem the lead time is constant as well as the 
review time; then T+L is constant and fixed.  Since D is 
normally distributed L TD  is normally distributed : 

~ ( ( ), )
L TL T L T DD N orm al E D 
  : 

L+T

L+T

D

E(D )=(3+1)(100)=400

ó =10 3+1=20





 

Pr( ) 0.9L Tp D R   then 

                                                           

ϭ Iranian Universities entrance Exam (from Asadzadeh et al;ϮϬϬϲͿ ƉĂŐĞ�ϮϮϲ 
Ϯ Asadzadeh et al;ϮϬϬϲͿ page Ϯϯϯ 
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( )
Pr 0.1

L T

L T

D

R E D
Z p





 

     
 

1  

0.1

( )
Z =1.28

L T

L T

D

R E D





   

0.1Z

( )

R=400+1.28×20 425.6

L TL T DZ pR E D 




  



1  

If the inventory level at the time of ordering is A the order 

quantity would be 425Q A   

Example  5-40 

    A kind of product is ordered every 3 months.  The lead time is two 
weeks. The service level is 90%  and he demand during T+L is given 
in the following table,  Find shortage probability, average shortage in 
each cycle and the safety stock 

L TX D  50 60 70 80 90 100 

Prob. 0.1 0.1 0.2 0.3 0.2 0.1 
Cum. 0.1 0.2 0.4 0.7 0.9 1 

Solution 
�����shortage probability�=1-0.9=0.1� 
Pr( ) 0,9 90L TD R R      

X
x>90

( ) ( ) ( )

(x-90)p (x)=(100-90)×0.1=1

L TD
x R

b R x R p x




  


( ) 90-(50×0.1+60×0.1+....+100×0.1)L TSS R E D   

SS=13
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Shortage in periodic review systems 
  When the demand(D) is greater than the maximum 

inventory(R) some  policies including the following ones might 
be adopted to remedy this situation: 

complete backordering,  
complete lost sale.    
These two are dealt in detail below. 

ͷ-ͻ������������������	��������� 

In this section complete backordering is assumed in periodic 
review inventory systems and 2  cases are distinguished : either 
the shortage cost per unit or the shortage cost  per outage is 
k.nown. 

ͷ-ͻ-ͳ�������������(R T) - Stockout cost/ unit (ૈ)known 

If the stockout cost per unit (࣊ሻis known כࡾ , the maximum 
inventory in its optimum state, is calculated from (Tersine, 1994 p 244): 

*
*Pr( ) h

L T

C T
D R

  
       (5-77) 

If 
*

1hC T


 ,there would not be an answer for כࡾ ,  

Example  5-41 

    The lead time for ordering a product is normally 

distributed with mean of  one week and variance of 
ଵ
ସ and the 

weekly demand has a  normal distribution N(ߤ ൌ ͶͲͲǡ ߪ ൌ ʹͷሻ 
and is independent of the lead time. Shortage is backord at the 
cost of  one dollar per unit.  The a holding cost per unit is $0.65.  
Find the optimal value of the maximum invean FOI mode used 
with  a 4-week period review, 
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Solution 

( )

~ ( , ) ~ ( , )
L T L

L L

D D T T

T N T T N
  

 1 1
2 21 5  

According to Sec 1-6-1 ࢀࡰାࡸ is approximately normally 
distributed with

( ) [ ( )] ( ) ( ) 400 5=2000L T L LE D E D T T E D E T T        

2Var( ) Var( ) 207.7T L D
T L

D T LD   

     

*
*Pr( ) h

L T

C T
D R

  

**
4

0.65×( ) 52Pr =0.05
1

L T

hL T

D

C TR E D
Z

 



 

    
 

* *
0.05 . .( ) Z 2000+1 6445×207 7=2342

L TL T DR E D R
   

5-9-2 Backordered (R T) - Stockout cost/ outage (g) 
known 

  If the cost per outage is known then the optimal value of the 
maximum inventory is calculated  from (Tersine,1994,page244):  

 *( ) 5-78
L T

h
D

C T
f R

g
  

Example  5-42 

Solve the previous example supposing g=$200 fot the cost 
per outage and ignore ࣊Ǥ 
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Solution 

.0 65hannual C 
    
஽ಽశ೅ୀଶ଴଻Ǥ଻        ߪ ஽ಽశ೅ୀଶ଴଴଴

����ܶ ൌ ସ
ହଶ ���ݎݕ

*
*( )

L T

h
D

C T
f R

g
  ��� ଵ

ఙವಽశ೅ξଶగ
݁ି

ቌ *R షഋವಽశ೅ቍ
మ

మ഑ವಽ
మ శ೅ ൌ

�
4

0.65×
52

200
hC T

g
  �

*R ିଶ଴଴଴
ଶ଴଻Ǥ଻ ൌ േʹǤͲͳͻͶ ՜ * 2419&1580R   

ͷ-ͳͲ Lost  sale case  in FOS system

In this section complete lost sale is assumed in periodic 
review inventory systems and 2  cases are distinguished : either 
the shortage cost per unit or the shortage cost  per outage is 
k.nown.

5-10-1 Lost sale (R  T) - Stockout cost/ unit (࣊)known 

If the stockout cost per unit (࣊ሻis known כࡾ , the maximum 
inventory  in its optimum state, is calculated from (Tersine, 1994p244): 

 *Pr( ) 5 79h
L T

h

C T
D R

C T   
  

5-10-2 Lost sale (R  T) - Stockout cost/ outage (ࢍ)known

    If the cost per outage is known then the optimal value of 
the maximum inventory is calculated  from (Tersine,1994,page244): 

*

*

( )
(5-80)

( )
L T

L T

D h

D

f R C T

F R g





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Example  5-43 

The demand during L+T is approximately  exponentially 
distributed with mean 500 units, the cost per outage is $20.  A 
periodic review system is used with four-week review time. 
Find the  optimal value of the maximum inventory if  the annual 
holding cost per unit is$0.65. 

Solution 

* *

*

( )

( )

* *R R- -41 1500 5000.65e e
500 52 500= =0.0025

* *20R R- -
500 5001-e 1-e

L T

L T

D h

D

f R C T

F R g




 


 

 

*

*R- 25500e = 294
45

R 
 

ͷ-ͳͳInventory control under complete 
uncertainty 

Since dealing with inventory control under complete 
uncertainty and ambiguity needs some knowledge  of decision 
making under uncertainty,  a short description of  the subject  
with emphasis on its application to inventory follows.  

Decision theory can indirectly assist in defining the problem 
and in identifying alternatives, while directly helping to evaluate 
the alternatives(McKenna,1980).  
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Definitions 

Action space 

The set of alternative actions from which  a decision  
maker could choose an action to cope with a situation  which 
needs a decision. 

States of the real world or states of the  nature 

The set of the events that may happen after an alternative 
action is chosen and performed  by the decision maker  is often 
referred to as �states of the nature�  or  �states of the world� and 
is beyond the control of the decision  maker.  In this section  the 
set is denoted  byȣ ൌ ሼɅଵǡɅଶǥ ሽ An example of  it in inventory 
control is the level of demand for a particular product. 

Objective function 

       In decision making  a decision situation can involve one 
objective or more objectives.  The objective function could be a 
desired quantity such as profit or an undesired one like cost  or 
loss.   We focus here on minimizing the objective function of the 
inventory cost as a single objective decision-making problem  in 
inventory control under uncertainty. 

     To evaluate the alternative actions  and choosing the 
appropriate one,  a table similar to the following could be 
prepared.   The possible actions being considered by the 
decision maker and the states of the real world are inserted in 
the  table.  Also the cost or the loss for �each action and each  
real world state� is calculated and inserted in the table.
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Loss function  for action ܽ୧ and natural state Ʌ୨ 
Action States of the nature 

Ʌଵ Ʌଶ 
�ଵ The cost of action 

�ଵ if�Ʌଵhappens 
The cost of action 
�ଵ if�Ʌଶhappens 

ܽଶ The cost of action �
ܽଶ if�Ʌଵhappens 

The cost of action 
�ଶ if�Ʌଶhappens 

�ଷ The cost of action 
�ଷ if�Ʌଵhappens 

The cost of action 
�ଷ if�Ʌଶhappens 

Then one of the actions is selected using the rules or criteria discussed 
below. 
5-11-1 Decision criteria in minimization problems 

    The process of selecting an action when an objective 
function  is to be optimized is  usually done using some 
common sense rules or criteria including the  minimax  decision 
criterion(rule), the minimin decision rule and the expected value 
decision criterion (Bayes method). In the following discussion 
the objective function is assumed to be cost.  
The  minimax decision criterion(rule) 

      For each action  determine the worst outcome, the 
minimax rule chooses  the action with the "best" worst outcome 
When the objective function is the cost or loss, the minimax 
decision maker examines the possible cost for each alternative 
and takes particular note of the greatest cost for each alternative 
. He then chooses the alternative that yields the smallest of those 
maximum costs.  The decision maker who chooses this criterion 
is more a pessimist than an optimist (based on Wiston,1994 page 
728 and McKenna  ,1980 chap4) 
 The minimin  decision rule 

       For each action  determine the best outcome, the miniin 
rule chooses  the action with the "best"  best outcome. When the 
objective function is the cost or loss, the minimin decision 
maker examines the possible cost for each alternative action and 
takes particular note of the minimum cost for each alternative . 
He then chooses the alternative that yields the smallest of those 
minimum costs.  The decision maker who chooses  this criterion 
is more an optimist than a pessimist . 
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The expected value criterion (Bayes method) 
     If there is some basis for believing that one state of nature 

is more likely than the others, a weighted average of the 
function is preferable to a straight average . The weighted 
average, in which the probabilities arc the weights, is called the  
expected value criterion( McKenna,1980). When the objective 
function is the cost or loss.  The expected cost is the sum of the 
products of probability times cost for each of the decision 
alternatives . The expected value decision maker chooses the 
alternative with the best expected cost.  
Example  5-44  
 

     Suppose the demand for a product is 10  or 30 or 50 or 70.  
We could order 20 or 40 or 60 units . The loss due each 
combination of demand and order size is given the following 
table. Determine the order size separately for the product using 
the above rules. 
 

 The loss for each combination1 
 States of the Nature 

D=10 D=30 D=50 D=70 

T
he

 o
rd

er
 

si
ze

 

20  50 270 1150 2030 
40  480 100 380 1280 
60  900 520 200 480 
80  1045 665 345 250 

Probability 0.2 0.4 0.4 0.1 
   
Solution 
a)MiniMax criterion 
For each action  the worst loss is determined: 

 

the minimax decision maker chooses  the alternative action with 
the "best" outcome i.e. chooses  to order 60 units. 

                                                           

1 Note that this is an  example and the costs are not real. 

alternative Maximum Loss 
Ordering 20 units 2030=max{50,270,1150,2030} 
Ordering 40 units 1280 
Ordering 60 units 900 
Ordering 80 units 1045 
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b)MiniMin criterion 
 For each action  the minimum loss is determined: 

alternative Minimum  Loss 
Ordering 20 units 50= min{50,270,1150,2030} 
Ordering 40 units 100 
Ordering 60 units 200 
Ordering 80 units 250 

the minimin decision maker chooses  the alternative action 
with the "best" outcome i.e chooses  to order 20 units. 

The minimax rule chooses  the action with the "best" worst 
outcome. 
c)Expected value criterion 

The following table shows the sum of the products of 
probability times cost loss for each of the decision alternatives . 
This value  is average loss for the corresponding  action. 

Order 
size 

Average Loss 

20 50*.2+270*.4+1150*.3+2030*.1=666 
40 480*.2+100*.4+380*.3+1280*.1=378 
60 900*.2+520*.4+200*.3+480*.1=496 
80 1045*.2+665*.4+345*.3+250*.1=603 

The expected value decision maker chooses 40 units as the 

order size  because it has the best expected cost. 
Exercisesͳ 

5.1  An industrial distributor sells water pumps and other 
related supplies. A particular water pump  is purchased for 60$ 
from the manufacturer.  The average sales per day are 5 units, 
and ihe annual holding cost is 25% of the  unit cost. The annual 
demand for the pump is 1500 units, and (he order quantity is 300 
units. The backorder cost per unit is $50. and the lead time is 20 
days. The demand during lead lime is given in the table below: 

 120 110 100 90 80 70 ࡸࡰ
frequency 3 3 4 80 6 4 Sum=100 

                                                           

1 Problems  1 through 4 are  from chapter 5 Tersine(994) p247 problems 1, 
2,3,4.   Problems 8,9,12,21 of  chapter 5 , Tersine(994) p247 were also given 
to the students 
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a)what is the reorder point?   
b)How  much  safety stock should be carried?  
c)What is the expected annual cost  of the safety stock? 

5.2 An automotive parts  dealer sells 1200 carburetors a year. 
Each carburetor costs $25, and the average demand is 4 
units/day. The order quantity is 120 units, and the lead time is 
25 days. The backorder cost per unit is $20, and annual holding 
cost is 20% of unit cost. The lead time demand is given  in the 
table below. Determine the safety stock level and the reorder 
point. 

�୐ 115 110 105 100 95 90  
frequency 10 15 20 5 25 25 Sum=100 

5.3  Solve again Problem 5-1 with the assumption that �୐ is 
normally distributed with mean 100 units and variance 25 

5.4  What should be  the safety stock in Problem  5.2 if the 
lost sale  cost per unit is $20? 
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Symbols 

D
Average deviations of the forecasts and the 
observed data 

e Error random variable 

et Forecast error at tome t 

MA Moving Average 
MAD mean absolute deviation 

MAE 
mean absolute error(error =actual or observed value minus

the forecasted value) 
MAPE mean absolute percent error 
MBD(MB
E) 

Mean Between Deviations(Mean Between Errors) 

MSE Mean squatted errors 

Chapter ͸ 

Introduction  to Forecasting Methods 

Aims of the chapter 

   This chapter describes some forecasting methods used in 
inventory management.  The emphasis is on quantitative 
methods such as regression, time series methods, moving 
average, exponential smoothing . Some criteria such as RMSE 
are introduced to evaluate methods effectiveness. The 
application of quality control charts to verify whether a 
forecaster fits the case or not.  
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MLE Maximum likelihood estimator 
m The number recurring cycles in a year  

N 
Number of  periods in MA method, number 
periods in Seasonal variations 

N 
Total number of observed data, Number of  
observed data in each cycle of  seasonal 
variations 

r,�R Correlation coefficient 

Rt 
The ratio of observed value at time t to the 
corresponding forecast 

iR The  ratio for season no.  i 

RMSE Root Mean Squared Error 

DS
Standard deviation of the deviation between the 
observed data and the corresponding forecasts 

SEE Standard Error of estimate 
SSE Sum of squared errors 

,...2,1, XXX  
Independent  variables in regression, Radom 
variables in probability 

Y 
dependent variable or response variable  in 
regression 

yi The actual or observed value for ith period 

i�y the forecasted value for period i 

 The coefficient in exponential smoothing method 
 
͸-ͳ�����������on 

Forecasting is to identify the picture of the future events and 
conditions as close as to what it will happen.  Although 
forecasting is  rarely perfect and error-free, it cannot be 
discarded, and is used vastly in many subjects such as 
engineering and economics ( including   demand forecasting  for 
goods and services). It is worth mentioning that forecasting is an 
art before being a science.  In science the input is the rules of the 
nature, while the input of forecasting is data, analysis, 
experience and judgment.    There is no rule in the nature  giving 
a relationship between demand , for example and some other 
variables. It is because factors such as economic conditions, the 
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actions of  the rivals and other social phenomena are complex. 
It should be emphasized that To find an appropriate method and 
effective use of it, human judgment will be  a complement to the 
method . 

 ͸-ʹ�������ϐ�����������	������������������ 
��Various methods are used for forecasting from a thought or 

simple statement to mathematical equations.   Forecasting 
methods  could be subjective or objective.  The former are based 
on the opinion of the consumers or experts  and use more 
intuitive or qualitative approaches .  These methods are used 
when there is little  
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Subjectiv 
Methods 

 

�̶ΑϮΧ�̶ϫΎ̳΁
�ϦϴΑ�ςΑ΍ϭέ�ί΍

ΎϫήϴϴϐΘϣ��

Data 
Type��

Cross-Sec. Data 

Delphi 
Metho 

    Executive 
    Opinions 

Market 
Research 

 

Field Sales 
Force 

Casual 
methods 
(Regression, 
Econometrics) 
segmentation

Heuristics(Neural 
nets,,,) 
Data Mining� 

 

Related 
Methods 

Time Series 

Reg- 
ression 
(Simple,
Multipl)
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or no historical data. The former methods use quantitative or 
mathematical approaches. It is worth mentioning that when an 
objective method uses  a mathematical  formula to predict a 
variable, the method could be called a forecasting model. 
Figure 6-1  shows more classification of forecasting methods.    

͸-͵����������� or qualitative Methods 

     Subjective forecasting methods are based on common sense. 
The Forecaster use judgment and self-expertise  for forecasting. 
Some of well-known subjective methods  are: 

Market research or users' expectation, 
 Executive opinions, 
 Delphi expertise method, 
 Field sales force. 
Below Delphi method is described. 

6-3-1 Delphi Technique 

The Delphi technique is designed to obtain the opinions on a 
specific topic by means of a questionnaire delivered to selected 
experts of the subject . 

This technique is designed to remedy some of the problems 
which arise in consensus forecasts . The technique attempts to 
maximize the advantages of group  dynamics while minimizing 
the problems caused by dominant personalities and silent 
experts.(Terine, 1994, page 71).   Steps of the method are as 
follows: 

1. Define the problem and the questions for a group of
selected experts electronically or physically. 

2. Take the group's view as Round 1
3. Explore and discuss the different points of view with the

group. 
4. Take the groups view again as Round 2
5. Repeat step 2 and 3; ask for Round 3 (if consensus is

reached at Round 2, Round 3 is unnecessary) 
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This is an iterative process and  continues until you feel you 
have reached consensus with your group or sufficient 
information has been exchanged among the experts. 

͸-Ͷ���������� or quantitative Methods 

Quantitative  methods use a mathematical  model or 
expression to illustrate the relations between a dependent 
variable (response) and some independent variables. 
These methods are used when there is enough  historical data. 
If there is good knowledge of the relation between the 
dependent and independent variables, then casual models such 
Quantitative  methods use a mathematical  model or  expression 
to illustrate the relations between a dependent as regression are 
used otherwise neural networks  and data mining  could be used. 
If the data  is  given in time series  1 ,  such model as exponential 
soothing, moving average, autoregressive auto-regressive 
moving average (ARMA) , autoregressive integrated moving 
average(ARIMA)  or  artificial  intelligence algorithms such as 
neural network modeling might be used. 

6-4-1 Regression 

In many experiments  a variable   varies when the values of 
some other variables  are changed during the exp[merriment. 
Regression models  are used when there exists some inherent 
relationship among  some variables and we want to predict the 
values  of  response variable(s) when the values  of  some 
independent variables  change.  

A mathematical equation that allows us to  predict values of 
one dependent variable from known values of one or more 
independent variables is called a regression equation 

                                                           

1 A time series is a sequence of data points that occur in successive 
order over some period of time. 
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(Walpole,1982, page 346).  This  prediction is  in  the form of 

an expected value:  , ..., 11| ( )� ,..., ,...,i nx x nE Y x x xy     

where 

Y : response or dependent variable 
�y :predicted value for Y given , ...,1x x n

, 1, ...,i i nx  :independent variables 

1( ),..., nx x :Regression  function that is a function of 'i sx

e.g.:

 

 

 

If   Ȍ  is a linear  function of   , 1, ...,i i nx  , the regression model 

is called  linear  regression which could be simple or multiple. 

͸-Ͷ-ͳ-ͳ�������������������������� Model 

Simple linear regression is a linear regression model with a 
single independent (explanatory) variable and one dependent 
variable., denoted  by X, Y respectively.   The mathematical 
model of simple linear regression  is as follows: 

Y a bX e    (6-1) 

Where  a and b are the regression coefficients , 

n n b x x b x xa ax a x a x        1 1 2 2 1 30 1 1 2 2

n na b x b x b x   1 1 1 2 2

nl
x

x

e

a b x cx

a b x



 


2



Chapter 6   Introduction to  Forecasting   Methods  324 

 

 e  is the error variable with mean zero . 

Given a particular value of X, taking expectation on both sides 
of Eq. (6.1), yields :   ( )E Y a bx E e   .  Then  we have:

  / /Y x E Y X x a bx      (6-2) 

The  mean /Y x is considered  a predicted value for Y when 

X=x.  The  predicted value is denoted in this chapter by �y : 

�y a bx      (6-3) 

͸-Ͷ-ͳ-ͳ-ͳ��������������������������������������������������
Least  squares 

In this section the regression coefficients a and b are 
estimated with  a method often called least squares .  in this 
method the sum of the squares of the residuals   (the difference 
between results obtained by observation and by computation 
from a formula) is minimized.   Given 
     1 1, , ..., , , ..., ,i i n nx y x y x y ,n pairs of values from the 

independent and dependent variables  X  and Y,  we would like 
to estimate a and b in such away that i i�(y ,y )  i.e. the observed 

and predicted values  for Y become close to each other as much 
as possible.  In other words th aim in estimiating a and bis to 
minimized the errors  e about the regression line (Fig 6-2). 
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Fig. 6-2  The predicted values ( �y ), the  observed values(y) and 
the error(e) in simple regression. 

To satisfy this requirement, the sum of  the squares of the 
errors(SSE) about the regression line is usually mininimized i.e. 
the aim is to minimize: 
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Where  
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Y    is the mean of  the oberved values ݕଵǡ ǥ ǡ  ௡ݕ
X is the mean of  the oberved values ݔଵǡ ǥ ǡ  .௡ݔ
The  line ���y a bx  is called the line  of  least squared.
Example  6-1  

     Estimate the regression line for the data of  given in the following 
table 

xy ݔଶ Y X 
Ͷʹ͵Ǥͷ ͷͻʹͻ ͷǤͷ ͹͹ 
͵͹ͷ ͷ͸ʹͷ ͷ ͹ͷ 
͵͵ͺǤͶ ͷͳͺͶ ͶǤ͹ ͹ʹ 
͵ͶͲǤͺ ͷͲͶͳ ͶǤͺ ͹ͳ 
͵ʹʹ ͶͻͲͲ ͶǤ͸ ͹Ͳ 

7.1799 xy  266792 x  6.24 y365 x  
Solution 

Using Eqs. 6-5 , 6-6 and the calcualtion done in the  table: 

Following MATLAB commands  give similar results: 

хх�ǆс΀ϳϳ����ϳϱ����ϳϮ����ϳϭ����ϳϬ΁Ζ͖����Ǉс΀ϱ͘ϱ��ϱ��ϰ͘ϳ��ϰ͘ϴ��ϰ͘ϲ΁Ζ͖ 

>> X = [ones(size(x))  x]; 

>>ab=  regress(y,X)ϭ 

-3.4535      0.1147 

                                                           

1 X\y   could be used instead of regress 

     
 

 
4531.3

5

365�6.24
�   0.1147

2365266795

6.243657.17995� 








b
ab
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The difference between the values obtained for a from Eq. 6-6 and 
MATLAB is due to the approximations used in the manual 
calculations . 

The equation for the  regression line  is � 3.4531 .1147y x   .  If the

value of the independent  variable for   Period  6 is 6 73x   then the 
dependendent variable fof the period is predicted to be on the average 

:
   � .1147 73 3.4531 4.926y    � . 

͸-Ͷ-ͳ-ͳ-ʹ��Correlation coefficient 

What makes simple linear regression appropriate for 
predicting Y from X is their degree of  their linearity relation. 
The correlation coefficient   is the specific measure that 
quantifies the strength of the linear relationship between two 
variables.   Suppose a sample n pairs of X and Y are available; 
then  the coefficient  (r)  is defined as follows: 

  
   

i i i i

2 22 2

i i i i

n x y x y
r

n x x n y y
. (6 8)




 
  

   

It is proved that 1 1r    and the moreȁ�ȁ closer to 1 the 
stronger the linear relation ; and the moreȁ�ȁ closer to zero the 
weaker the linear relation .  Negative  r denotes that if x 
increases(decrease) Y will decrease (increase).  Table  6-1 
shows  the relation between r and the degree of  linear ity . 

Table 6-1 A classification of  correlation of  coefficient 
ȁݎȁ 0-0.2 0.2-0.4 0.4-0.7 0.7-0.9 0.9-1 

linearity slight weak medium satisfactory high 

As an example if we calculate  the correlation coefficient  0f 
X, Y in Example 6- 1, we will obtain xyr = 0.94  which denotes 

that there is a strong linear relationship between X and Y. 
Figures 6-3 through 6-6 shows the linear strength of several sets 
of data.  It is worth mentioning that such plots are which are 
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called scatter plot are necessary to  understand the kind of 
relationship between 2 variables.  It is desirable to have at least 
30 pairs of data(Kume,1992 page 68) to prepare a scatter plot in 
order to study the relation between X and Y . 

Fig. 6-4  A Scatter plot  of a set 
of data with low positive r 

Fig. 6-5  A Scatter plot  of a set of data 
with  negative  r 

Fig. 6-4  Observed and predicted 
data with high  positive  r 

Fig. 6-5  A Scatter plot  of a set 
of data with  nearly zero  r 

͸-ͷ���������������odel Effectiveness 

To verify the validation of  foreecating model, there  are 
some measures including the ones given in Table 6-2 .  In fact 
the formlus in Table 6-2 measures the forecasting error.  It is 
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advised not to use a small  set of data to estimate the parameters 
of the model and valdiating the model. 

Table  6 -2 Some measures for evaluation of  forecasting models 

Measure Formula Abb. Measure comment 

Mean 
Between 
Deviation 

n

n

i iyiy



1

)�(
MBE Mean 

Between 
Deviation 

-Negative MBD: 
Prediction is greater 
 than actual 
-Negative MBD: 
Prediction is less than 
actual 

Mean 
Absolute 
Deviation n

n

i iyiy



1

� MAD, 
MAE 

Mean 
Absolute 
 Deviation 

Mean 
Squared 
Errors

 
n

n

i iyiy



1

2�
MSE 

Mean 
 Squared 
Errors

Root 
Mean 
Squared 
Errors

 
n

n

i iyiy



1

2�
RMSE 

Root Mean 
Squared 
Errors 

Standard 
Error of 
Estimate 

 
fn

n

i iyiy







2

1
�

SEE Standard 
Error of 
Estimate 

݂ is the number 
parameters to be 
e4stimated for  the  
Forecaster equation 

Mean 
Absolute 
Percentage 
Error 

�100

n i

y yn i i
y i





1

MAPE Mean 
Absolute 
Percentage 
Error 

Gives a 
dimensionless 
Measure for error 

The corelation coefficient ( R)between the obseved ( iy )and 

predicted( � iy ) values from the following relationship is sometimes

used in the literature .    

 
  

     
 






2222 ��
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yynyyn

yyyyn
R  (6-9) 



Chapter 6   Introduction to  Forecasting   Methods  330 

 

However high R does not necessarily indicate that the 
prdicted values are appropriate.  If  R is used another  measure 
such as RMSE has to accompany the coreelation  coefficient. 

Some researches use  a statistic  called  the Coefficient of

determination ,denoted by ܴଶ ሺͲ ൑ ܴଶ ൑ ͳሻǡto judge the adequacy 
of  a regression model.  However  the statistic has several 
miscionceptions (Montgomery  and Rungers, page 510) .   

Three other measures of model adequacy are:the coefficient of 
multiple determination, residual analysis, testing lack of fit using  near 
neighbors. For details refer to Hines& Montgomeri(1990)  chapter 15 
page 505. 

5-6-1 Application of "t-test for paired  data" to model 
effici study 

To study the effectve ness of  a  forecating model,  if  the 
difference (D)of the  obseved values and the corresponding 
predicted values are normally distributed, a special t-test could 
be used to test; 

:0

:1

0

0

H D

H D








. 

The  test statistic under null hypothes is (Bowker and 
lieberman,1972 page243): 

2

0 2


D

nD
t

S
 (6-10) 

Where 

1

n
Dii

n
D MBD


 

1

22




 

n

DnD
S i

D

. 
The test statistic  could be  calculated  equivalently from

2

0 2 2

( 1)



n MBD

t
RMSE MBD

 (6-11) 
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Where 

 2 2�
1 1

n n
y y Di i ii i

n n
RMSE 

 
  . 

Eqs  6-10& 6-11 are equivalent because: 
2 2 2

0 2 2 2 22

2 2

2 2 2
2

( 1)

1

( 1) ( 1)
.

i iD

i

nD nD n D
t

D nD D nDS

n n

n D n MBD

D RMSE MBD
D

n


   

 


 





 



If 0t  is not greater than the critical value 
1, / 2

t
n 

, then the 

mean of the observed  values( 'y i s ) and the mean of the 

predicted values ( � 'y i s ) doenot differ significantly. 

͸-͸�Multiple Linear Regression 

When we have a case in which one variable depends  on 
several independent variables, multiple regression models which 
is  specific- ally designed to create regressions  for such cases 
may be a good choice. The multiple linear regression with k 
independent variables (regressors)  is represented by 
(Montgomeri&rungers,1994page 533): 

eXbXbXbaY kk  ...2211           ;ϲ-ϭϮͿ 

where 

Y dependent variable 

1 2, ,..., kX X X independent variables 

abbbk ,,,...., 12
model parameters 

e error random variable with mean zero 

Given  some specific values for 1 2, ,..., kX X X , we could take 

the expection  of both sides  of Eq. 6-12 as follows: 
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 , ..., ( )1 11| ...1 2 2� k k kx x E ekE Y X X a b x b x b xy        

Since E(e)=o then Given   2, , ...,1 1 2 kx x x kX X X   ,  the

predicted value for the dependent variable ( �y )  iscalculated 
from: 

1 ... .1 2 2� k ka b x b x b xy       (6-13) 

Estimation of  the model parameters by the help of   has been 
dealt in refrences such as Montomeri&Rungers(1994) and 
softwares such as such as MATLAB  and Minitab.  The 
following commands might be used in MATLAB to estmate the 
k-regressor linear model paramters: 

       1 2.......... ; .......... ; .......... ; ..........      kx x x y

>>X=[ones(size(x1)) x1 x2 � xk]; regress(y,X)      or    X\y. 

   Hines ant Montgomeri () on  page 502 mentions that adding 
an unimportant variable to the model can actually increase the 
mean square error(MSE),thereby decrease the usefulness of the 

model. Note that  the relations of the form 1

10 ... k

k
y x x   

could be transformed to 0 1 1log log log ... logk ky x x     
and by setting  ilogx 's equal to a new variable, a linear 

regression model is achieved. 

Example  6-2 

  The following table shows the results of an experiment . 
Without performing  an experiment, could we forecast the result 
of the experiment if the values of  X1 and X2 are given. 

xͳ ͳǤͳͲ ͳǤͲͲ ͲǤͺͲ ͲǤ͸Ͳ ͲǤͷͲ ͲǤʹͲ 
xʹ ͳǤͶͲ ͳǤͳͲ ͲǤͻͲ ͲǤͶͲͲ ͲǤ͵Ͳ ͲǤͳͲ 
y ͲǤʹͶ ͲǤʹ͹ ͲǤʹ͵ ͲǤʹͺ ͲǤʹ͸ ͲǤͳ͹ 
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 Solution 
    To see if a double linear regression model fits the data or 

not, at first the parametrs are estimated: 
>>x1 = [.2  .5  .6   8   1.0  1.1]'; x2 = [.1 .3 .4 .9 1.1 1.4]'; y  = [.17 .26 .28 .23 .27 .24]'; 

X = [ones(size(x1))   x1  x2 ];  
  >> regress(y,X) 
    0.1018                     0.4844               -0.2847 

The model is ݕො ൌ0.1018 + 0.4844 x1  -0.2847 x2 
We do not have any other data for model validation, therefore 

the above data are inserted in the model as follows: 
yhat= 0.1018 + 0.4844 *x1  -0.2847 *x2 or 
y�  [ones(6,1)   x1    x2  ] *�[0.1018   0.4844 -0.2847��]' 

The results are given in the following table: 
y ͲǤͳ͹ ͲǤʹ͸ ͲǤʹͺ ͲǤʹ͵ ͲǤʹ͹ ͲǤʹͶ 
y�  ͲǤͳ͹Ͳʹ ͲǤʹͷͺ͸ ͲǤʹ͹ͺ͸ ͲǤʹ͵͵ͳ ͲǤʹ͹͵Ͳ ͲǤʹ͵͸ͳ 
   The correlation coefficient between the observed and 
predicted values is 0.9976R   calculated in MATLAB as 
follows:M=corrcoef(y, yhat);R=M(1,2). 

With RMSE = 0.0025 calculated in MATLAB by 
rmse=sqrt(mse(y-yhat)) . 

    Before closing this section,  a summary of  Saffaripour  et 
al(2013) is mentioned  below: 

The purpose of this investigation is to develop statistical 
models to estimate the mean daily global solar radiation 
flux, H, using multiple linear regression models. 

    The mean daily global solar radiation flux is influenced by 
astronomical, climatological, geographical, geometrical, 
meteorological, and physical parameters. This paper deals with 
the study of the effects of influencing  parameters on the mean 
daily global solar radiation flux. 

   Saffaripour  et al(2013) used  multiple linear regression of  
several parameters  in different combinations.  The models gave 
many different correlations to estimate the global solar radiation 
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fluxes.  For example one of  the linear regression models they 
developed was the following relationship: 

0

max (max)

3277.15

24.34 64.78 104.25 14.64

� 17082.9 619.68sin 0.59 

   

   

h dp

n
N

R T T P

H H

where 

�H Predicted value for the mean daily global solar radiation flux 

  the solar declination angle 

0H The extraterrestrial solar radiation flux 

n Hours of measured sunshine 

N the maximum possible sunshine hours from sunrise to sunset 

n/N sunshine duration ratio 

hR mean daily relative humidity 

maxT mean daily maximum air temperature 

Tdp(max) mean daily maximum dew point temperature 
P mean daily atmospheric pressure 

The following table shows the  value for the mean daily 
global solar radiation flux predicted from the  above model(ܪ෡) 
and the actual mean values (ܪഥ). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
 ഥ ͵ͷͺ͵ Ͷ͸Ͳʹ ͷ͵ͷͺ ͸Ͷ͹͵ ͹Ͷͻͳ ͺͳͻʹ ͹ͻͷ͸ ͹͸ͷ͸ ͸ͺʹ͹ ͷͶͶͲ ͶͲͷͲ ͵Ͷʹͳܪ
 ෡ ͵͸͵Ͳ Ͷͺͳ͵ ͷʹ͸͹ ͸Ͷͷ͹ ͹Ͷͺͷ ͺʹͷ͹ ͹ͻͻͻ ͹ͷͳͳ ͸ͺʹ͵ ͷ͸ͳͳ ͵ͻͲ͹ ͵͵Ͳͺܪ
Saffaripour  et al(2013) calculated the correlation coefficient 
related  to each of the models they  created and carried a t-test to 
choose the appropriate model(s). 

The above model could be used to predict daily global solar 
radiation flux(H) from  atmospheric pressure, air temperature, etc� when 
the expensive instrument which is used to measure H is not available.  
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Classical time  series forecasting methods 

This section introduces some models that are used to predict 
the future from past  data in the form of time series. Some of the 
models that  are used for time series analysis are: 

Arithmetic average, simple moving average(MA),weighted 
moving average, exponential smoothing(single, double, triple), 
regression, time series decomposition. Decomposition method  
that splits a time series into several components  is  suitable for a 
set of, time series  containing seasonal variation.  The 
application of some methods for time  series analysis have been 
shown in Table 6-3   with the help of  scatter plots. 

Table  6.3  Application  of forecasting methods(Dilworth,1989 page 131) 
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͸-͹����������������������(SMA)  
 Moving average method in its simplest form calculates  the forecast 

for the coming next period by adding up  the latest �N� period's 
observed data and dividing the sum by N as follows: 

1

1�

t N

i
i t

t

y
y

N

 


 


 (6-14 ) 

where  

1� ty   is the forecast for Period "t+1" and 

iy    is the ith observed value" 

For example if  the data for the past five periods are 
[5.5 5.0 4.7 4.8 4.6]y  ,  The forecast for  Period 6 according 

to SMA would be: 

6

4.8 4.7� 4.7.
3

y
  

   

If there is no considerable trend or no considerable seasonal 
variation, SMA gives an appropriate result.  If the N is small 
random variations affects forecast.  Large N smoothes random 
variations 

The larger the value of N (period of moving average), 
the smaller is the effect of random variation and a 
higher smoothing effect. The value of N depends upon the speed 
at which the pattern of demand changes. If the The pattern is not 
stable, a small value of N should be selected  ( Telsang 1,1998 
page 526).  If the variation of   the demand over time is 
considerable choose a small N (e.g. 3,4,5) ; if it is small choose 
ͳʹ ൑ ܰ ൑ ͳͺ( Hajji,2012 page 173). 

                                                           

1 Telsang, M. T , 1998, Industrial Eng;g and Production Manag,  S Chand 
And  Co. Ltd 
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To find the appropriate N for a given case, a short computer 
code might be prepared to find the N with minimum error. 
Needless to say that finding an appropriate N for moving 
average( MA) method does not imply that MA is the most 
suitable method.  As an illustration consider the following  20-
period time series: 

1.5563    0.8976    0.7482    0.7160    0.3130    0.3617    0.1139    0.1139   -0.2218   -0.1549  

0  0     -0.0969   -0.2218   -0.3979   -0.1549   -0.2218   -0.3979     -0.5229      -0.0458 

To find  the appropriate N for using MA method, a  simple 
computer code gives RMSE for several  periods of moving 
range method (N) as follows: 

Table 6-4 RMSE for several N 

RMSE N RMSE N 
ͲǤͳͲͻͷ ͻ ͲǤͳͲ͹͸ ͳ 
ͲǤͲͻ͸ʹ ͳͲ ͲǤ͵ͳ͸͹ ʹ 
ͲǤͲ͹͵ʹ ͳͳ ͲǤʹ͹Ͳ͵ ͵ 
ͲǤͲͶͶͶ ͳʹ ͲǤʹʹ͹ͳ Ͷ 
ͲǤͲʹ͸Ͳ ͳ͵ ͲǤͳͻͲͲ ͷ 

ͲǤͲͲͺʹ ͳͶ ͲǤͳͷͻ͹ ͸ 
ͲǤͲͳͳ͸ ͳͷ ͲǤͳ͵͸ͺ ͹ 
ͲǤͲʹ͹͵ ͳ͸ ͲǤͳʹ͵ͳ ͺ 

Table 6-4 suggests to choose N=14.   Using this N  the 
predicted value for the following  observed value 

17 18 19 200.2218 0.3979 0.5229 0.0458y y y y       

Are: 

17 18 19 20� � � �0.2582 0.2582 0.2582 0.2582y y y y        ,
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͸-ͺ������ϐ������������������� 

In modified moving range  method, The value for Period K 
from now �( )t ky  could be forecasted using the following

relationship: 
� �t k ty y kb    (6-15) 

Where 

�������)1(

12
2 


NN
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b

����N

y
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t
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
 1

��������)1(

6�



NN

s
Ay t t

 

t t-1 t-2 t-3 t-N+1

t t-1 t-N+3 t-N+1

N-1 N-3 N-5 N-7 N-(2N-1)
s= y + y + y + y +...+ y =

2 2 2 2 2
N-1 N-3 N-3 N-1

y + y +...- y - y
2 2 2 2

Note that in fact ܣ௧ is the forecast for Period t+1 dy simple 
moving Average(MA) method. 

The total sum of the forecasted values for Periods  t+1�
through�t+L�� is given by: 

forecasts sum for 
Periods  t+1�through�t+L 

( 1)�
2t

L L b
Ly

  ;ϲ-ϭϲͿ 

Example  6-3 

The actual demands for January through  June  are given in 
the following table: 

Jun May Apr Mar Feb Jan Period� ( )t  

͹Ͳ ͹ͷ ͸Ͷ ͺͲ ͷͲ ͻͲ demand 

Find the forecasts for July and August using 6- period MA 
technique and also calculate the total  sum of the forecasted 
values for Periods July �through�September. 
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Solution 

77 6 6 6

6� � �
( 1)

s
y y b y A

N N
    


 

(6 1)(70) / 2 (6 3)(75) / 2 (6 5)(64) / 2

(6 7)(80) / 2 (6 9)(5) / 2 (6 11)(90) / 2 20.5

s      
      

 

6 2

12(20.5)
(90 50 80 64 75 70) / 6 71.5 1.17

6(6 1)
A b        



�������
6 7 6

6(20.5)� � �y =71.5+ =74.36,y' =y +b=74.36+1.17=75.53
6(7)

��� ,��� 

�
70.7617.1236.742�'� 68  byy

 

Total  sum of forecasts for Periods July �through��� September 

6

3(3 1)�3 1.17 230.11
2

y
   

 

͸-ͻ������������������������� 

In simple moving average equal weights were assigned  to all 
N  periods; However some- times it is required  to assign 
heavier weighting  to  more  recent data  points .  This causes the 
more current data  to have  heavier effect on the forecast value 
than the older data.  If there is  a trend  in data,  to choose 
between the weighted moving  average(MA) and simple MA, 
choose the weighted MA.  

Weighted moving average(WMA) formula 

Mathematically in WMA  method the forecast is computed 
from either of the following formula, depending  on the sum of 

the assigned weights( tw 's): 

1 1 1 1 1� ... , 1. (6 17)t t t t t t N t Ny w y w y w y w           

 1
1

1

� (6 18)
i i

i t k
t

i
i t k

N

N

w y
y

w

  


  

 



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Example  6-3 
Suppose the demand for a product from period 1 to 5 are 8, 

12, 14, 18, 22 find the forecast for period 6 assigning the weight 
0.8 for  Period 5 and 0.2 for Period 4.  

Solution 
From Eq.    6-17: 6�y =0.8×22+0.2×18=21.2  

͸-ͳͲ����������������������� 

    Exponential smoothing which is sometimes called 
Exponentially weighted moving average, developed by Holt(1957), is 
actually a weighted MA with a fairly easy to use formula. 
Practically it uses very little of the past data record. Holt's 
primary approach did not  consider trend and seasonality; 
however , later he introduced trend in the model.  Winters 
(1960) extended the model for reasonability. 

The basic exponential smoothing uses the following formula: 

(6-19)    tttttt yáá y yyáyy �1��� 1 � �

Where 

1�ty 
New forecast 

� ty Last period's forecast 

ty Last period's actual demand 

á A smoothing constant that lies between 0 and 1 often 
ͲǤͳ ൏ ߙ ൏ ͲǤͷ and in practice is  usually chosen equal to 0.1, 
0.3 or 0.5(Winston, 1994, page1262) 

More details about the  above formula could be found in 
references such as Johnson & Montgomeri(1974) 
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The appropriate Ƚ for a particular case could be found by a 
computer code which minimizes a forecast error measure like 
MAD or RSME 

As said before  exponential smoothing is  in essence a 
weighted MA.  As we move backward  the weighting and 
importance of the data points decreases depending on the value 
of ߙ. 

To forecast the next period demand(t+!), the use of 
exponential smoothing , requires an initial forecast for current 
Period t.   A common initial forecast is the arithmetic  average 
of  the past data up to the current Period (Housyar,1985).  If  we 
have a largish record  of data the initial forecast could be 

replaced by  1

1
1

0
� n

i n i
y n ii

y  

 
  

 .  The reason for this will be 

shown soon. 

Example  6-4 

Using the data in the following table, find  the forecast for 
Period 7 with simple exponential smoothing.    

͸ ͷ Ͷ ͵ ʹ ͳ t 
͵Ͷ ͵͵ ͵ͻ ͵Ͳ ͵ʹ ͵Ͳ y 

Solution 

 7 6 6� �0.1 1 0.1y  y y   33
6

30...34�6 


y �

 7 6 6� �0.1 1 0.1 33.1y  y y   

 Notice that this was an exercise. The utilized method is not 
necessarily the best method for the case . 

   As the following calculations shows, in exponential 
smoothing the weightings assigned to the data points decreases 
as the data get older 
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 t 1 t t t t 1 t 1

2
t t 1 t 1

� � �y á y 1 á y á y (1 á)[áy (1 á)y ]

�áy á(1 á)y (1 á) y

  

 

       

    

Then 

��

 

2 k
t 1 t t 1 t 2 t k

t 1 t
1 1

i t 1
i t

t 1 t i 1
i 0

�y á y á(1 á)y á(1 á) y ... á(1 á) y

�... á(1 á) y (1 á) y

� �y á 1 á y (1 á) y

   





 




       

     

   

If the number terms is largish(ืݐ �), t
1�(1 á) y zero   and

then if ืݐ �ǡ  
i t 1

i

t 1 t i
i 0

�y 1 y  


 



   .The sum of the 

coefficients in the first part  approaches one: 

10 1 2(1 ) (1 ) (1 ) ... [ ] 1
1 (1 )

      


       
 

The above calculations shows if we  proceed  further 
backward as much as possible  we will notice that the  forecast 
resulted from exponential smoothing is  a weighted average 
from all data.  The weightings decrease  exponentially(Fig. 6-8). 
Furthermore  if ݊ื � i.e. we have a lot of information as  past 

data ,then  
i

i

n 1 n i

i 0

n 1

�y 1 y
 



 

    could be used as the intitial 

forecast for using Eqs. 6-18 & 6-19. 
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Fig. 6-8 The weightings in a simple exponential Smoothing with ߙ ൌ ͲǤʹͷǤ 

   The calculation in Table 6-5 shows   small Į assingns 
greater weighting and importance to more recent data and less 
importance to older data. 

������͸-ͷ�������������������������ficient  calculated for   some  Ƚ 
...... 10(1 )   

� 2(1 )   
(1 )   Ƚ Ƚ 

� ͲǤͲ͵ͷ � ͲǤͲͺͳ ͲǤͲͻ ͲǤͳ 1.0  
 ͲǤͲʹͳͷ  ͲǤͳʹͺ ͲǤͳ͸ ͲǤʹ 0.2   
� ͲǤͲͲͻ � ͲǤͳͶ͹ Ͳʹͳ ͲǤ͵ 3.0  
 ͲǤͲͲͲͶ  ͲǤͳʹͷ ͲǤʹͷ ͲǤͷ 0.5   

Smaller  Ƚ gives  greater values to older  data points than greater 
 does ߙ
Example  6-5 

The second column from the left in Table 6-6'  shows the 
observed values for 24 periods. Calculate  the forecast for the 
periods using  

Exponential smoothing with smoothing parameters 
0.1 and 0.2   .  Which parameter do you prefer 
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Solution( Dilworth.1989 page111) 
Columns 3 and  5 of Table 6-6'   show the forecast using simple 
exponential smoothing method with 0.1  and 0.2 
respectively. 
�������͸-͸̵�	���������������������͸-ͷ�������������������
Smoothing withߙ ൌ ͲǤͳƬͲǤʹ�� 

squared 
error

2�( )t ty y
 

Forecast 
( � , 0.1ty   ) 

 squared error
2�( )t ty y  

 Forecast 
( � , 0.1ty   ) 

Observe
d (ݕ௧) 

 
t 

B ͳͻ͸ǤʹͲͲͲ�� B ͳͻ͸ǤʹͲͲͲ�� 
 

ʹͳͲ ͳ 
B ͳͻͺǤͻ͸ͲͲ B ͳͻ͹ǤͷͺͲͲ ʹͲ͸ ʹ 
B ʹͲͲǤ͵͸ͺͲ B ͳͻͺǤͶʹʹͲ ͳͺͳ ͵ B ͳͻ͸ǤͶͻͶͶ B ͳͻ͸Ǥ͸͹ͻͺ ʹͲͳ Ͷ 
B ͳͻ͹Ǥ͵ͻͷͷ B ͳͻ͹Ǥͳͳͳͺ ͳͻʹ ͷ ͳͲ͸.Ͷ ͳͻ͸Ǥ͵ͳ͸Ͷ ͳͳʹǤ͵͹ʹ͹ ͳͻ͸Ǥ͸ͲͲ͸ ͳͺ͸ ͸ 
ͳͺ.ͳ ͳͻͶǤʹͷ͵ͳ ͵ͲǤ͸ͻͺʹ ͳͻͷǤͷͶͲ͸ ͳͻͲ ͹ ʹͳ͵.ͳ ͳͻ͵ǤͶͲʹͷ ͳ͸ͻǤ͵ͷͳʹ ͳͻͶǤͻͺ͸ͷ ʹͲͺ ͺ 
ͶͲ ͳͻ͸Ǥ͵ʹʹͲ ͵ͻǤͷ͵͹͹ ͳͻ͸Ǥʹͺ͹ͻ ͳͻͲ ͻ 
͸ʹʹ.ͳ ͳͻͷǤͲͷ͹͸ ͷͻʹǤͶ͹ͻͶ ͳͻͷǤ͸ͷͻͳ ʹʹͲ ͳͲ ͷʹ͸.ͻ ʹͲͲǤͲͶ͸ͳ ͸ʹͲǤ͵Ͷͺ͹ ͳͻͺǤͲͻ͵ʹ ʹʹ͵ ͳͳ 
ͺ͹ͺ.͵ ʹͲͶǤ͸͵͸ͻ ͸ͷͶǤͷ͵ͷͻ ʹͲͲǤͷͺ͵ͻ ͳ͹ͷ ͳʹ ͵ͻ.͸ ͳͻͺǤ͹Ͳͻͷ ͶͺǤ͸Ͷ͵͹ ͳͻͺǤͲʹͷͷ ʹͲͷ ͳ͵ 
Ͷͺʹ.͸ ͳͻͻǤͻ͸͹͸ ͶʹͻǤͶ͵ͺ͸ ͳͻͺǤ͹ʹʹͻ ͳ͹ͺ ͳͶ 
͵͵ͻ.ͷ ͳͻͷǤͷ͹Ͷͳ ͵ͲͳǤͲͲͳ͹ ͳͻ͸Ǥ͸ͷͲ͸ ʹͳͶ ͳͷ ͵͵͵.Ͷ ͳͻͻǤʹͷͻ͵ ͵ͲʹǤʹͷͻͳ ͳͻͺǤ͵ͺͷ͸ ͳͺͳ ͳ͸ 
͹Ͷ.ͳ ͳͻͷǤ͸Ͳ͹Ͷ ͻ͵ǤͲ͸Ͷ͸ ͳͻ͸Ǥ͸Ͷ͹Ͳ ͳͺ͹ ͳ͹ ͷ͵Ͷ.͵ ͳͻ͵Ǥͺͺͷͻ ͶͷͶǤͶͶͶ͵ ͳͻͷǤ͸ͺʹ͵ ʹͳ͹ ͳͺ 
ʹͳͲ.ͷ ͳͻͺǤͷͲͺ͹ ͳͻͲǤͺʹͻͶ ͳͻ͹ǤͺͳͶͳ ͳͺͶ ͳͻ ʹ ͳͻͷǤ͸Ͳ͹Ͳ ͲǤͳͺ͹ʹ ͳͻ͸ǤͶ͵ʹ͹ ͳͻ͸ ʹͲ 
͵ͻ.ͻ ͳͻͷǤ͸ͺͷ͸ ͵ͳǤͶ͹ͺͺ ͳͻ͸Ǥ͵ͺͻͶ ʹͲʹ ʹͳ 
͹ͺͳ.ͳ ͳͻ͸ǤͻͶͺͷ ͹ͺͳǤʹ͵Ͳͷ ͳͻ͸ǤͻͷͲͷ ͳ͸ͻ ʹʹ ͳͲͲͳ.ʹ ͳͻͳǤ͵ͷͺͺ ͺ͵ʹǤͲͳͲͻ ͳͻͶǤͳͷͷͶ ʹʹ͵ ʹ͵ 
ͷͻ.ͳ ͳͻ͹Ǥ͸ͺ͹Ͳ ͶͻǤͷ͸Ͳʹ ͳͻ͹ǤͲ͵ͻͻ ͳͻͲ ʹͶ 
RMSE=ͳͺ
Ǥʹͳ 

 RMSE= ͳ͹Ǥ͵͹  
 A ��������������������������������������������������ൌͳͻ͸Ǥʹ 
  B�omitted to reduce the effect of the initial mean 

RMSE for ߙ ൌ ͲǤͳis  17. 37 and RMSE for ߙ ൌ ͲǤʹ is 18.21. 

Therefore  ߙ ൌ ͲǤͳ is preferable for this  case. 
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6-10-1 Relation between simple moving average and 
simple exponential smoothing 

As you have noticed, in the above methods, the user has to 
specify a parameter: In simple moving aver, the number of 
periods(N) must be set and in simple exponential smoothing , 
the  smoothing parameter(હሻ.  In both cases the parameter  
determine the importance of fresh information over older 
information(Shemueli, et al 2010, page 352).  It has been proved 
that the following relationship exits between N and હ( Brown, 
1962): 

2
,N



          ሺ͸-ʹͳሻ 

In other words,, an N-period   MA method gives results 
approximately similar to those  of a simple exponential 
smoothing with 

(6-22) 2á ,
1N




��

͸-ͳͳ������������������������������� 

Simple  Exponential Smoothing  cannot  forecast accurately 
when there is trend or seasonal  variation in the data   Double 
Exponential Smoothing extends Simple  Exponential Smoothing 
to  support analyzing data that shows a trend   by adding a 
second equation  with a second parameter to the procedure.  

If the data involves a linear trend, there would be a time 

lag(LT) equal to �� ൌ ଵି஑
஑   between the  forecast resulted from  

Simple Exponential Smoothing(SES) and the corresponding 
observed data. Double  Exponential Smoothing  corrects  this  
lag by forecasting for the next period using the following 
formula: 
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 (6-23) ttt TAy  ''� 1��

Where 

'tA 1
t tA T





 

tA t t-1á y (1 á)A   The initial forecast using 
SES i.e. 1�t tA y 

tT

1 The correction value to 

compensate for the trend 

tT 1 1( )t t tT â  T T     11t tâ  T ( â)T   

tT 1t tA A  
� ߚ ൑ Ⱦ ൑ ͳ 

To forecast using double exponential smoothing, initial 
values 0 0( , )A T are needed.  A suitable value for A0 is the 

average of the past data.  And a suitable value for 0T is the 

average of the differences between 2 successive observed 
values. 

Note that� ,  which are smoothing coefficients between 0
and 1are not necessarily equal. 

If the trend continues, the forecast for k  periods from now in 
this method is: 

� ' ' ,t k t ty A kT     (6-24) 

And the sum of corrected forecasts  for L period from now is: 

1

( )( 1)� ' '
2

L

t i t t
i

L L
y L A T




    (6-25) 

If the trend  does not continues, the forecast for k  periods 
from now in this method is: 

� ' ' .t k ty A          (6-26) 
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Example  6-6     
      A factory uses exponential smoothing with trend adjustment 
.  From past data we only know that .  0 050 ton 1 tonA T   

If the actual demand for the current period is 1 55 tony  and 

   0.1âá  : 
What is the forecast for the next period(t=2)? 
Fid the sum of forecast for the next coming 2 periods? 
 

Solution 

a) 

� ' ' ,y A T  1 11 1  

1 1 0 1 0T =0.1 T +(1-0.1)T =0.1T +0.9T  

1 1 0 1T =A -A =A -50  

1 1 0 1 1A =á y +(1-á)A =0.1×55+0.9×50=50.5==>T =0.5  T  =0.95

    1 1 1

1-á 1-0.1
A' =A + T =50.5+ ×.95=59.5

á 0.1
 

1 12�y' =A' +T =59.5+0.95=60.45 

b) 
The sum of the forecasts is : 

L

t+i t t 1 1
i=1

(L)(L+1) (2)(2+1)�y' =L A' + T =2A' + T
2 2

=2×59.5+3×.95=120.95   or

  

2 3 1 1 1 1 .� �y' +y' =(A' +T )+(A' +2T )=120 95 
Example  6-7 

A factory uses exponential smoothing corrected for trend  
with 15.0  . The actual demand for the current month is 
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40ty  .  Find the forecast for the next month and Month 6. 

Data for estimating 0 0,A T  : 

The monthly demands in the previous year are as follows: 
month 1 2 3 4 5 6 7 8 9 10 11 12 
demand 4 6 8 10 14 18 20 22 24 28 31 34 
Solution  

011 )1(y áA A

0A  ( forecast for the current period with simple exponential 

smoothing)  is  taken  the actual demand of the last month of the 

previous year plus 0T : 034 36.730A T  

The average of the  trends of all eleven "2 successive 
periods" in the last year:   
(34- 31)+( 31- 28 )+( 28 - 24 )+...- 6 )+( 6 -4) 34-4

= =2.73
11 11

 

Note that for calculating 0T m in practice the actual demand  of 

the first and the last month was enough. 
34 2.73 36.730A   

0.15 40 (1 0.15) 36.73 37.221A      

1 1 0 1 0 0T =0.15 T +(1-0.15)T =0.15 (A -A )+(1-0.15)T

=0.15×(37.22-36.73)+(1-0.15)×2.73 =2.39, 

1 1 1
1-0.15A' =A + ×T =37.22+5.67×2.39=50.77,
0.15

' '
72 1 1 1 1 .� �y =A' +1T =53.16, y =A' +6T =65.11

Example  6-8 
The demand for a product during 24 periods are given in the 

second column of Table 6-7. Using double exponential 
smoothing calculate the forecast for Periods  1 through 24.
á 0.1, 0.2 

0
T  � initial Trend  � 0 � ,� �

0
A  the mean pf the  actual values before

Period 1� 196.2
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Solution  
The calculations are shown in Table 6-7. The calculations were 

done  by  the following  MATLAB code. 
�����α�����ȋ̵��������������Ǥ�Ǥ�ͲǤͳ�����̵ȌǢ beta=input('In�����������Ǥ�Ǥ�ͲǤʹ�����̵ȌǢ �Ͳα�����ȋ̵��������Ͳ���Ǥ�Ǥͳͻ͸Ǥʹ�����̵ȌǢ ����Ͳα�����ȋ̵�����������Ͳ��Ǥ�Ǥ�Ͳ���̵ȌǢ �α�����ȋ̵��������������������������Ǥ�Ǥ�ʹͶ����̵ȌǢ Ψ������αǤͳǢ����αǤʹǢ�Ͳαͳͻ͸ǤʹǢ����ͲαͲǢ �α����ȋ�ǡͺȌǢ �ȋǣǡͳȌαȏȋͳǣ�ȌȐ̵Ǣ �ȋǣǡʹȌα�����ȋ̵���������������������es in brackets[ ]''    '); Ψ��ȋǣǡʹȌαȏʹͳͲ�ʹͲ͸�ͳͺͳ�ʹͲͳ�ͳͻʹ�ͳͺ͸�ͳͻͲ�ʹͲͺ�ͳͻͲ�ʹʹͲ�ʹʹ͵  ͳ͹ͷ�ʹͲͷ�ͳ͹ͺ�ʹͳͶ�ͳͺͳ�ͳͺ͹�ʹͳ͹�ͳͺͶ�ͳͻ͸�ʹͲʹ�ͳ͸ͻ�ʹʹ͵�ͳͻͲȐ̵Ǣ �ȋͳǡ͵Ȍα�����ȗ�ȋͳǡʹȌΪȋͳ-�����Ȍȗ�ͲǢ �����αʹǣ�     �ȋ�ǡ͵Ȍα�����ȗ�ȋ�ǡʹȌΪȋͳ-alpha)*A(i-ͳǡ͵ȌǢ��� �ȋͳǡͶȌα�ȋͳǡ͵Ȍ-�ͲǢ �����αʹǣ�     �ȋ�ǡͶȌα�ȋ�ǡ͵Ȍ-A(i-ͳǡ͵ȌǢ end �ȋͳǡͷȌα����ȗ�ȋͳǡͶȌΪȋͳ-����Ȍȗ����ͲǢ �����αʹǣ� Ψ������ȋ�ǡͷȌα�����ȗ�ȋ�ǡͶȌΪȋͳ-alpha)*A(i-ͳǡͷȌǢ      �ȋ�ǡͷȌαȋͳ-beta)*A(i-ͳǡͷȌΪ����ȗ�ȋ�ǡͶȌǢ end  �ȋǣǡ͸Ȍαȋͳ-�����Ȍȗ��ȋǣǡͷȌȀ�����Ǣ  �ȋǣǡ͹Ȍα�ȋǣǡ͵ȌΪ�ȋǣǡ͸ȌǢ  �����αʹǣ�     �ȋ�ǡͺȌα�ȋ�-ͳǡ͹Ȍ+A(i-ͳǡͷȌǢ��� 

Table 6-7  Illustration of the calculations for forecasting with 
double exponential smoothing.   

Forecast 
1

�
t

t t

y

A T


 

   
1

t

t t

A

A T



 




 

1
t

T





 1
(1 )

t t

t

T

T

T 




 



 

T =t

A -At t-1  -1
(1 )

t t

t

A y

A







 

 

ty  
t 
 

------- 200.0640 2.4840 0.2760 1.3800 197.5800 210 1 
200.34 201.9248 3.5028 0.3892 0.8420 198.4220 206 2 
202.31 196.3461 -0.3337 -0.0371 -1.7422 196.6798 181 3 
196.31 197.6225 0.5107 0.0567 0.4320 197.1118 201 4 
197.68 196.0890 -0.5116 -0.0568 -0.5112 196.6006 192 5 
196.03 193.2232 -2.3174 -0.2575 -1.0601 195.5406 186 6 
192.97 192.1353 -2.8512 -0.3168 -0.5541 194.9865 190 7 
191.82 196.3493 0.0615 0.0068 1.3013 196.2879 208 8 
196.36 194.5764 -1.0827 -0.1203 0.6288 195.6591 190 9 
194.46 201.6084 3.5152 0.3906 2.4341 198.0932 220 10 

202.00 207.8793 7.2954 0.8106 2.4907 200.5839 223 11 

208.69 199.2567 1.2312 0.1368 -2.5584 198.0255 175 12 

199.39 200.9633 2.2404 0.2489 0.6975 198.7229 205 13 

201.21 194.7128 -1.9378 -0.2153 -2.0723 196.6506 178 14 
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(1

t t
A y

 ty  
t 
 

198.3856214 15 

196.6470181 16 

195.6823187 17 

197.8141217 18 

196.4327184 19 

196.3894196 20 

196.9505202 21 

194.1554169 22 

197.0399223 23 

196.3359190 24 

  25 

End of example

͸-ͳʹ�	orecasting technique
having seasonal variations

There  might be 
Seasonal variation
variations; the first 
systems' inherent property(Houshyar,�).  

Consider a time series whose scat
11.  As the figure shows the
in the series. 

In such cases 
linear regression
developed to deal with these cases e.g. ratio
winter�s method.  The latter is described below.
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1

t

t t

A

A T



 




 

1
t

T





 1
(1 )

t t

t

T

T

T 




 



 

T =t

A -At t-1  -1
1 )

t t

t

A y

A







 

 194.50199.9582 1.5726 0.1747 1.7349 198.3856 
200.13194.7757 -1.8713 -0.2079 -1.7386 196.6470 
194.57192.4488 -3.2335 -0.3593 -0.9647 195.6823 
192.09199.0645 1.2504 0.1389 2.1318 197.8141 
199.20194.9465 -1.4862 -0.1651 -1.3814 196.4327 
194.78195.1225 -1.2669 -0.1408 -0.0433 196.3894 
194.98196.9469 -0.0036 -0.0004 0.5611 196.9505 
196.95189.1215 -5.0339 -0.5593 -2.7950 194.1554 
188.56198.2047 1.1649 0.1294 2.8845 197.0399 
198.33196.0006 -0.3353 -0.0373 -0.7040 196.3359 
195.96    

xample  

orecasting techniques for time series 
having seasonal variations 

There  might be 3 kind of variations in a time series: 
Seasonal variations, cyclic variations and irregular (random) 

the first 2 kinds are forecast-able  and the last kind is 
systems' inherent property(Houshyar,�).   

Consider a time series whose scatter plot is similar to Fig
As the figure shows there are seasonal or cyclic variations 

in the series.  

 
Fig. 6.11 A time series with seasonal variations

cases the use of the�previous methods� such as pure 
linear regression� do not answer.  Some methods have been 
developed to deal with these cases e.g. ratio- trend analysis and 
winter�s method.  The latter is described below. 

                                  350 

Forecast 
1

�
t

t t

y

A T


 

   
194.50 
200.13 
194.57 
192.09 
199.20 
194.78 
194.98 
196.95 
188.56 
198.33 
195.96 

s for time series 

and irregular (random) 
t kind is 

milar to Fig. 6-
variations 

time series with seasonal variations 
such as pure 

ve been 
trend analysis and 



351                                    Classical topics   in inventory control and Planning 

6-12-1 Ratio-to-trend technique for seasonal 
adjustment 

The steps of a Ratio-to-trend method to forecast the future 
based on a time series that has shown trend and seasonal 
variations are as follows( based on Housyar,1985  ): 

Step 1:  calculate the forecasts �( ' )ty s for all periods of the 

time series by a common method such a regression or moving 
average. 

Step 2: calculate the ratio of the observed value ( )ty to the 

predicted value �( )ty for each period calculated in step 1: 

(6-27) nm1,...,    t
�


t

t
t y

y
R��

Where 

tR  The ratio of actual value to the corresponding 
predicted value(for period t) 

m No of cycles in a time horizon say in a year 
n No of observed values  in each  cycle 

Step 3:There are similar(= of the same name) seasons in the time 
series. For each of these seasons a separate ܴ௧  has been 
computed using Eq. 6-27.  Calculate the mean of  these ܴ௧ 's 
calculated for similar seasons : 

N1,...,j        
... )1(2 


 

m

RRRR
R NmjNjNjj

j  (1-27-1) 
Where N is the number of periods in the iterative cycle e.g. 2 
half-year in a year 4 seasons in a year. 
call ఫܴഥ   the index of Season j. 

Step 4  The  forecast with seasonal adjustment  for period t is 
given by: 

'� � (6 27 2)t j ty R y   
 

Example  6-9  
A manufacture' sale during the past 3 years has been is  

3.5000    4.0000    6.0000    8.0000    4.0000    5.0000     
7.0000    9.0000    4.5000    7.5000    9.0000    3.5000 
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  Apply ratio-to-trend method to forecast the sale. 
Solution  
As the following scatter plot shows there is  seasonal variation in the 
sale data. Therefore the above method might be appropriate.  

Step 1  If we use simple regression with period(t) as the dependent 
variable to fore cast the sale volume we would obtain: 

� 4.6667 0.1923ty t  . Column 5 of Table 6-8 shows the primary

forecasts �( )ty for all the 12 periods using this relationship 

Step 2  Column 6 shows the ratio of the observed value ( )ty to the 

predicted value �( )ty for each period . The scatter plot shows every 4 

periods, we have an iterative cycle ; therefore 4N   ����Ͷ�
seasonal indices have to be calculated in order to 
correct ty  for seasonal adjustment: 

1 2

3 4

0.7203 0.7107 0.7034
R 0.7115, R  0.9297,

3
R 1.2118, R 1.1413

   

 
  

 �����͵  The corrected forecast( � iy ) for  period i  is 
obtained from � iy ����������ͷ multiplied by the 
corresponding seasonal index 1 2 3 4( , , , )R R R R .  The result 
�������������������͹Ǥ����������������������� � iy   and iy  
is rmse=sqrt(mse(y-y'))ൌͳǤ͸ 
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Using MATLAB command corrcoef(y,y') gives the correlation 
coefficient  between the � iy   and iy is ͲǤ͸ʹǤͳ 
The forecast for Period 13 is calculated as follows: 

13� (4.6667+0.1923 13) 0.7115  5.1y     . 

Table 6-8   A time series data and its forecast by Ratio-to- trend method 

�ty   
�( )ty R

tR
�ty With

Regression 
tyt Season Year 

3.46 0.7203 4.8590 3.5 1 Spring 

one 4.70 0.7919 5.0513 4.0 2 Summer 
6.35 1.1443 5.2436 6.0 3 Fall 
6.20 1.4717 5.4359 8.0 4 Winter 
4.00 0.7107 5.6282 4.0 5 Spring Two 

5.82 0.8590 5.8205 5.0 6 Summer 
7.29 1.1642 6.0128 7.0 7 Fall 
7.08 1.4504 6.2051 9.0 8 Winter 
4.55 0.7034 6.3974 4.5 9 Spring Three 

6.13 1.1381 6.5897 7.5 10 Summer 
8.22 1.3270 6.7820 9.0 11 Fall 
7.96 0.5018 6.9743 3.5 12 Winter 

R 0.6210RMSE=  1.60   
      The time series data in this problem contain both trend ad 

seasonal variation.  A method titled Winter's method  might 

result in better forecasts for these kind of problems 
It  worth mentioning that artificial intelligence techniques 

such as artificial neural networks(ANNs) might be appropriate 
for  forecasting problems. 

 Some artificial neural networks(ANNs) that are based 
on simple mathematical models of the brain could be used as  
forecasting methods. They allow complex nonlinear 
relationships between the response variable and its predictors 
(Hyndman &Athanasopoulos,2018,p333).The  last exercise of 
this chapter is on ANNs. 
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͸-ͳ͵ Verifying and controlling forecasters using 
control charts 

By: Massoud  Hajghani, Hamid  Bazargan, 

A necessary first step after we have made  a forecast is to 
verify that it does indeed appear to represent the data and the 
chance system underlying the demand for the product in 
question. To do a good job of forecasting requires that we 
continually compare the forecast against the actual demand  and 
take action to revise the forecast when there is a statistically 
significant change in demand((Biegel, 1971, p51). 

In this section we would like to determine the validity of  the 
forecast values and the forecaster by appropriate statistical tools. 
To do this  

1. we could use statistical tests,

2. we could calculate RMSE between the actual and observed
values;  the less this value the better the forecasting method 

3. One could plot the observed values and the corresponding
forecasts  in an X-Y coordinate and fit a least-square-error line 
to them; the more the points closer to this line and  this line 
closer to the bisector of the first quarter, the better the forecast 
values(See the last example of this chapter), 

6-13-1 A control chart for forecast error 

As said before good job of forecasting requires  continual 
comparison of  the forecasts against the actual values. If there is 
evidence of  satisfactory forecaster ,  the forecaster is trusted 
unless the evidence no longer exist. When this  happens an 
appropriate forecasting technique has to replace the existing one. 
Control chart is a graph used to study how a process changes 
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over time; therefore an appropriate tool for continual monitoring 
is plotting control chart for forecast error.  Biegel(1971) 
introduces a control chart to monitor the forecast. Since the 
concept of moving range from statistics and quality control is 
used in this chart, the concept is reminded below: 

Definition of Moving Range(MR) 
Moving range denoted by MR, is dined here as follows: 

   1 1t t t tMR d d d d       (6-28) 

where 

td   The predicted value for Period t

td The actual value of Period t 

1td   The predicted value for Period t

1td   
The actual value of Period t.

An application of moving range here is to estimate the 
standard deviation of forecast error frm the following formula: 

ɐෝ ൌ ெோതതതതത
ௗమ �������������������(6-29)

where 

��തതതതത 
 

The predicted value for Period t defined as: 

�  (6 30)
1

MR
MR

k
 

  

Note that for k period k-1 

2d is a coefficient obtainable from statistical quality control 
textbooks such as Bazargan(2020).  Since the moving range here 
is defined as the difference of consecutive errors(n=2), the value 
of ݀ଶ is obtained equal to 1.128 from the books of the following 
MATLAB commands  
Ŷ ൌ ڮ ǢƉĚ�с�ŵĂŬĞĚŝƐƚ;ΖŶŽƌŵĂůΖ͕Ϭ͕ϭͿ͖ĨƵŶ�с�Λ;ǆͿ�;ϭ-;ϭ- 
cdf(pd,x)).^n-(cdf(pd,x) ) .^n); ĚϮ�с�ŝŶƚĞŐƌĂů;ĨƵŶ͕-inf,inf); 
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͸-ͳ͵-ͳ-ͳ Upper and lower limits of the control chart for 
forecast error 

The control chart used in quality control usually have a 
central line (CL)  and 2 limits: upper  control limit(UCL)and 
lower control limit (LCL).   

Since forecast error(e) is sometimes negative and sometimes 
positive, the  central line of this chart is set to zero(CL=E(e)=0). 
The limits are determined from the MR values calculated 
according to Eq.(6-28). It is advised to have at least 10 and 
preferably 20 MR values in determining the control 
limits(Biegel,1971 p52).  The upper control limit(UCL) and the 
lower control limit(LCL) of the control chart for forecast error 
are calculated from: 

e
2

e
2

MR MR
UCL=E(e)+3ó =0+3 =3 =2.66MR

d 1.128

CL=0

MR
LCL=E(e)-3ó =0-3 =-2.66MR

d
Assuming the error is normally distributed, it is expected to 

have 0.27% of the points plotted on the chart to fall out of the 
above  3-sigma limits.  In other words if we  plot 10000 points 
on the chart, 27 points  are expected to fall outside the limits; 
from 1000 points 3 points. Since our data are not that much if 
the forecasts are good no point is allowed to fall outside the 
limits.  Therefore if a point is out of control due to falling 
outside the limits or is out of control due to the  criteria or   tests 
described later, when verifying the forecaster we have to do one 
of the followings(Biegel, 1971 p52): 

 Discard some  data(those points from a different cause 
system) ;search for a new forecaster  

Needles to say that if a point is outside the limits , we have to 
investigate the cause and try to resolve the  problem. 
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If all points fall randomly inside the limits and form no 
special  pattern, we could rely with certainty upon the existing 
forecasting method. 

If points fall outside the limits we apparently do not have the 
correct forecasting equations and they should be revised accordingly. We can 
use the control chart  to tell us where the change occurred and  ca determine a 
forecasting equation from the data appropriate to the present cause system 

(Biegel,1971 p53) 

͸-ͳ͵-ͳ-ʹ Some criteria for out-of- control status 

As wells as the case mentioned above to declare an out of 
control status, there are some criteria or tests based on runs of 
points above or below the central line of the chart  

To mention the criteria, the control chart is divided into 3 
regions A, B and C above and below the central line as shown in 
Fig. 6-12. 

Fig. 6.12  Regions A, B and C in chart for forecast error 
(based on Biegel, 1971) 

Region A is within  e
2

MR±2ó =±2 =±1.77MR
d =1.128

 above and 

below the central line. 
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Region B is within e
2

MR±1ó =± =±0.86MR
d =1.128

 above and below 

the central line. 
Region C is the region above and below the central line. 

Two tests that check out-of-control status in a control chart for error 
are (Biegel,1971p54): 

1. Of  3 successive points, at least 2 points fall on the same side
of the central line in Region A 

2. Of 5 successive points, at least 4 points fall on the same side of
the central line in Region B. 

   Grant & Levenworth(1988) suggest the following tests to detect 
shifts in a universe parameter(here: forecast error) in  of applications 
control chart in manufacturing: 
There is suspicion that the process parameter has changed if (grant 
&Leavenworth ,1988 page 89): 

 Whenever in 7 successive points on the control chart, all are
on the same side of the central  line(a run of 7 points all above
or all below the central line).

 In 11 successive points on the control chart, at least 10  are on
the same side of the central  line.

 In 14 successive points on the control chart, at least 12  are on
the same side of the central line.

 In 17 successive points on the control chart, at least 14  are on
the same side of the central  line.

 In 20 successive points on the control chart, at least 16  are on
the same side of the central  line.

The sequences mentioned in each of these rules will occur as 
a matter of chance, with no change in the universe(here: error), 
more frequently  than will a point outside of 3-sigma  limits. 
For this  reason they provide  a less reliable  basis for hunting a 
trouble than does the occurrence of  a point outside of control 
limits(Grant& Leavenworth,1988 page89).   Those interested in 
the theoretical basis for the rules may refer to Chapter 6 of 
Grant and Leavenworth(1988). 
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6-13-2 Illustrations 

Below are  some illustrations showing how the control chart 
is  used for forecasts verification.  In the cases where some 
conditions of out-of-control appear, necessary actions have to be 
taken e.g. to modify the current forecast equations  by removing 
the data points that apparently are not from the same cause 
system(Biegel, 1971,page55).  The following symbles  are used 
in the examples: 

 period ݐ
d demand 
d' Forecast 
e error 
MR Moving  Range 
CL Central Line 
UCL Upper Control Limit 
LCL Lower Control  Limit 

Example  6-10   verifying constant forecasters 

 td 1191
d = = 99

12 12
   is used to  forecast the demand a time 

series of which is given in the following table 

period 1 2 3 4 5 6 7 8 9 10 11 12 
demand 90 111 99 89 87 84 104 102 95 114 103 113 

Use  a control chart to verify the constant forecaster. 

Solution  

e

117
 MR= =10.6, UCL=28.2  LCL=-28.2

11

UCL =2.66MR , CL=0, LCL =-2.66MRe

The  calculations  have been done in the following table and 
MR points have been plotted in Fig. 10-13.   
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period 
ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳͳ ͳʹ sum 

The chart indicates a stable cause
because no point is out of the control limits and none o

applies. 

Fig. 6.13 C

Example  6-

The  actual demand for the
been given in the following
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   1 1t t t t

M R

d d d d 



   

 

e

d d



 
 Forecast

( )d   dt  
 ͻ ͻͻ ͻͲ ʹͳ -ͳʹ ͻͻ ͳͳͳ ͳʹ Ͳ ͻͻ ͻͻ ͳͲ ͳͲ ͻͻ ͺͻ ʹ ͳʹ ͻͻ ͺ͹ ͵ ͳͷ ͻͻ ͺͶ ʹͲ -ͷ ͻͻ ͳͲͶ ʹ -͵ ͻͻ ͳͲʹ ͹ Ͷ ͻͻ ͻͷ ͳͻ -ͳͷ ͻͻ ͳͳͶ ͳͳ -Ͷ ͻͻ ͳͲ͵ ͳͲ -ͳͶ ͻͻ ͳͳ͵ ͳͳ͹ -͵ ͳͳͺͺ ͳͳͻͳ 

The chart indicates a stable cause(Biegel, 1971, page
point is out of the control limits and none of the tests

Control chart showing forecast error of Example 
(Biegel, 1971, p55) 

-11 Verifying linear forecasters 

The actual demand for the 12 periods of the last year have
been given in the following table. Forecasting was done by

 360 

1 1t t t td d d d   

page 55) 
f the tests 

ontrol chart showing forecast error of Example 6-10 

periods of the last year have 
table. Forecasting was done by 
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simple linear regression. The resulted function for forecasting 
was ͳͻ͵ ൅  given by the following commands in MATLAB ݐ͵
environment: 

y=[ 199   202   199   208   212   194   214   220   219   234 
219   233]';t=[1:12]'; T=[ones(size(t)) t];ab=regress(y,T) 

Calculate the moving ranges  for errors,  plot the control chart 
and comment. 

Solution 

The  calculations  have been done in the following table and 
MR points have been plotted in Fig. 6-14.  

(MR) d d   d    d t 
 -͵ ͳͻ͸ ͳͻͻ ͳ 
Ͳ -͵ ͳͻͻ ʹͲʹ ʹ 
͸ ͵ ʹͲʹ ͳͻͻ ͵ 
͸ -͵ ʹͲͷ ʹͲͺ Ͷ 
ͳ -Ͷ ʹͲͺ ʹͳʹ ͷ 
ʹͳ ͳ͹ ʹͳͳ ͳͻͶ ͸ 
ͳ͹ Ͳ ʹͳͶ ʹͳͶ ͹ 
͵ -͵ ʹͳ͹ ʹʹͲ ͺ 
Ͷ ͳ ʹʹͲ ʹͳͻ ͻ 
ͳʹ -ͳͳ ʹʹ͵ ʹ͵Ͷ ͳͲ 
ͳͺ ͹ ʹʹ͸ ʹͳͻ ͳͳ 
ͳͳ -Ͷ ʹʹͻ ʹ͵͵ ͳʹ 
ͻͻ -͵  ʹͷͷ͵ sum 

e

99
MR= =9.0  UCL=23.9  LCL=-23.9

11

UCL =2.66MR ,CL=0,LCL =-2.66MRe
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The chart
statistically valid forecasting function
because points are distributed randomly within

point falls out of the limits and none of the tests

Example  6-

Consider the

�୲ᇱ ൌ
proposed1 to for
period 1 
demand 72 

Calculate the moving ranges for errors, p
and comment.

Solution 
The  calculations have been done

MR points have been plotted in Fig

                                        

ϭ  To see how it has been derived

Introduction to  Forecasting   Methods 

Fig 6-14 The control chart foe Example 6-11 
(based on Biegel, 1971) 

he chart in Fig.6-14 shows a stable cause system and a
statistically valid forecasting  function(Biegel, 1971, page
because points are distributed randomly within the limits , n

out of the limits and none of the tests applies. 

-12   Verifying a cyclic forecaster 

Consider the forecasting function 

ൌ ͶͻͷǤ͸ ൅ ͷǤ͹�� െ ͳͲǤͺ���Ɏ͸ ݐ ൅ ͶǤͻ݊݅ݏ�
Ɏ
͸  ݐ

to forecast the demand  given in the following table
2 3 4 5 6 7 8 9 10 
83 92 107 114 129 91 108 116 79 

Calculate the moving ranges  for errors,  plot the control chart
and comment. 

The calculations  have been done in the following table and
MR points have been plotted in Fig. 6-15. 

                                                           

o see how it has been derived  one might refer to Biegel(1971) page 34. 
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shows a stable cause system and a 
page 57) 

the limits , no 

demand given in the following table. 
11 12 
92 93 

the control chart 

in the following table and 
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155
MR= =

11

UCL=2.66

t 
ͳ 
ʹ 
͵ 
Ͷ 
ͷ 
͸ 
͹ 
ͺ 
ͻ 
ͳͲ 
ͳͳ 
ͳʹ 

 

Fig. 6-15 The control chart for Example 

The control chart in Fig 
Therefore   it is conc

forecasting function.
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155
= =14.1           UCL=37.5           LCL=-37.5

11

2.66MR , CL=0, LCL=-2.66MR
 

MR d d   d    d 
 ͳͲ ͺʹ ͹ʹ 
͸ Ͷ ͺ͹ ͺ͵ 
ͳ ͵ ͻͷ ͻʹ 
͹ -Ͷ ͳͲ͵ ͳͲ͹ 
Ͳ -Ͷ ͳͳͲ ͳͳͶ 
ͳͳ -ͳͷ ͳͳͶ ͳʹͻ 
͵ͺ ʹ͵ ͳͳͶ ͻͳ 
ʹʹ ͳ ͳͲͻ ͳͲͺ 
ͳ͸ -ͳͷ ͳͲͳ ͳͳ͸ 
ʹͻ ͳͶ ͻ͵ ͹ͻ 
ʹͲ -͸ ͺ͸ ͻʹ 
ͷ -ͳͳ ͺʹ ͻ͵ 
ͳͷͷ Ͳ  ͳͳ͹͸ 

 The control chart for Example 6-12(based on Biegel, 

The control chart in Fig 6.15 shows a status of in-
Therefore   it is concluded that we have a statistically valid 

forecasting function.  

in inventory control and Planning 

 

 

, 1971) 

-control. 
luded that we have a statistically valid 
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Example  6-13 Verifying a linear-cyclic forecaster 
Consider the forecasting function  
�୲ᇱ ൌ ͶͻͷǤ͸ ൅ ͷǤ͹�� െ ͳͲǤͺ��� ஠଺ ݐ ൅ ͶǤͻ݊݅ݏ�

஠
଺  proposed1 to ���ݐ

forecast the demand  given in the following table. 
t 1 2 3 4 5 6 7 8 9 10 11 12 
d 498 505 517 521 535 548 544 546 529 548 543 557 

plot the control chart and comment. 

Solution 
The  calculations  have been done in the following table and 

MR points have been plotted in Fig. 6-15.  

82
MR= =7.4  UCL=19.7  LCL=-19.7

11

(MR) d d   (d) ( )d   (t) 
 -Ͷ 

 
Ͷͻͺ ͶͻͶ ͳ 

ͷ ͳ ͷͲͷ ͷͲ͸ ʹ 
Ͳ ͳ ͷͳ͹ ͷͳͺ ͵ 
͸ ͹ ͷʹͳ ͷʹͺ Ͷ 
͸ ͳ ͷ͵ͷ ͷ͵͸ ͷ 
ͺ -͹ ͷͶͺ ͷͶͳ ͸ 
ͷ -ʹ ͷͶͶ ͷͶʹ ͹ 
ʹ -Ͷ ͷͶ͸ ͷͶʹ ͺ 
ͳ͹ ͳ͵ ͷʹͻ ͷͶʹ ͻ 
ͳͺ -ͷ ͷͶͺ ͷͶ͵ ͳͲ 
ͺ ͵ ͷͶ͵ ͷͶ͸ ͳͳ 
͹ -Ͷ ͷͷ͹ ͷͷ͵ ͳʹ 
ͺʹ Ͳ ͸͵ͻͳ   

                                                           

ϭ  To see how it has been derived  one might refer to Biegel(1971) pp 36-39. 
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Fig. 6.16 Error control chart for Example

As with 3
chart in Fig 6.16
of the tests apply. Therefore we have a state of in
could rely upon the forecasting

being out-of-

Example  6-
Perhaps the real test of the control c

example(based on Bigel
was from real
"Revenrue Miles flown"
t 1 
Miles 
flown(d) 

ͳͲͺͺͷ
t 

Miles 
flown(d) ͺ͹Ͳͷ

The following linear cyclic function was suggested to
forecast d (for details of the computations see

�୲ᇱ ൌ
Is this a reliable
Solution  
To verify the function
control chart is plotted.

 Classical topics   in inventory control and Planning

Error control chart for Example 6-13 ( Biegel, 1971

3  above examples , no point is out of the the control
6.16 m, no special pattern has been formed and none

of the tests apply. Therefore we have a state of in-control and
could rely upon the forecasting function as far as no evidence of

of-control appears.

-14 
Perhaps the real test of  the control chart con on t

based on Bigel,1971 page41 and 60), since the data
was from real world.  The following table shows monthly
"Revenrue Miles flown" on an international carrier. 

 2 3 4 5 
ͳͲͺͺͷ ͳͲͶ͸ͷ ͳͲͳͶ͵ ͻʹ͹͵ ͻ͵͹ͺ 

7 8 9 10 11 

ͺ͹Ͳͷ ͳͲͲͻͳ ͳͲͳͶͷ ͳͲͻͻͷ ͳͳ͸Ͳͷ 

The following linear cyclic function was suggested to
(for details of the computations see Biegel,1971

ൌ ͻͶͷͲ ൅ ͳ͵͵�� ൅ ͳͳͳͲ���Ɏ͸ ݐ ൅ ͵ʹͻ݊݅ݏ�
Ɏ
͸ ��ݐ

Is this a reliable forecasting function for the Miles flown(d)?

To verify the function, the moving ranges are calculated and the error
control chart is plotted. 

in inventory control and Planning 

1971p 59) 

no point is out of the the control 
med and none 

control and 
function as far as no evidence of 

hart con on this 
since the data 

monthly 

6 
ͻ͵͹ͺ 

12 
ͳʹ͵ͳͳ 

The following linear cyclic function was suggested  to 
1971p41): 

Miles flown(d)? 

the moving ranges are calculated and the error 
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4600
MR= =418.2      UCL=2.66MR 1112  LCL=-2.66MR -1112

11
= =

The following table shows the computations results 

MR d d  d  d t 
 -ͳ͹͸ ͳͲ͹Ͳͻ ͳͲͺͺͷ ͳ 
ʹ͸͹ ͻͳ ͳͲͷͷ͸ ͳͲͶ͸ͷ ʹ 
ͷ͸ ͵ͷ ͳͲͳ͹ͺ ͳͲͳͶ͵ ͵ 
ͶͲͶ Ͷ͵ͻ ͻ͹ͳʹ ͻʹ͹͵ Ͷ 
ͺͺͻ ͶͷͲ ͻ͵ͳͺ ͻ͹͸ͺ ͷ 
ʹͲͻ -ʹͶͳ ͻͳ͵͹ ͻ͵͹ͺ ͸��
͹ͻͲ ͷͶͻ ͻʹͷͶ ͺ͹Ͳͷ ͹ 
ͻ͸ͺ -Ͷͳͻ ͻ͸͹ʹ ͳͲͲͻͳ ͺ 
ͷͻͲ ͳ͹ͳ ͳͲ͵ͳ͸ ͳͲͳͶͷ ͻ 
ͳͳͺ ͷ͵ ͳͳͲͶͻ ͳͲͻͻͷ ͳͲ 
ͷͲ ͳͲ͵ ͳͳ͹Ͳͺ ͳͳ͸Ͳͷ ͳͳ 
ʹͷͻ -ͳͷ͸ ͳʹͳͷͶ ͳʹ͵ͳͳ ͳʹ 
Ͷ͸ͲͲ -ͳ ͳʹ͵͹͸͵ ͳʹ͵͹͸Ͷ sum 

For example for Period  8 : 

t=8;d'8=9450+133*t+1110*cos(pi*t/6)+329*sin(pi*t/6) 

ans =  9674. 

t=7;d'7=9450+133*t+1110*cos(pi*t/6)+329*sin(pi*t/6) 

ans =  9255. 

   8 88, | 9674 10093 (9255 8705) | 9698 8 1 8 1t M R d d d d           

These results some how differs from  those in the table; the 
reason could be due to rounding up the numbers.  
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Fig

Figure 4.6
in-control status and then a valid estimator function

The reader should bear in mind that the discussion of
occurrences and
is present in the generation of data. For the remainder of of this
chapter he should assume that the demand data become

available to us , piece by piece, over a span of time

Example  6-

In Example
average 99. 
year is: 

month
d 

  *d d 
           * d  
Plot a new error control chart
and do the necessary

 Classical topics   in inventory control and Planning

Fig 6-17  The error control chart for Example 6-14
(based on Biegel, 1971, p60) 

4.6 shows the error control chart which indicates an
control status and then a valid estimator function(Biegel,1971

he reader should bear in mind that the discussion of
occurrences and actions tends to eliminate the time aspect which
is present in the generation of data. For the remainder of of this
chapter he should assume that the demand data become

available to us , piece by piece, over a span of time.

-15 

In Example 6.10 We have forecast the demand 
. Suppose the demand for the 7 month of the 

ͳͻͳͺ ͳ͹ ͳ͸ ͳͷ ͳͶ ͳ͵ month 
ͳͳ͸ͳͲ͹ ͳͳʹ ͳͲͻ ͳͳͶ ͺͻ ͳͲͷ  
-ͳ͹-ͺ -ͳ͵ -ͳͲ -ͳͷ ͳͲ -͸    *d d  

* 99d  
a new error control chart related to Moth 1 through 19. Comment

and do the necessary actions. 

in inventory control and Planning 

14 

shows the error control chart which indicates an 
1971 p60). 

he reader should bear in mind that the discussion of 
the time aspect which 

is present in the generation of data. For the remainder of  of this 
chapter he should assume that the demand data become 

We have forecast the demand should 
month of the second 

ͳͻ 
ͳͳ͸ 
ͳ͹ 
Comment 
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 Solution 

Figure 6.18
data related to
period 19, 
condition(4 out of
that the forecaster is underestimating the demand
61). 

Fig 6.18 Error control
 Example 6

The out-
establish a new forecaster. As a first attempt
data was examined to see if it fits
are (Biegel,1971

1943

19
d MR UCL LCL     

�������������������
A new constant

demands for the rest of the second year is as follows

Introduction to  Forecasting   Methods 

6.18 shows the control chart for the new data and the
data related to the year before.  In this chart  the point related to

, marked  with X, indicates an out-of control
 out of 5 successive points in Region B).  This means

that the forecaster is underestimating the demand(Biegle

Error control chart for 19- period time horizon related
6-10 (based on Biegel, 1971 p62) 

- of -control condition  indicates a necessity to
stablish a new forecaster. As a first attempt the mean of all the

data was examined to see if it fits. The result of the calculations
1971 page 63) 

1943
102  10.4  27.8 

19
d MR UCL LCL     

��������������ͳͻ����������������������ୢ ൌ ͳͲǤ
A new constant forecaster is chosen :d'=102. Suppose the

demands for the rest of the second year is as follows 

 368 

for the new data and the 
. In this chart the point related to 

of control 
). This means 
Biegle,1971 p 

period time horizon related 

control condition indicates a necessity to 
the mean of  all the 

. The result of the calculations 

 27.8 d MR UCL LCL     

ǤͶͶ 

Suppose the 
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period
demand(d)

Fig 19.6 shows the chart for the first and the second
year  . 

Fig. 6-19  Final control cart
and 6-15  (based on Biegel

It is found the chart shows statistical control. There fore
a better forecaster than d

have evidence of lack of control

Example  6-

In Example
month of Year
221, 250, 235

a)Use  the  same forecaster and
to  show the forecast error

b) If there is an indication of out
suggestion? 

 Classical topics   in inventory control and Planning

period 20 21 22 23 24 
demand(d) 105 109 93 110 116 

shows  the chart for the first and the second

 Final control cart for 24-period data of Examples 
based on Biegel, 1971) 

It is found the chart shows statistical control.  There fore d
a better forecaster than d'=99.   This same cart should be used until we

have evidence of  lack of control(Biegle, 1971 p62).

-16 

Example 6-11, suppose the actual demand values  for the
month of Year 2 (i.e Periods 13 through19) were 209, 226,224

235, 233. 

Use the same forecaster and error chart used in Example
show the forecast error  for Period 13 to 16 and comment.

there is an indication of out-of-control status , What is your

in inventory control and Planning 

 

shows the chart for the first and the second 

riod data of Examples 6-10 

d'=102 is 
This same cart should be used until we 

suppose the actual demand values for the 7 
226,224, 

used in Example 11-6 
ment. 

control status , What is your 
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Solution 
a) 

Using   �
through 15 and

If we plot the errors of Periods
Example 6-
successive points
Region B, which indicates a state of out of control.

Fig 6-20

b) 

A new for
demand data is calculated using the following MATLAB
commands: 

y=[ 199 
219 233
t];ab=regress(y,T)

Although t
forecaster is chosen as

Introduction to  Forecasting   Methods 

�୲ƍ ൌ ͳͻ͵ ൅ ͵� to forecast the  demand for periods
and calculate error = d'-d yields: 

If we plot the errors of Periods 13-16 on  the chart of
-11 we would obtain the following chart

successive points 12,13,14,.15, 16, four points fall above the central line in
Region B, which indicates a state of out of control. 

20  Control chart for first 16 month of Example 6-11
(Bielgel 1971 page 64) 

A new for regression forecaster  based on the 16
demand data is calculated using the following MATLAB

 

 202  199  208  212  194  214  220  219
233 209  226 224 221]';t=[1:16]'; T=[ones(

t];ab=regress(y,T) 

Although the answer is a=198.9000 and b=1.8426, 
forecaster is chosen as: 199 2  d t   . 

 370 

for periods 13 

on the chart of 
we would obtain the following chart. Of 5 

the central line in 

11 

16-month 
demand data is calculated using the following MATLAB 

219  234 
(size(t)) 

 but the 
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The new limits 

99 27+14+5+6
  MR UCL LCL


    

The new chart for  
shows a sate of in control, it i
forecasting function is satisfactory

Fig 6-21 control chart for 

Although
example, the control chart for both years has been redrawn
Fig. 6.22 from

 
 

                                    Classical topics   in inventory control and Planning

new limits ( based on 16 periods) are: 

99 27+14+5+6
  10.1          26.9          

15
MR UCL LCL


    

The new chart for  16 periods is shown in Fig 6.21.  Since it 
shows a sate of in control, it it is concluded that the new 
forecasting function is satisfactory(Biegel,1971, page63).

 control chart for !6-period data of Examples 6-11 &
(based on Biegel, 1971) 

Although the data for the rest of Year 2 is not given in this 
example, the control chart for both years has been redrawn

from Fig. 4.8 on page 63 Biegel(1971). 

in inventory control and Planning 

          26.9 MR UCL LCL    

Since it 

). 

 

 & 6-15 

 is not given in this 
example, the control chart for both years has been redrawn in 
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Fig 6-22

 
This control 

appears.  
 
Example  6-

Plot  the actual and 
Example 6-16
do you evaluate the forecasting function 
Solution  
 

The above table shows the  v
commands  has plotted Fig
 
>> yhat=[196

241 244 247 250

234 219 233  

Y=[ones(size(y)) y];ab=regress(yhat,Y);plot(y,yhat,'+');

month 

demand(y) 

Forecast( y


) 

month 
demand(y) 

Forecast( y


) 

   Introduction to  Forecasting   Methods                                      

22 New chart for  24 periods of Examples 6-11 &6-
(Biegel, 1971 p65) 

control  chart should be used until a sign of out of control 

-17 
Plot  the actual and predicted values related to 19 periods of 

16 in an X-Y coordinates and calculate RMSE
do you evaluate the forecasting function 199 2d t   ?  

The above table shows the  values   and the following MATLAB
commands  has plotted Fig. 6.23 

6  199  202 205  208  211  214  217 220 223 226 230

250 253 256]';y=[199 202 199 208 212 194 214 220

  209 226 224 221 233 235 250]'; 

Y=[ones(size(y)) y];ab=regress(yhat,Y);plot(y,yhat,'+'); 

1 2 3 4 5 6 7 8 9 

199 202 199 208 212 194 214 220 219

y
 196 199 202 205 208 211 214 217 220

11 12 13 14 15 16 17 18 19
219 233 209 226 224 221 

 
233 235 250

y
 226 230 238 

 
241 244 247 250 253   256

                                  372 

 
-16 

chart should be used until a sign of out of control 

 periods of 
Y coordinates and calculate RMSE. How 

d t

and the following MATLAB 

230 238  

220 219 

 10 

219 234 

220 223 

19  
250  
256  
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xp=190:0.01:250;yp=ab(1)+ab(2)*xp;hold on;plot(xp,yp) 

 
 Fig 6-23 Actual demand(y) and forecast (yhat)��

for 19 months of  Example 6-16 

 RMSE=sqrt(mse(y-yhat)) in MATLAB gives RMSE=  13.2208�. 

  From Fig 5-23 it is evident that the  points are around  the line 

and the line is near to the bisector of the first quarter.   Then the 

forecasts could be acceptable. 

Exercises 

1-Thefollowing table shows the maintenance cost per annum 
for a kind of vehicle versus the  age of the vehicle and annual 
vehicle mileage. 

ͻ͸ ͳͺͻ ʹͺ͵ ͵͹͵ Ͷ͸͹ ͷͷ͵ ͸Ͷ͹ ͹͵͵ ͺ͵ʹ Maintenance 
Cost 

ͳͻ ͳͺ ͳ͹ ͳͷ ͳ͵ ͳͳ ͻ ͹ ͸ Annual 
Mileage(ൈͳͲͲͲሻ 

Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ 
Age at the 
beginning of the 
current year 
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a)Find the correlation coefficient  between the cost  and the 
mileage  and between the cost and the age.  

b) Find the simple regression forecaster for the  better
correlation coefficient obtained in a. 

c) Use a software such as MATLAB, Minitab, Lotus to forecast
the cost form a 2-variabe(age and mileage) regression equation. 

d)What would be the cost forecast from the forecasters in b and 
c if the age and the mileage are  3.5 years an 16000 respectively. 

2. Find  the  regression equation for predicting cost from age in
Problem 1. Forecast all the costs from the given corresponding 
age in the table.  How much is RMSE between the actual costs 
and the predicted costs? How much is the correlation coefficient 
between the age and the predicted costs.  Use the t-test for 
paired  data to compare the mean of the actual costs and the 
predicted costs(ߙ ൌ ͳͲΨሻǤ 
3. Suppose in the past 10 years, the increase in the price  of iron
compared to the price in Year 0 is as given in the following 
table.  Also suppose the increase in the price of a specific 
commodity for the same time horizon is also given in the table. 
Could it be concluded that the increase in the price of  the 
commodity compared to Year 0 is proportional to the price 
increase of iron?  

Is it better to forecast the increase in the commodity price from 
the increase in the price of iron or from year no. ?   

Year No. 1 2 3 4 5 6 7 8 9 10 
Increase 
In Iron 
price 

100 102 103 110 121 124 127 130 139 145 

Increase 
In the 
commodity 
price 

100 103 106 119 126 127 128 123 140 144 
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4.A vendor believes that the demand for one of his goods
depend on the number of houses built exactly 3 month ago in a 
district. Use the following table to verify  his claim. Find the 
regression relationship to forecast the sale of the vendor from 
the number houses. Is it better to forecast the increase in the slae 
from the number houses built exactly 3 month ago  o from 
month no. ?   

Month 
no. 1 2 3 4 5 6 7 8 9 10 11 12 
Sale 
volume 
(ൈͳͲͲͲሻ 

45 60 62 30 40 45 68 75 80 45 30 25 

Houses 
built(ൈͳͲሻ 

26 25 32 38 50 48 32 40 35 25 10 15 

5.Using the time series given in the following table, determine
which N has the least RMSE for using in N-period simple 
moving average (with equal weighting)? 

t(month) 1 2 3 4 5 6 
sale 30 32 30 39 32 34 

6.In Problem 5 if we want to replace moving average with
simple exponential smoothing, calculate the  appropriate ߙ . 
Forecast the sale volume for  Month 7 if 

a) the sale forecast for Month 1 is 32

b)we want to  use the mean of the data as the forecast  required 
in the exponential smoothing formula. 

7. Use the following data and 2-period  weighted moving
average to forecast the quantity for Periods 3 through 10. Use  a 
weight of 0.55 for just the previous month and a weight of 0.45 
for the other month. 

Month Ja F M Ap M J Ju Au S 
Quantity 19.36 25.45 19.13 21.48 20.77 25.42 23.79 28.35 26.80 



Chapter 6   Introduction to  Forecasting   Methods  376 

 

8. Choose ratio-to-trend algorithm to forecast the quantity for all
periods  of the previous problem.  Calculate  The RMSE and the 
correlation coefficient between the actual and the predicted 
quantities. Apply the paired data t-test.  Compare this algorithm 
with the one used in Problem 7. 

9. The following table shows the sale volume  of a store of home
appliances during the past 10 half-years.  Predict the sale for 
Year 7. 

Half-
year 

1 2 3 4 5 6 7 8 9 10 

sale 15.5 14.2 15.1 12.9 14.8 12.5 14.4 13.2 16.50 15 

10. The demand for a product in  January was 65 and during the
previous year were as given in the table below. Forecast the 
demand for February using the regression method and double 
exponential smoothing with 0.1    . 

t(month) 1 2 3 4 5 6 7 8 9 10 11 12 
demand 52 48 36 49 65 54 60 48 51 62 66 62 

11. The following data shows various  thickness of a plastic
reservoir and the corresponding  air pressure blown when it was 
being produced. Is there a linear correlation between the air 
pressure and the thickness? 

8.0 8.5 9.0 9.5 10.0 Air pressure 
(kgf/cm2) 

4.62 4.12 3.21 2.86 1.83 

Wall thickness(mm) 4.50 3.88 3.05 2.53 2.02 
4.43 4.01 3.16 2.71 2.24 
4.81 3.67 3.30 2.62 1.95 

12.For both methods of Problem 10, plot the control chart
described in this chapter. What meth the control chart suggest to 
use? 
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13. The demand for a product during a year was as follows:

t 1 2 3 4 5 6 7 8 9 10 11 12 
D 80 100 79 98 95 104 80 98 102 96 115 88 

a) After determining the parameters of the following
forecasts from the above data (if, necessary use least
squatted error method),plot the  forecast error control
chart for each of above-mentioned methods.

b) Suppose the demands for the next 12 months are
90,105,97,100,117,101,103,95,87,80,78,79 and continue
one of the control charts.  Is the forecaster acceptable?

14. After learning artificial neural networks of type Multilayer
Perceptron (MLP), write some MATLAB commands for 
creating an MLP with two hidden layers and use Moore's  data 
set in MATLAB to train it.  Then simulate  

y=[-0.2218 -0.3979 -0.5229 -0.0458] 

related to moore(17:20,1:5)�  i.e. the rows 17 through 20 
columns 1:5 of the data set. 

Hint: the following commands could be used iun MATLAB1; 
Creating MLP 

net=newff(p,y,[1 11],{'tansig',�logsig�, �purelin�}) 
instructions for training  
input matrix: moore(1:16,1:5) 
target vector: moore(1:16,6) 

load�moore; 
p=(moore(1:16,1:5))'; 
T=(moore(1:16,6))'; 
net=train(shabake,p,T); 

To simulate y: 
                                                           

1 These commands were edited by the Late F. M Pourhosseini, the student of 
our department. 
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p2=(moore(17:20,1:5))'; 
yhat=sim(net,p2) 
Calculation of RMSE between y and yhat: 
y=[-0.2218 -0.3979 -0.5229 -0.0458]; 
rmse=sqrt(mse(y-yhat)) 
In general to forecast Vector y2 from Input Matrix P1 

the MATLAB instructions for creating, training and 
simulation of an MLP with 1 hidden layer and using 
Matrix P as input and Vector y as target for training could 
written as follows: 

P=�..; 
y=�.'; 
net=newff(P,y,[1 11],{'tansig', 'tansig', 'purelin'}) 
net.trainparam.epochs=100; 
net=train(net,P,y); 
P1=�; 
yhat=sim(net,P1); 
y2=[�]; 
rmse=sqrt(mse(y2-yhat)) 
The last instruction calculates the root mean squared 

error of given vector and its forecast by the MLP. 

If youth but knew,  
If old age but could, 

Si jeunesse savait, Si vieillesse pouvait,��� 

(French proverb)
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Table A    unit Loss Normal  Integrals 

                   MATLAB:Guk=  exp(-�̰ʹȀʹሻȀ����ሺʹȗ��ሻ-�ȗሺͳ-normcdf(k)) 
Multiply the values byͳͲିସ �Ǥ�Ǥ�
��ሺͲǤʹͺሻൌͲǤʹ͹Ͷͷ 
 	�����������൏Ͳ�Gu (k) = Gu (-k) � k  ���e.g.� Gu (-ʹሻ�ൌ�Ͳ.ͲͲͺͷ൅�ʹ�ൌ�ʹ.ͲͲͺͷ 
k=-ʹǢ���ሺ-�̰ʹȀʹሻȀ����ሺʹȗ��ሻ-�ȗሺͳ-normcdf(k))         ʹǤͲͲͺͷ 
k Ͳ.ͲͲ Ͳ.Ͳͳ Ͳ.Ͳʹ Ͳ.Ͳ͵ Ͳ.ͲͶ Ͳ.Ͳͷ Ͳ.Ͳ͸ Ͳ.Ͳ͹ Ͳ.Ͳͺ Ͳ.Ͳͻ 
Ͳ.Ͳ ͵ͻͺͻ ͵ͻͶͲ ͵ͺͻͲ ͵ͺͶ�ͳ ͵͹ͻ͵ ͵͹ͶͶ ͵͸ͻ͹ ͵͸Ͷͻ ͵͸Ͳʹ ͵ͷͷ͸ 
Ͳ.ͳ ͵ͷͲͻ ͵Ͷ͸Ͷ ͵Ͷͳͺ ͵͵͹͵ ͵͵ʹͺ ͵ʹͺͶ ͵ʹͶͲ ͵ͳͻ͹ ͵ͳͷͶ ͵ͳͳͳ 
Ͳ.ʹ ͵Ͳ͸ͻ ͵Ͳʹ͹ ʹͻͺ͸ ʹͻͶͶ ʹͻͲͶ ʹͺ͸͵ ʹͺʹ͸ ʹ͹ͺͶ ʹ͹Ͷͷ�

, 
ʹ͹Ͳ͸ 

Ͳ.͵ ͵͸͸ͺ ʹ͸͵Ͳ ʹͷͻʹ ʹͷͷͷ ʹͷͳͺ ʹͶͺ�
ͳ 

ʹͶͶͷ ʹͶͲͻ ʹ͵͹Ͷ ʹ͵͵ͻ 
Ͳ.Ͷ ʹ͵ͲͶ ʹʹ͹Ͳ ʹʹ͵͸ ʹʹͲ͵ ʹͳ͸ͻ ʹͳ͵͹ ʹͳͲͶ ʹͲ͹ʹ ʹͲͶͲ ʹͲͲͻ 
Ͳ.ͷ ͳͻ͹ͺ ͳͻͶ͹ ͳͻͳ͹ ͳͺͺ͹ ͳͺͷ͹ ͳͺʹͺ ͳͺͲͲ ͳ͹͹ͳ ͳ͹Ͷʹ ͳ͹ͳͶ 
Ͳ.͸ ͳ͸ͺ͹ ͳ͸ͷͻ ͳ͸͵ʹ ͳ͸Ͳ͸ ͳͷͺͲ ͳͷͷͶ ͳͷʹͺ ͳͷͲ͵ ͳͶ͹ͺ ͳͶͷ͵ 
Ͳ.͹ ͳͶʹͻ ͳͶͲͷ ͳ͵ͺͳ ͳ͵ͷͺ ͳ͵͵Ͷ ͳ͵ͳʹ ͳʹͺͻ ͳʹ͸͹ ͳʹͶͷ ͳʹʹ͵ 
Ͳ.ͺ ͳʹͲʹ ͳͳͺͳ ͳͳ͸Ͳ ͳͳͶͲ ͳͳʹͲ ͳͳͲͲ ͳͲͺͲ ͳͲ͸ͳ ͳͲͶʹ ͳͲʹ͵ 
Ͳ.ͻ ͳͲͲͶ Ͳͻͺ͸ Ͳͻ͸ͺ ͲͻͷͲ Ͳͻ͵͵ Ͳͻͳ͸ Ͳͺͻͻ Ͳͺͺʹ Ͳͺ͸ͷ ͲͺͶͻ 
ͳ.Ͳ Ͳͺ͵͵ Ͳͺͳ͹ ͲͺͲʹ Ͳ͹ͺ͹ Ͳ͹͹ʹ Ͳ͹ͷ͹ Ͳ͹Ͷʹ Ͳ͹ʹͺ Ͳ͹ͳͶ Ͳ͹ͲͲ 
ͳ.ͳ Ͳ͸ͺ͸ Ͳ͸͹͵ Ͳ͸͸Ͳ Ͳ͸Ͷ͸ Ͳ͸͵Ͷ Ͳ͸ʹͳ Ͳ͸Ͳͻ Ͳͷͻ͸ ͲͷͺͶ Ͳͷ͹͵ 
ͳ.ʹ Ͳͷ͸ͳ ͲͷͷͲ Ͳͷ͵ͺ Ͳͷʹ͹ Ͳͷ͹͹ ͲͷͲ͸ ͲͶͻͷ ͲͶͺͷ ͲͶ͹ͷ ͲͶ͸ͷ 
ͳ.͵ ͲͶͷͷ ͲͶ͸͸ ͲͶ͵͸ ͲͶ͹ʹ ͲͶͳͺ ͲͶͲͻ ͲͶͲͲ Ͳ͵ͻʹ Ͳ͵ͺ͵ Ͳ͵͹ͷ 
ͳ.Ͷ Ͳ͵�͸�

͹ 
Ͳ͵ͷͻ Ͳ͵ͷͳ Ͳ͵Ͷ͵ Ͳ͵͵͸ Ͳ͵ʹͺ Ͳ͵ʹͳ Ͳ͵ͳͶ Ͳ͵Ͳ͹ Ͳ͵ͲͲ 

ͳ.ͷ Ͳʹͻ�͵ Ͳʹͺ͸ ͲʹͺͲ Ͳʹ͹Ͷ Ͳʹ͸͹ Ͳʹ͸ͳ Ͳʹͷͷ ͲʹͶͻ ͲʹͶͶ Ͳʹ͵ͺ 
ͳ.͸ Ͳʹͳʹ Ͳʹʹ͹ Ͳʹʹʹ Ͳʹͳ͸ Ͳʹͳͳ ͲʹͲ͸ ͲʹͲͳ Ͳͳͻ͹ Ͳͳͻʹ Ͳͳͺ͹ 
ͳ.͹ Ͳͳͺ͵ Ͳͳ͹ͺ Ͳͳ͹Ͷ Ͳ�ͳ�͹Ͳ Ͳͳ͸͸ Ͳͳ͸ʹ Ͳͳͷͺ ͲͳͷͶ ͲͳͷͲ ͲͳͶ͸ 
ͳ.ͺ ͲͳͶ͵ Ͳͳ͵ͻ Ͳͳ͵͸ Ͳͳ͵ʹ Ͳͳʹͻ Ͳͳʹ͸ Ͳͳʹ͵ Ͳͳͳͻ Ͳͳͳ͸ Ͳͳͳ͵ 
ͳ.ͻ Ͳͳͳͳ Ͳ�ͳ�Ͳͺ ͲͳͲͷ ͲͳͲʹ ͲͳͲͲ ͲͲͻ͹ ͲͲͻͶ ͲͲͻʹ ͲͲͻͲ ͲͲͺ͹ 
ʹ.Ͳ ͲͲͺͷ ͲͲͺ͵ ͲͲͺͲ ͲͲ͹ͺ ͲͲ͹͸ ͲͲ͹Ͷ ͲͲ͹ʹ ͲͲ͹Ͳ ͲͲ͸ͺ ͲͲ͸͸ 
ʹ.ͳ ͲͲ͸ͷ ͲͲ͸ͳ ͲͲ͸ͳ ͲͲ͸Ͳ ͲͲͷͺ ͲͲͷ͸ ͲͲͷͷ ͲͲͷ͵ ͲͲͷʹ ͲͲͷͲ 
ʹ.ʹ ͲͲͶͻ ͲͲͶ�ͺ ͲͲͶ͸ ͲͲͶͷ ͲͲͶͶ ͲͲͶʹ ͲͲͶ�ͳ ͲͲͶͲ ͲͲ͵ͻ ͲͲ͵ͺ 
ʹ.͵ ͲͲ͵�͹ ͲͲ͵͸ ͲͲ͵ͷ ͲͲ͵Ͷ ͲͲ͵͵ ͲͲ͵ʹ ͲͲ͵ͳ ͲͲ͵Ͳ ͲͲʹͻ ͲͲʹͺ 
ʹ.Ͷ ͲͲʹ͹ ͲͲʹ͸ ͲͲʹ͸ ͲͲʹͷ ͲͲʹͶ ͲͲʹ͵ ͲͲʹ͵ ͲͲʹʹ ͲͲʹͳ ͲͲʹͳ 
ʹ.ͷ ͲͲʹͲ ͲͲͳͻ ͲͲ�ͳͻ ͲͲͳͺ ͲͲͳͺ ͲͲͳ͹ ͲͲͳ͹ ͲͲͳ͸ ͲͲͳ͸ ͲͲͳͷ 
ʹ.͸ ͲͲͳͷ ͲͲͳͶ ͲͲͳͶ ͲͲͳ͵ ͲͲͳ͵ ͲͲͳʹ ͲͲͳʹ ͲͲͳʹ ͲͲͳͳ ͲͲͳͳ 
ʹ.͹ ͲͲͳͳ ͲͲͳͲ ͲͲͳͲ ͲͲͳͲ ͲͲͲͻ ͲͲͲͻ ͲͲͲͻ ͲͲͲͺ ͲͲͲͺ ͲͲͲͺ 
ʹ.ͺ ͲͲͲͺ ͲͲͲ͹ ͲͲͲ͹ ͲͲͲ͹ ͲͲͲ͹ ͲͲͲ͸ ͲͲͲ͸ ͲͲͲ͸ ͲͲͲ͸ ͲͲͲ͸ 
ʹǤͻ ͲͲͲͷ ͲͲͲͷ ͲͲͲͷ ͲͲͲͷ ͲͲͲͷ ͲͲͲͷ ͲͲͲͶ ͲͲͲͶ ͲͲͲͶ ͲͲͲͶ 
�Adopted from:�����ǡ��Ǥ	Ǥ�ͳͻ�͹ͻǡ�������������������������
�������� 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
K Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳͳ ͳʹ ͳ͵ ͳͶ ʹǤͶͲ ͲǤͲͻͳ ͲǤ͵Ͳͺ ͲǤͷ͹Ͳ ͲǤ͹͹ͻ ͲǤͻͲͶ ͲǤͻ͸Ͷ ͲǤͻͺͺ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ʹǤͷͲ ͲǤͲͺʹ ͲǤʹͺ͹ ͲǤͷͶͶ ͲǤ͹ͷͺ ͲǤͺͻͳ ͲǤͻͷͺ ͲǤͻͺ͸ ͲǤͻͻ͸ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ                  ʹǤ͸Ͳ ͲǤͲ͹Ͷ ͲǤʹ͸͹ ͲǤͷͳͺ ͲǤ͹͵͸ ͲǤͺ͹͹ ͲǤͻͷͳ ͲǤͻͺ͵ ͲǤͻͻͷ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ʹǤ͹Ͳ ͲǤͲ͸͹ ͲǤʹͶͻ ͲǤͶͻͶ ͲǤ͹ͳͶ ͲǤͺ͸͵ ͲǤͻͶ͵ ͲǤͻ͹ͻ ͲǤͻͻ͵ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ʹǤͺͲ ͲǤͲ͸ͳ ͲǤʹ͵ͳ ͲǤͶ͸ͻ ͲǤ͸ͻʹ ͲǤͺͶͺ ͲǤͻ͵ͷ ͲǤͻ͹͸ ͲǤͻͻʹ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ʹǤͻͲ ͲǤͲͷͷ ͲǤʹͳͷ ͲǤͶͶ͸ ͲǤ͸͹Ͳ ͲǤͺ͵ʹ ͲǤͻʹ͸ ͲǤͻ͹ͳ ͲǤͻͻͲ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤͲͲ ͲǤͲͷͲ ͲǤͳͻͻ ͲǤͶʹ͵ ͲǤ͸Ͷ͹ ͲǤͺͳͷ ͲǤͻͳ͸ ͲǤͻ͸͸ ͲǤͻͺͺ ͲǤͻͻ͸ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ                  ͵ǤͳͲ ͲǤͲͶͷ ͲǤͳͺͷ ͲǤͶͲͳ ͲǤ͸ʹͷ ͲǤ͹ͻͺ ͲǤͻͲ͸ ͲǤͻ͸ͳ ͲǤͻͺ͸ ͲǤͻͻͷ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤʹͲ ͲǤͲͶͳ ͲǤͳ͹ͳ ͲǤ͵ͺͲ ͲǤ͸Ͳ͵ ͲǤ͹ͺͳ ͲǤͺͻͷ ͲǤͻͷͷ ͲǤͻͺ͵ ͲǤͻͻͶ ͲǤͻͻͺ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵Ǥ͵Ͳ ͲǤͲ͵͹ ͲǤͳͷͻ ͲǤ͵ͷͻ ͲǤͷͺͲ ͲǤ͹͸͵ ͲǤͺͺ͵ ͲǤͻͶͻ ͲǤͻͺͲ ͲǤͻͻ͵ ͲǤͻͻͺ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤͶͲ ͲǤͲ͵͵ ͲǤͳͶ͹ ͲǤ͵ͶͲ ͲǤͷͷͺ ͲǤ͹ͶͶ ͲǤͺ͹ͳ ͲǤͻͶʹ ͲǤͻ͹͹ ͲǤͻͻʹ ͲǤͻͻ͹ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤͷͲ ͲǤͲ͵Ͳ ͲǤͳ͵͸ ͲǤ͵ʹͳ ͲǤͷ͵͹ ͲǤ͹ʹͷ ͲǤͺͷͺ ͲǤͻ͵ͷ ͲǤͻ͹͵ ͲǤͻͻͲ ͲǤͻͻ͹ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ                  ͵Ǥ͸Ͳ ͲǤͲʹ͹ ͲǤͳʹ͸ ͲǤ͵Ͳ͵ ͲǤͷͳͷ ͲǤ͹Ͳ͸ ͲǤͺͶͶ ͲǤͻʹ͹ ͲǤͻ͸ͻ ͲǤͻͺͺ ͲǤͻͻ͸ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵Ǥ͹Ͳ ͲǤͲʹͷ ͲǤͳͳ͸ ͲǤʹͺͷ ͲǤͶͻͶ ͲǤ͸ͺ͹ ͲǤͺ͵Ͳ ͲǤͻͳͺ ͲǤͻ͸ͷ ͲǤͻͺ͸ ͲǤͻͻͷ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤͺͲ ͲǤͲʹʹ ͲǤͳͲ͹ ͲǤʹ͸ͻ ͲǤͶ͹͵ ͲǤ͸͸ͺ ͲǤͺͳ͸ ͲǤͻͲͻ ͲǤͻ͸Ͳ ͲǤͻͺͶ ͲǤͻͻͶ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͵ǤͻͲ ͲǤͲʹͲ ͲǤͲͻͻ ͲǤʹͷ͵ ͲǤͶͷ͵ ͲǤ͸Ͷͺ ͲǤͺͲͳ ͲǤͺͻͻ ͲǤͻͷͷ ͲǤͻͺͳ ͲǤͻͻ͵ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤͲͲ ͲǤͲͳͺ ͲǤͲͻʹ ͲǤʹ͵ͺ ͲǤͶ͵͵ ͲǤ͸ʹͻ ͲǤ͹ͺͷ ͲǤͺͺͻ ͲǤͻͶͻ ͲǤͻ͹ͻ ͲǤͻͻʹ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ 

 ͶǤͳͲ ͲǤͲͳ͹ ͲǤͲͺͷ ͲǤʹʹͶ ͲǤͶͳͶ ͲǤ͸Ͳͻ ͲǤ͹͸ͻ ͲǤͺ͹ͻ ͲǤͻͶ͵ ͲǤͻ͹͸ ͲǤͻͻͲ ͳǤͲͲͲ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤʹͲ ͲǤͲͳͷ ͲǤͲ͹ͺ ͲǤʹͳͲ ͲǤ͵ͻͷ ͲǤͷͻͲ ͲǤ͹ͷ͵ ͲǤͺ͸͹ ͲǤͻ͵͸ ͲǤͻ͹ʹ ͲǤͻͺͻ ͳǤͲͲͲ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤ͵Ͳ ͲǤͲͳͶ ͲǤͲ͹ʹ ͲǤͳͻ͹ ͲǤ͵͹͹ ͲǤͷ͹Ͳ ͲǤ͹͵͹ ͲǤͺͷ͸ ͲǤͻʹͻ ͲǤͻ͸ͺ ͲǤͻͺ͹ ͳǤͲͲͲ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤͶͲ ͲǤͲͳʹ ͲǤͲ͸͸ ͲǤͳͺͷ ͲǤ͵ͷͻ ͲǤͷͷͳ ͲǤ͹ʹͲ ͲǤͺͶͶ ͲǤͻʹͳ ͲǤͻ͸Ͷ ͲǤͻͺͷ ͲǤͻͻͲ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤͷͲ ͲǤͲͳͳ ͲǤͲ͸ͳ ͲǤͳ͹Ͷ ͲǤ͵Ͷʹ ͲǤͷ͵ʹ ͲǤ͹Ͳ͵ ͲǤͺ͵ͳ ͲǤͻͳ͵ ͲǤͻ͸Ͳ ͲǤͻͺ͵ ͲǤͻͻͲ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ                 ͶǤ͸Ͳ ͲǤͲͳͲ ͲǤͲͷ͸ ͲǤͳ͸͵ ͲǤ͵ʹ͸ ͲǤͷͳ͵ ͲǤ͸ͺ͸ ͲǤͺͳͺ ͲǤͻͲͷ ͲǤͻͷͷ ͲǤͻͺͲ ͲǤͻͻͲ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤ͹Ͳ ͲǤͲͲͻ ͲǤͲͷʹ ͲǤͳͷʹ ͲǤ͵ͳͲ ͲǤͶͻͷ ͲǤ͸͸ͺ ͲǤͺͲͷ ͲǤͺͻ͸ ͲǤͻͷͲ ͲǤͻ͹ͺ ͲǤͻͻͲ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
K Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳͳ ͳʹ ͳ͵ ͳͶ ͶǤͺͲ ͲǤͲͲͺ ͲǤͲͶͺ ͲǤͳͶ͵ ͲǤʹͻͶ ͲǤͶ͹͸ ͲǤ͸ͷͳ ͲǤ͹ͻͳ ͲǤͺͺ͹ ͲǤͻͶͶ ͲǤͻ͹ͷ ͲǤͻͻͲ ͲǤͻͻ͸ ͲǤͻͻͻ ͳǤͲͲͲ ͳǤͲͲͲ ͶǤͻͲ ͲǤͲͲ͹ ͲǤͲͶͶ ͲǤͳ͵͵ ͲǤʹ͹ͻ ͲǤͶͷͺ ͲǤ͸͵Ͷ ͲǤ͹͹͹ ͲǤͺ͹͹ ͲǤͻ͵ͺ ͲǤͻ͹ʹ ͲǤͻͻͲ ͲǤͻͻͷ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ ͷǤͲͲ ͲǤͲͲ͹ ͲǤͲͶͲ ͲǤͳʹͷ ͲǤʹ͸ͷ ͲǤͶͶͲ ͲǤ͸ͳ͸ ͲǤ͹͸ʹ ͲǤͺ͸͹ ͲǤͻ͵ʹ ͲǤͻ͸ͺ ͲǤͻͻͲ ͲǤͻͻͷ ͲǤͻͻͺ ͲǤͻͻͻ ͳǤͲͲͲ                 ͷǤʹͲ ͲǤͲͲ͸ ͲǤͲ͵Ͷ ͲǤͳͲͻ ͲǤʹ͵ͺ ͲǤͶͲ͸ ͲǤͷͺͳ ͲǤ͹͵ʹ ͲǤͺͶͷ ͲǤͻͳͺ ͲǤͻ͸Ͳ ͲǤͻͺͲ ͲǤͻͻ͵ ͲǤͻͻ͹ ͲǤͻͻͻ ͳǤͲͲͲ ͷǤͶͲ ͲǤͲͲͷ ͲǤͲʹͻ ͲǤͲͻͷ ͲǤʹͳ͵ ͲǤ͵͹͵ ͲǤͷͶ͸ ͲǤ͹Ͳʹ ͲǤͺʹʹ ͲǤͻͲ͵ ͲǤͻͷͳ ͲǤͻͺͲ ͲǤͻͻͲ ͲǤͻͻ͸ ͲǤͻͻͻ ͳǤͲͲͲ ͷǤ͸Ͳ ͲǤͲͲͶ ͲǤͲʹͶ ͲǤͲͺʹ ͲǤͳͻͳ ͲǤ͵Ͷʹ ͲǤͷͳʹ ͲǤ͸͹Ͳ ͲǤ͹ͻ͹ ͲǤͺͺ͸ ͲǤͻͶͳ ͲǤͻ͹Ͳ ͲǤͻͺͺ ͲǤͻͻͷ ͲǤͻͻͺ ͲǤͻͻͻ ͷǤͺͲ ͲǤͲͲ͵ ͲǤͲʹͳ ͲǤͲ͹ʹ ͲǤͳ͹Ͳ ͲǤ͵ͳ͵ ͲǤͶ͹ͺ ͲǤ͸͵ͺ ͲǤ͹͹ͳ ͲǤͺ͸͹ ͲǤͻʹͻ ͲǤͻ͹Ͳ ͲǤͻͺͶ ͲǤͻͻ͵ ͲǤͻͻ͹ ͲǤͻͻͻ ͸ǤͲͲ ͲǤͲͲʹ ͲǤͲͳ͹ ͲǤͲ͸ʹ ͲǤͳͷͳ ͲǤʹͺͷ ͲǤͶͶ͸ ͲǤ͸Ͳ͸ ͲǤ͹ͶͶ ͲǤͺͶ͹ ͲǤͻͳ͸ ͲǤͻ͸Ͳ ͲǤͻͺͲ ͲǤͻͻͳ ͲǤͻͻ͸ ͲǤͻͻͻ                 

͸ǤʹͲ ͲǤͲͲʹ ͲǤͲͳͷ ͲǤͲͷͶ ͲǤͳ͵Ͷ ͲǤʹͷͻ ͲǤͶͳͶ ͲǤͷ͹Ͷ ͲǤ͹ͳ͸ ͲǤͺʹ͸ ͲǤͻͲʹ ͲǤͻͷͲ ͲǤͻ͹ͷ ͲǤͻͺͻ ͲǤͻͻͷ ͲǤͻͻͺ 
͸ǤͶͲ ͲǤͲͲʹ ͲǤͲͳʹ ͲǤͲͶ͸ ͲǤͳͳͻ ͲǤʹ͵ͷ ͲǤ͵ͺͶ ͲǤͷͶʹ ͲǤ͸ͺ͹ ͲǤͺͲ͵ ͲǤͺͺ͸ ͲǤͻͶͲ ͲǤͻ͸ͻ ͲǤͻͺ͸ ͲǤͻͻͶ ͲǤͻͻ͹ 
͸Ǥ͸Ͳ ͲǤͲͲͳ ͲǤͲͳͲ ͲǤͲͶͲ ͲǤͳͲͷ ͲǤʹͳ͵ ͲǤ͵ͷͷ ͲǤͷͳͳ ͲǤ͸ͷͺ ͲǤ͹ͺͲ ͲǤͺ͸ͻ ͲǤͻ͵Ͳ ͲǤͻ͸͵ ͲǤͻͺʹ ͲǤͻͻʹ ͲǤͻͻ͹ ͸ǤͺͲ ͲǤͲͲͳ ͲǤͲͲͻ ͲǤͲ͵Ͷ ͲǤͲͻ͵ ͲǤͳͻʹ ͲǤ͵ʹ͹ ͲǤͶͺͲ ͲǤ͸ʹͺ ͲǤ͹ͷͷ ͲǤͺͷͲ ͲǤͻʹͲ ͲǤͻͷͷ ͲǤͻ͹ͺ ͲǤͻͻͲ ͲǤͻͻ͸ ͹ǤͲͲ ͲǤͲͲͳ ͲǤͲͲ͹ ͲǤͲ͵Ͳ ͲǤͲͺʹ ͲǤͳ͹͵ ͲǤ͵Ͳͳ ͲǤͶͷͲ ͲǤͷͻͻ ͲǤ͹ʹͻ ͲǤͺ͵Ͳ ͲǤͻͲͲ ͲǤͻͶ͹ ͲǤͻ͹͵ ͲǤͻͺ͹ ͲǤͻͻͶ                 ͹ǤʹͲ ͲǤͲͲͳ ͲǤͲͲ͸ ͲǤͲʹͷ ͲǤͲ͹ʹ ͲǤͳͷ͸ ͲǤʹ͹͸ ͲǤͶʹͲ ͲǤͷ͸ͻ ͲǤ͹Ͳ͵ ͲǤͺͳͲ ͲǤͺͻͲ ͲǤͻ͵͹ ͲǤͻ͸͹ ͲǤͻͺͶ ͲǤͻͻ͵ ͹ǤͶͲ ͲǤͲͲͳ ͲǤͲͲͷ ͲǤͲʹʹ ͲǤͲ͸͵ ͲǤͳͶͲ ͲǤʹͷ͵ ͲǤ͵ͻʹ ͲǤͷ͵ͻ ͲǤ͸͹͸ ͲǤ͹ͺͺ ͲǤͺ͹Ͳ ͲǤͻʹ͸ ͲǤͻ͸ͳ ͲǤͻͺͲ ͲǤͻͻͳ ͹Ǥ͸Ͳ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͳͻ ͲǤͲͷͷ ͲǤͳʹͷ ͲǤʹ͵ͳ ͲǤ͵͸ͷ ͲǤͷͳͲ ͲǤ͸Ͷͺ ͲǤ͹͸ͷ ͲǤͺͷͲ ͲǤͻͳͷ ͲǤͻͷͶ ͲǤͻ͹͸ ͲǤͻͺͻ ͹ǤͺͲ ͲǤͲͲͲ ͲǤͲͲͶ ͲǤͲͳ͸ ͲǤͲͶͺ ͲǤͳͳʹ ͲǤʹͳͲ ͲǤ͵͵ͺ ͲǤͶͺͳ ͲǤ͸ʹͲ ͲǤ͹Ͷͳ ͲǤͺͶͲ ͲǤͻͲʹ ͲǤͻͶͷ ͲǤͻ͹ͳ ͲǤͻͺ͸ ͺǤͲͲ ͲǤͲͲͲ ͲǤͲͲ͵ ͲǤͲͳͶ ͲǤͲͶʹ ͲǤͳͲͲ ͲǤͳͻͳ ͲǤ͵ͳ͵ ͲǤͶͷ͵ ͲǤͷͻ͵ ͲǤ͹ͳ͹ ͲǤͺʹͲ ͲǤͺͺͺ ͲǤͻ͵͸ ͲǤͻ͸͸ ͲǤͻͺ͵                 ͺǤʹͲ ͲǤͲͲͲ ͲǤͲͲ͵ ͲǤͲͳʹ ͲǤͲ͵͹ ͲǤͲͺͻ ͲǤͳ͹Ͷ ͲǤʹͻͲ ͲǤͶʹͷ ͲǤͷ͸ͷ ͲǤ͸ͻʹ ͲǤͺͲͲ ͲǤͺ͹͵ ͲǤͻʹ͸ ͲǤͻ͸Ͳ ͲǤͻ͹ͻ ͺǤͶͲ ͲǤͲͲͲ ͲǤͲͲʹ ͲǤͲͳͲ ͲǤͲ͵ʹ ͲǤͲ͹ͻ ͲǤͳͷ͹ ͲǤʹ͸͹ ͲǤ͵ͻͻ ͲǤͷ͵͹ ͲǤ͸͸͸ ͲǤ͹͹Ͳ ͲǤͺͷ͹ ͲǤͻͳͷ ͲǤͻͷʹ ͲǤͻ͹ͷ ͺǤ͸Ͳ ͲǤͲͲͲ ͲǤͲͲʹ ͲǤͲͲͻ ͲǤͲʹͺ ͲǤͲ͹Ͳ ͲǤͳͶʹ ͲǤʹͶ͸ ͲǤ͵͹͵ ͲǤͷͲͻ ͲǤ͸ͶͲ ͲǤ͹ͷͲ ͲǤͺͶͲ ͲǤͻͲ͵ ͲǤͻͶͷ ͲǤͻ͹Ͳ ͺǤͺͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͹ ͲǤͲʹͶ ͲǤͲ͸ʹ ͲǤͳʹͺ ͲǤʹʹ͸ ͲǤ͵Ͷͺ ͲǤͶͺʹ ͲǤ͸ͳͶ ͲǤ͹͵Ͳ ͲǤͺʹʹ ͲǤͺͻͲ ͲǤͻ͵͸ ͲǤͻ͸ͷ ͻǤͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͸ ͲǤͲʹͳ ͲǤͲͷͷ ͲǤͳͳ͸ ͲǤʹͲ͹ ͲǤ͵ʹͶ ͲǤͶͷ͸ ͲǤͷͺ͹ ͲǤ͹ͳͲ ͲǤͺͲ͵ ͲǤͺ͹͸ ͲǤͻʹ͸ ͲǤͻͷͻ 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
K Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳͳ ͳʹ ͳ͵ ͳͶ                 ͻǤʹͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͷ ͲǤͲͳͺ ͲǤͲͶͻ ͲǤͳͲͶ ͲǤͳͺͻ ͲǤ͵Ͳͳ ͲǤͶ͵Ͳ ͲǤͷ͸ͳ ͲǤ͸ͺͲ ͲǤ͹ͺ͵ ͲǤͺ͸ͳ ͲǤͻͳ͸ ͲǤͻͷʹ ͻǤͶͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͷ ͲǤͲͳ͸ ͲǤͲͶ͵ ͲǤͲͻ͵ ͲǤͳ͹͵ ͲǤʹ͹ͻ ͲǤͶͲͶ ͲǤͷ͵ͷ ͲǤ͸͸Ͳ ͲǤ͹͸͵ ͲǤͺͶͷ ͲǤͻͲͶ ͲǤͻͶͶ ͻǤ͸Ͳ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͳͶ ͲǤͲ͵ͺ ͲǤͲͺͶ ͲǤͳͷ͹ ͲǤʹͷͺ ͲǤ͵ͺͲ ͲǤͷͲͻ ͲǤ͸͵Ͳ ͲǤ͹Ͷͳ ͲǤͺʹͺ ͲǤͺͻʹ ͲǤͻ͵͸ ͻǤͺͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͳʹ ͲǤͲ͵͵ ͲǤͲ͹ͷ ͲǤͳͶ͵ ͲǤʹ͵ͻ ͲǤ͵ͷ͸ ͲǤͶͺ͵ ͲǤ͸ͳͲ ͲǤ͹ͳͻ ͲǤͺͳͲ ͲǤͺ͹ͻ ͲǤͻʹ͹ ͳͲǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲ͵ ͲǤͲͳͲ ͲǤͲʹͻ ͲǤͲ͸͹ ͲǤͳ͵Ͳ ͲǤʹʹͲ ͲǤ͵͵͵ ͲǤͶͷͺ ͲǤͷͺͲ ͲǤ͸ͻ͹ ͲǤ͹ͻʹ ͲǤͺ͸Ͷ ͲǤͻͳ͹                 ͳͲǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲʹ ͲǤͲͲ͹ ͲǤͲʹͳ ͲǤͲͷͲ ͲǤͳͲʹ ͲǤͳ͹ͻ ͲǤʹ͹ͻ ͲǤ͵ͻ͹ ͲǤͷʹͲ ͲǤ͸͵ͻ ͲǤ͹Ͷʹ ͲǤͺʹͷ ͲǤͺͺͺ ͳͳǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͷ ͲǤͲͳͷ ͲǤͲ͵ͺ ͲǤͲ͹ͻ ͲǤͳͶ͵ ͲǤʹ͵ʹ ͲǤ͵Ͷͳ ͲǤͶ͸Ͳ ͲǤͷ͹ͻ ͲǤ͸ͺͻ ͲǤ͹ͺͳ ͲǤͺͷͶ ͳͳǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͳͳ ͲǤͲʹͺ ͲǤͲ͸Ͳ ͲǤͳͳͶ ͲǤͳͻͳ ͲǤʹͺͻ ͲǤͶͲͲ ͲǤͷʹͲ ͲǤ͸͵͵ ͲǤ͹͵͵ ͲǤͺͳͷ ͳʹǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͺ ͲǤͲʹͲ ͲǤͲͶ͸ ͲǤͲͻͲ ͲǤͳͷͷ ͲǤʹͶʹ ͲǤ͵ͷͲ ͲǤͶ͸ʹ ͲǤͷ͹͸ ͲǤ͸ͺʹ ͲǤ͹͹ʹ ͳʹǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲʹ ͲǤͲͲͷ ͲǤͲͳͷ ͲǤͲ͵ͷ ͲǤͲ͹Ͳ ͲǤͳʹͷ ͲǤʹͲͳ ͲǤ͵ͲͲ ͲǤͶͲ͸ ͲǤͷͳͻ ͲǤ͸ʹͺ ͲǤ͹ʹͷ ͳ͵ǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͳͳ ͲǤͲʹ͸ ͲǤͲͷͶ ͲǤͳͲͲ ͲǤͳ͸͸ ͲǤʹͷͲ ͲǤ͵ͷ͵ ͲǤͶ͸͵ ͲǤͷ͹͵ ͲǤ͸͹ͷ ͳ͵ǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲͺ ͲǤͲͳͻ ͲǤͲͶͳ ͲǤͲ͹ͻ ͲǤͳ͵ͷ ͲǤʹͳͲ ͲǤ͵ͲͶ ͲǤͶͲͻ ͲǤͷͳͺ ͲǤ͸ʹ͵ ͳͶǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲʹ ͲǤͲͲ͸ ͲǤͲͳͶ ͲǤͲ͵ʹ ͲǤͲ͸ʹ ͲǤͳͲͻ ͲǤͳͺͲ ͲǤʹ͸Ͳ ͲǤ͵ͷͺ ͲǤͶ͸Ͷ ͲǤͷ͹Ͳ ͳͶǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͳͲ ͲǤͲʹͶ ͲǤͲͶͺ ͲǤͲͺͺ ͲǤͳͶͲ ͲǤʹʹͲ ͲǤ͵ͳͳ ͲǤͶͳ͵ ͲǤͷͳͺ 

ͳͷǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲͺ ͲǤͲͳͺ ͲǤͲ͵͹ ͲǤͲ͹Ͳ ͲǤͳʹͲ ͲǤͳͺͷ ͲǤʹ͸ͺ ͲǤ͵͸͵ ͲǤͶ͸͸ 
ͳͷǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲ͸ ͲǤͲͳ͵ ͲǤͲʹͻ ͲǤͲͷͷ ͲǤͳͲͲ ͲǤͳͷͶ ͲǤʹʹͺ ͲǤ͵ͳ͹ ͲǤͶͳͷ 
ͳ͸ǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͳͲ ͲǤͲʹʹ ͲǤͲͶ͵ ͲǤͲͺͲ ͲǤͳʹ͹ ͲǤͳͻ͵ ͲǤʹ͹ͷ ͲǤ͵͸ͺ ͳ͸ǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲ͹ ͲǤͲͳ͹ ͲǤͲ͵Ͷ ͲǤͲ͸Ͳ ͲǤͳͲͶ ͲǤͳ͸ʹ ͲǤʹ͵͸ ͲǤ͵ʹ͵ ͳ͹ǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͷ ͲǤͲͳ͵ ͲǤͲʹ͸ ͲǤͲͷͲ ͲǤͲͺͷ ͲǤͳ͵ͷ ͲǤʹͲͳ ͲǤʹͺͳ ͳ͹ǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲͶ ͲǤͲͲͻ ͲǤͲʹͲ ͲǤͲͶͲ ͲǤͲ͸ͺ ͲǤͳͳʹ ͲǤͳ͹Ͳ ͲǤʹͶ͵                  ͳͺǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲ͹ ͲǤͲͳͷ ͲǤͲ͵Ͳ ͲǤͲͷͷ ͲǤͲͻʹ ͲǤͳͶ͵ ͲǤʹͲͺ ͳͺǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͷ ͲǤͲͳʹ ͲǤͲʹͲ ͲǤͲͶͶ ͲǤͲ͹ͷ ͲǤͳͳͻ ͲǤͳ͹͹ ͳͻǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͶ ͲǤͲͲͻ ͲǤͲʹͲ ͲǤͲ͵ͷ ͲǤͲ͸ͳ ͲǤͲͻͺ ͲǤͳͷͲ ͳͻǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲ͹ ͲǤͲͳͲ ͲǤͲʹ͹ ͲǤͲͶͻ ͲǤͲͺͳ ͲǤͳʹ͸ 
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Table   B   Cumulative  Poisson Probabilities )Pr x(X  ሺ˳���������������������ǡͳͻͺͷሻ�� 
K Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͳͲ ͳͳ ͳʹ ͳ͵ ͳͶ ʹͲǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͷ ͲǤͲͳͲ ͲǤͲʹͳ ͲǤͲ͵ͻ ͲǤͲ͸͸ ͲǤͳͲͷ                  ʹͲǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͶ ͲǤͲͳͲ ͲǤͲͳ͹ ͲǤͲ͵ͳ ͲǤͲͷͶ ͲǤͲͺ͹ ʹͳǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͳͲ ͲǤͲͳ͵ ͲǤͲʹͷ ͲǤͲͶ͵ ͲǤͲ͹ʹ ʹͳǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͷ ͲǤͲͳͲ ͲǤͲͳͻ ͲǤͲ͵ͷ ͲǤͲͷͻ ʹʹǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͶ ͲǤͲͲͺ ͲǤͲͳͷ ͲǤͲʹͺ ͲǤͲͶͺ ʹʹǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲ͸ ͲǤͲͳʹ ͲǤͲʹʹ ͲǤͲ͵ͻ                  ʹ͵ǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͶ ͲǤͲͲͻ ͲǤͲͳ͹ ͲǤͲ͵ͳ ʹ͵ǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲ͵ ͲǤͲͲ͹ ͲǤͲͳͶ ͲǤͲʹͷ ʹͶǤͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲ͵ ͲǤͲͲͷ ͲǤͲͳͳ ͲǤͲʹͲ ʹͶǤͷͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͲ ͲǤͲͲͳ ͲǤͲͲʹ ͲǤͲͲͶ ͲǤͲͲͺ ͲǤͲͳ͸ 
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Table C Area under normal curve fromെλࢠ�࢕࢚�� ൌ ࣆି࢞
࣌ ࢆ�ሺܚ۾�   : ൑    .ሻࢠ

Example Pr( 3.00) 0.00135z     
ͲǤͲͻ ͲǤͲͺ ͲǤͲ͹ ͲǤͲ͸ ͲǤͲͷ ͲǤͲͶ ͲǤͲ͵ ͲǤͲʹ ͲǤͲͳ ͲǤͲͲ 

-͵Ǥͷ ͲǤͲͲͲͳ͹ ͲǤͲͲͲͳ͹ ͲǤͲͲͲͳͺ ͲǤͲͲͲͳͻ ͲǤͲͲͲͳͻ ͲǤͲͲͲʹ ͲǤͲͲͲʹͳ ͲǤͲͲͲʹʹ ͲǤͲͲͲʹʹ ͲǤͲͲͲʹ͵ 
-͵ǤͶ ͲǤͲͲͲʹͶ ͲǤͲͲͲʹͷ ͲǤͲͲͲʹ͸ ͲǤͲͲͲʹ͹ ͲǤͲͲͲʹͺ ͲǤͲͲͲʹͻ ͲǤͲͲͲ͵ ͲǤͲͲͲ͵ͳ ͲǤͲͲͲ͵ʹ ͲǤͲͲͲ͵Ͷ 
-͵Ǥ͵ ͲǤͲͲͲ͵ͷ ͲǤͲͲͲ͵͸ ͲǤͲͲͲ͵ͺ ͲǤͲͲͲ͵ͻ ͲǤͲͲͲͶ ͲǤͲͲͲͶʹ ͲǤͲͲͲͶ͵ ͲǤͲͲͲͶͷ ͲǤͲͲͲͶ͹ ͲǤͲͲͲͶͺ 
-͵Ǥʹ ͲǤͲͲͲͷ ͲǤͲͲͲͷʹ ͲǤͲͲͲͷͶ ͲǤͲͲͲͷ͸ ͲǤͲͲͲͷͺ ͲǤͲͲͲ͸ ͲǤͲͲͲ͸ʹ ͲǤͲͲͲ͸Ͷ ͲǤͲͲͲ͸͸ ͲǤͲͲͲ͸ͻ 
-͵Ǥͳ ͲǤͲͲͲ͹ͳ ͲǤͲͲͲ͹Ͷ ͲǤͲͲͲ͹͸ ͲǤͲͲͲ͹ͻ ͲǤͲͲͲͺʹ ͲǤͲͲͲͺͶ ͲǤͲͲͲͺ͹ ͲǤͲͲͲͻ ͲǤͲͲͲͻͶ ͲǤͲͲͲͻ͹ 
-͵ ͲǤͲͲͳ ͲǤͲͲͳͲͶ ͲǤͲͲͳͲ͹ ͲǤͲͲͳͳͳ ͲǤͲͲͳͳͶ ͲǤͲͲͳͳͺ ͲǤͲͲͳʹʹ ͲǤͲͲͳʹ͸ ͲǤͲͲͳ͵ͳ ͲǤͲͲͳ͵ͷ 
-ʹǤͻ ͲǤͲͲͳ͵ͻ ͲǤͲͲͳͶͶ ͲǤͲͲͳͶͻ ͲǤͲͲͳͷͶ ͲǤͲͲͳͷͻ ͲǤͲͲͳ͸Ͷ ͲǤͲͲͳ͸ͻ ͲǤͲͲͳ͹ͷ ͲǤͲͲͳͺͳ ͲǤͲͲͳͺ͹ 
-ʹǤͺ ͲǤͲͲͳͻ͵ ͲǤͲͲͳͻͻ ͲǤͲͲʹͲͷ ͲǤͲͲʹͳʹ ͲǤͲͲʹͳͻ ͲǤͲͲʹʹ͸ ͲǤͲͲʹ͵͵ ͲǤͲͲʹͶ ͲǤͲͲʹͶͺ ͲǤͲͲʹͷ͸ 
-ʹǤ͹ ͲǤͲͲʹ͸Ͷ ͲǤͲͲʹ͹ʹ ͲǤͲͲʹͺ ͲǤͲͲʹͺͻ ͲǤͲͲʹͻͺ ͲǤͲͲ͵Ͳ͹ ͲǤͲͲ͵ͳ͹ ͲǤͲͲ͵ʹ͸ ͲǤͲͲ͵͵͸ ͲǤͲͲ͵Ͷ͹ 
-ʹǤ͸ ͲǤͲͲ͵ͷ͹ ͲǤͲͲ͵͸ͺ ͲǤͲͲ͵͹ͻ ͲǤͲͲ͵ͻͳ ͲǤͲͲͶͲʹ ͲǤͲͲͶͳͷ ͲǤͲͲͶʹ͹ ͲǤͲͲͶͶ ͲǤͲͲͶͷ͵ ͲǤͲͲͶ͸͸ 
-ʹǤͷ ͲǤͲͲͶͺ ͲǤͲͲͶͻͶ ͲǤͲͲͷͲͺ ͲǤͲͲͷʹ͵ ͲǤͲͲͷ͵ͻ ͲǤͲͲͷͷͶ ͲǤͲͲͷ͹ ͲǤͲͲͷͺ͹ ͲǤͲͲ͸ͲͶ ͲǤͲͲ͸ʹͳ 
-ʹǤͶ ͲǤͲͲ͸͵ͻ ͲǤͲͲ͸ͷ͹ ͲǤͲͲ͸͹͸ ͲǤͲͲ͸ͻͷ ͲǤͲͲ͹ͳͶ ͲǤͲͲ͹͵Ͷ ͲǤͲͲ͹ͷͷ ͲǤͲͲ͹͹͸ ͲǤͲͲ͹ͻͺ ͲǤͲͲͺʹ 
-ʹǤ͵ ͲǤͲͲͺͶʹ ͲǤͲͲͺ͸͸ ͲǤͲͲͺͺͻ ͲǤͲͲͻͳͶ ͲǤͲͲͻ͵ͻ ͲǤͲͲͻ͸Ͷ ͲǤͲͲͻͻ ͲǤͲͳͲͳ͹ ͲǤͲͳͲͶͶ ͲǤͲͳͲ͹ʹ 
-ʹǤʹ ͲǤͲͳͳͲͳ ͲǤͲͳͳ͵Ͳ ͲǤͲͳͳ͸ ͲǤͲͳͳͻͳ ͲǤͲͳʹʹʹ ͲǤͲͳʹͷͷ ͲǤͲͳʹͺ͹ ͲǤͲͳ͵ʹͳ ͲǤͲͳ͵ͷͷ ͲǤͲͳ͵ͻͲ 
-ʹǤͳ ͲǤͲͳͶʹ͸ ͲǤͲͳͶ͸͵ ͲǤͲͳͷ ͲǤͲͳͷ͵ͻ ͲǤͲͳͷ͹ͺ ͲǤͲͳ͸ͳͺ ͲǤͲͳ͸ͷͻ ͲǤͲͳ͹ͲͲ ͲǤͲͳ͹Ͷ͵ ͲǤͲͳ͹ͺ͸ 
-ʹ ͲǤͲͳͺ͵ͳ ͲǤͲͳͺ͹͸ ͲǤͲͳͻʹ͵ ͲǤͲͳͻ͹ ͲǤͲʹͲͳͺ ͲǤͲʹͲ͸ͺ ͲǤͲʹͳͳͺ ͲǤͲʹͳ͸ͻ ͲǤͲʹʹʹʹ ͲǤͲʹʹ͹ͷ 
-ͳǤͻ ͲǤͲʹ͵͵ ͲǤͲʹ͵ͺͷ ͲǤͲʹͶͶʹ ͲǤͲʹͷ ͲǤͲʹͷͷͻ ͲǤͲʹ͸ͳͻ ͲǤͲʹ͸ͺ ͲǤͲʹ͹Ͷ͵ ͲǤͲʹͺͲ͹ ͲǤͲʹͺ͹ʹ 
-ͳǤͺ ͲǤͲʹͻ͵ͺ ͲǤͲ͵ͲͲͷ ͲǤͲ͵Ͳ͹Ͷ ͲǤͲ͵ͳͶͶ ͲǤͲ͵ʹͳ͸ ͲǤͲ͵ʹͺͺ ͲǤͲ͵͵͸ʹ ͲǤͲ͵Ͷ͵ͺ ͲǤͲ͵ͷͳͷ ͲǤͲ͵ͷͻ͵ 
-ͳǤ͹ ͲǤͲ͵͸͹͵ ͲǤͲ͵͹ͷͶ ͲǤͲ͵ͺ͵͸ ͲǤͲ͵ͻʹ ͲǤͲͶͲͲ͸ ͲǤͲͶͲͻ͵ ͲǤͲͶͳͺʹ ͲǤͲͶʹ͹ʹ ͲǤͲͶ͵͸͵ ͲǤͲͶͶͷ͹ 
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Table C (continued)    Area under normal curve �� ���ሺܼ ൑ )ሻ  Example Prݖ 1.06) 0.14457z     

 

ͲǤͲͻ ͲǤͲͺ ͲǤͲ͹ ͲǤͲ͸ ͲǤͲͷ ͲǤͲͶ ͲǤͲ͵ ͲǤͲʹ ͲǤͲͳ ͲǤͲͲ 

-ͳǤ͸ ͲǤͲͶͷͷͳ ͲǤͲͶ͸Ͷͺ ͲǤͲͶ͹Ͷ͸ ͲǤͲͶͺͶ͸ ͲǤͲͶͻͶ͹ ͲǤͲͷͲͷ ͲǤͲͷͳͷͷ ͲǤͲͷʹ͸ʹ ͲǤͲͷ͵͹ ͲǤͲͷͶͺ 
-ͳǤͷ ͲǤͲͷͷͻʹ ͲǤͲͷ͹Ͳͷ ͲǤͲͷͺʹͳ ͲǤͲͷͻ͵ͺ ͲǤͲ͸Ͳͷ͹ ͲǤͲ͸ͳ͹ͺ ͲǤͲ͸͵Ͳͳ ͲǤͲ͸Ͷʹ͸ ͲǤͲ͸ͷͷʹ ͲǤͲ͸͸ͺͳ 
-ͳǤͶ ͲǤͲ͸ͺͳͳ ͲǤͲ͸ͻͶͶ ͲǤͲ͹Ͳ͹ͺ ͲǤͲ͹ʹͳͷ ͲǤͲ͹͵ͷ͵ ͲǤͲ͹Ͷͻ͵ ͲǤͲ͹͸͵͸ ͲǤͲ͹͹ͺ ͲǤͲ͹ͻʹ͹ ͲǤͲͺͲ͹͸ 
-ͳǤ͵ ͲǤͲͺʹʹ͸ ͲǤͲͺ͵͹ͻ ͲǤͲͺͷ͵Ͷ ͲǤͲͺ͸ͻͳ ͲǤͲͺͺͷͳ ͲǤͲͻͲͳʹ ͲǤͲͻͳ͹͸ ͲǤͲͻ͵Ͷʹ ͲǤͲͻͷͳ ͲǤͲͻ͸ͺ 
-ͳǤʹ ͲǤͲͻͺͷ͵ ͲǤͳͲͲʹ͹ ͲǤͳͲʹͲͶ ͲǤͳͲ͵ͺ͵ ͲǤͳͲͷ͸ͷ ͲǤͳͲ͹Ͷͻ ͲǤͳͲͻ͵ͷ ͲǤͳͳͳʹ͵ ͲǤͳͳ͵ͳͶ ͲǤͳͳͷͲ͹ 
-ͳǤͳ ͲǤͳͳ͹Ͳʹ ͲǤͳͳͻ ͲǤͳʹͳ ͲǤͳʹ͵Ͳʹ ͲǤͳʹͷͲ͹ ͲǤͳʹ͹ͳͶ ͲǤͳʹͻʹͶ ͲǤͳ͵ͳ͵͸ ͲǤͳ͵͵ͷ ͲǤͳ͵ͷ͸͹ 
-ͳ ͲǤͳ͵͹ͺ͸ ͲǤͳͶͲͲ͹ ͲǤͳͶʹ͵ͳ ͲǤͳͶͶͷ͹ ͲǤͳͶ͸ͺ͸ ͲǤͳͶͻͳ͹ ͲǤͳͷͳͷͳ ͲǤͳͷ͵ͺ͸ ͲǤͳͷ͸ʹͷ ͲǤͳͷͺ͸͸ 
-ͲǤͻ ͲǤͳ͸ͳͲͻ ͲǤͳ͸͵ͷͶ ͲǤͳ͸͸Ͳʹ ͲǤͳ͸ͺͷ͵ ͲǤͳ͹ͳͲ͸ ͲǤͳ͹͵͸ͳ ͲǤͳ͹͸ͳͻ ͲǤͳ͹ͺ͹ͻ ͲǤͳͺͳͶͳ ͲǤͳͺͶͲ͸ 
-ͲǤͺ ͲǤͳͺ͸͹͵ ͲǤͳͺͻͶ͵ ͲǤͳͻʹͳͷ ͲǤͳͻͶͺͻ ͲǤͳͻ͹͸͸ ͲǤʹͲͲͶͷ ͲǤʹͲ͵ʹ͹ ͲǤʹͲ͸ͳͳ ͲǤʹͲͺͻ͹ ͲǤʹͳͳͺ͸ 
-ͲǤ͹ ͲǤʹͳͶ͹͸ ͲǤʹͳ͹͹ ͲǤʹʹͲ͸ͷ ͲǤʹʹ͵͸͵ ͲǤʹʹ͸͸͵ ͲǤʹʹͻ͸ͷ ͲǤʹ͵ʹ͹ ͲǤʹ͵ͷ͹͸ ͲǤʹ͵ͺͺͷ ͲǤʹͶͳͻ͸ 
-ͲǤ͸ ͲǤʹͶͷͳ ͲǤʹͶͺʹͷ ͲǤʹͷͳͶ͵ ͲǤʹͷͶ͸͵ ͲǤʹͷ͹ͺͷ ͲǤʹ͸ͳͲͻ ͲǤʹ͸Ͷ͵ͷ ͲǤʹ͸͹͸͵ ͲǤʹ͹Ͳͻ͵ ͲǤʹ͹Ͷʹͷ 
-ͲǤͷ ͲǤʹ͹͹͸ ͲǤʹͺͲͻ͸ ͲǤʹͺͶ͵Ͷ ͲǤʹͺ͹͹Ͷ ͲǤʹͻͳͳ͸ ͲǤʹͻͶ͸ ͲǤʹͻͺͲ͸ ͲǤ͵Ͳͳͷ͵ ͲǤ͵ͲͷͲ͵ ͲǤ͵ͲͺͷͶ 
-ͲǤͶ ͲǤ͵ͳʹͲ͹ ͲǤ͵ͳͷ͸ͳ ͲǤ͵ͳͻͳͺ ͲǤ͵ʹʹ͹͸ ͲǤ͵ʹ͸͵͸ ͲǤ͵ʹͻͻ͹ ͲǤ͵͵͵͸ ͲǤ͵͵͹ʹͶ ͲǤ͵ͶͲͻ ͲǤ͵ͶͶͷͺ 
-ͲǤ͵ ͲǤ͵Ͷͺʹ͹ ͲǤ͵ͷͳͻ͹ ͲǤ͵ͷͷ͸ͻ ͲǤ͵ͷͻͶʹ ͲǤ͵͸͵ͳ͹ ͲǤ͵͸͸ͻ͵ ͲǤ͵͹Ͳ͹ ͲǤ͵͹ͶͶͺ ͲǤ͵͹ͺʹͺ ͲǤ͵ͺʹͲͻ 
-ͲǤʹ ͲǤ͵ͺͷͻͳ ͲǤ͵ͺͻ͹Ͷ ͲǤ͵ͻ͵ͷͺ ͲǤ͵ͻ͹Ͷ͵ ͲǤͶͲͳʹͻ ͲǤͶͲͷͳ͹ ͲǤͶͲͻͲͷ ͲǤͶͳʹͻͶ ͲǤͶͳ͸ͺ͵ ͲǤͶʹͲ͹Ͷ 
-ͲǤͳ ͲǤͶʹͶ͸ͷ ͲǤͶʹͺͷͺ ͲǤͶ͵ʹͷͳ ͲǤͶ͵͸ͶͶ ͲǤͶͶͲ͵ͺ ͲǤͶͶͶ͵͵ ͲǤͶͶͺʹͺ ͲǤͶͷʹʹͶ ͲǤͶͷ͸ʹ ͲǤͶ͸Ͳͳ͹ 
Ͳ ͲǤͶ͸ͶͳͶ ͲǤͶ͸ͺͳʹ ͲǤͶ͹ʹͳ ͲǤͶ͹͸Ͳͺ ͲǤͶͺͲͲ͸ ͲǤͶͺͶͲͷ ͲǤͶͺͺͲ͵ ͲǤͶͻʹͲʹ ͲǤͶͻ͸Ͳͳ ͲǤͷ 
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Table C(continued)  Area under Normal curve�  ���ሺܼ ൑ :ሻ   Exampleݖ Pr( 3.44) 0.99971z   � 

 
ͲǤͲͲ ͲǤͲͳ ͲǤͲʹ ͲǤͲ͵ ͲǤͲͶ ͲǤͲͷ ͲǤͲ͸ ͲǤͲ͹ ͲǤͲͺ ͲǤͲͻ 

ͳǤͻ ͲǤͻ͹ͳʹͺ ͲǤͻ͹ͳͻ͵ ͲǤͻ͹ʹͷ͹ ͲǤͻ͹͵ʹ ͲǤͻ͹͵ͺͳ ͲǤͻ͹ͶͶͳ ͲǤͻ͹ͷ ͲǤͻ͹ͷͷͺ ͲǤͻ͹͸ͳͷ ͲǤͻ͹͸͹ 
ʹ ͲǤͻ͹͹ʹͷ ͲǤͻ͹͹͹ͺ ͲǤͻ͹ͺ͵ͳ ͲǤͻ͹ͺͺʹ ͲǤͻ͹ͻ͵ʹ ͲǤͻ͹ͻͺʹ ͲǤͻͺͲ͵ ͲǤͻͺͲ͹͹ ͲǤͻͺͳʹͶ ͲǤͻͺͳ͸ͻ 
ʹǤͳ ͲǤͻͺʹͳͶ ͲǤͻͺʹͷ͹ ͲǤͻͺ͵ ͲǤͻͺ͵Ͷͳ ͲǤͻͺ͵ͺʹ ͲǤͻͺͶʹʹ ͲǤͻͺͶ͸ͳ ͲǤͻͺͷ ͲǤͻͺͷ͵͹ ͲǤͻͺͷ͹Ͷ 
ʹǤʹ ͲǤͻͺ͸ͳ ͲǤͻͺ͸Ͷͷ ͲǤͻͺ͸͹ͻ ͲǤͻͺ͹ͳ͵ ͲǤͻͺ͹Ͷͷ ͲǤͻͺ͹͹ͺ ͲǤͻͺͺͲͻ ͲǤͻͺͺͶ ͲǤͻͺͺ͹ ͲǤͻͺͺͻͻ 
ʹǤ͵ ͲǤͻͺͻʹͺ ͲǤͻͺͻͷ͸ ͲǤͻͺͻͺ͵ ͲǤͻͻͲͳ ͲǤͻͻͲ͵͸ ͲǤͻͻͲ͸ͳ ͲǤͻͻͲͺ͸ ͲǤͻͻͳͳͳ ͲǤͻͻͳ͵Ͷ ͲǤͻͻͳͷͺ 
ʹǤͶ ͲǤͻͻͳͺ ͲǤͻͻʹͲʹ ͲǤͻͻʹʹͶ ͲǤͻͻʹͶͷ ͲǤͻͻʹ͸͸ ͲǤͻͻʹͺ͸ ͲǤͻͻ͵Ͳͷ ͲǤͻͻ͵ʹͶ ͲǤͻͻ͵Ͷ͵ ͲǤͻͻ͵͸ͳ 
ʹǤͷ ͲǤͻͻ͵͹ͻ ͲǤͻͻ͵ͻ͸ ͲǤͻͻͶͳ͵ ͲǤͻͻͶ͵ ͲǤͻͻͶͶ͸ ͲǤͻͻͶ͸ͳ ͲǤͻͻͶ͹͹ ͲǤͻͻͶͻʹ ͲǤͻͻͷͲ͸ ͲǤͻͻͷʹ 
ʹǤ͸ ͲǤͻͻͷ͵Ͷ ͲǤͻͻͷͶ͹ ͲǤͻͻͷ͸ ͲǤͻͻͷ͹͵ ͲǤͻͻͷͺͷ ͲǤͻͻͷͻͺ ͲǤͻͻ͸Ͳͻ ͲǤͻͻ͸ʹͳ ͲǤͻͻ͸͵ʹ ͲǤͻͻ͸Ͷ͵ 
ʹǤ͹ ͲǤͻͻ͸ͷ͵ ͲǤͻͻ͸͸Ͷ ͲǤͻͻ͸͹Ͷ ͲǤͻͻ͸ͺ͵ ͲǤͻͻ͸ͻ͵ ͲǤͻͻ͹Ͳʹ ͲǤͻͻ͹ͳͳ ͲǤͻͻ͹ʹ ͲǤͻͻ͹ʹͺ ͲǤͻͻ͹͵͸ 
ʹǤͺ ͲǤͻͻ͹ͶͶ ͲǤͻͻ͹ͷʹ ͲǤͻͻ͹͸ ͲǤͻͻ͹͸͹ ͲǤͻͻ͹͹Ͷ ͲǤͻͻ͹ͺͳ ͲǤͻͻ͹ͺͺ ͲǤͻͻ͹ͻͷ ͲǤͻͻͺͲͳ ͲǤͻͻͺͲ͹ 
ʹǤͻ ͲǤͻͻͺͳ͵ ͲǤͻͻͺͳͻ ͲǤͻͻͺʹͷ ͲǤͻͻͺ͵ͳ ͲǤͻͻͺ͵͸ ͲǤͻͻͺͶͳ ͲǤͻͻͺͶ͸ ͲǤͻͻͺͷͳ ͲǤͻͻͺͷ͸ ͲǤͻͻͺ͸ͳ 
͵ ͲǤͻͻͺ͸ͷ ͲǤͻͻͺ͸ͻ ͲǤͻͻͺ͹Ͷ ͲǤͻͻͺ͹ͺ ͲǤͻͻͺͺʹ ͲǤͻͻͺͺ͸ ͲǤͻͻͺͺͻ ͲǤͻͻͺͻ͵ ͲǤͻͻͺͻ͸ ͲǤͻͻͻ 
͵Ǥͳ ͲǤͻͻͻͲ͵ ͲǤͻͻͻͲ͸ ͲǤͻͻͻͳ ͲǤͻͻͻͳ͵ ͲǤͻͻͻͳ͸ ͲǤͻͻͻͳͺ ͲǤͻͻͻʹͳ ͲǤͻͻͻʹͶ ͲǤͻͻͻʹ͸ ͲǤͻͻͻʹͻ 
͵Ǥʹ ͲǤͻͻͻ͵ͳ ͲǤͻͻͻ͵Ͷ ͲǤͻͻͻ͵͸ ͲǤͻͻͻ͵ͺ ͲǤͻͻͻͶ ͲǤͻͻͻͶʹ ͲǤͻͻͻͶͶ ͲǤͻͻͻͶ͸ ͲǤͻͻͻͶͺ ͲǤͻͻͻͷ 
͵Ǥ͵ ͲǤͻͻͻͷʹ ͲǤͻͻͻͷ͵ ͲǤͻͻͻͷͷ ͲǤͻͻͻͷ͹ ͲǤͻͻͻͷͺ ͲǤͻͻͻ͸ ͲǤͻͻͻ͸ͳ ͲǤͻͻͻ͸ʹ ͲǤͻͻͻ͸Ͷ ͲǤͻͻͻ͸ͷ 
͵ǤͶ ͲǤͻͻͻ͸͸ ͲǤͻͻͻ͸ͺ ͲǤͻͻͻ͸ͻ ͲǤͻͻͻ͹ ͲǤͻͻͻ͹ͳ ͲǤͻͻͻ͹ʹ ͲǤͻͻͻ͹͵ ͲǤͻͻͻ͹Ͷ ͲǤͻͻͻ͹ͷ ͲǤͻͻͻ͹͸ 
͵Ǥͷ ͲǤͻͻͻ͹͹ ͲǤͻͻͻ͹ͺ ͲǤͻͻͻ͹ͺ ͲǤͻͻͻ͹ͻ ͲǤͻͻͻͺ ͲǤͻͻͻͺͳ ͲǤͻͻͻͺͳ ͲǤͻͻͻͺʹ ͲǤͻͻͻͺ͵ ͲǤͻͻͻͺ͵ 
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Table C(continued)  Area under normal curve����ሺܼ ൑  ሻݖ

Ͳ ͲǤͲͳ ͲǤͲʹ ͲǤͲ͵ ͲǤͲͶ ͲǤͲͷ ͲǤͲ͸ ͲǤͲ͹ ͲǤͲͺ ͲǤͲͻ 
Ͳ ͲǤͷ ͲǤͷͲ͵ͻͻ ͲǤͷͲ͹ͻͺ ͲǤͷͳͳͻ͹ ͲǤͷͳͷͻͷ ͲǤͷͳͻͻͶ ͲǤͷʹ͵ͻʹ ͲǤͷʹ͹ͻ ͲǤͷ͵ͳͺͺ ͲǤͷ͵ͷͺ͸ 
ͲǤͳ ͲǤͷ͵ͻͺ͵ ͲǤͷͶ͵ͺ ͲǤͷͶ͹͹͸ ͲǤͷͷͳ͹ʹ ͲǤͷͷͷ͸͹ ͲǤͷͷͻ͸ʹ ͲǤͷ͸͵ͷ͸ ͲǤͷ͸͹Ͷͻ ͲǤͷ͹ͳͶʹ ͲǤͷ͹ͷ͵ͷ 
ͲǤʹ ͲǤͷ͹ͻʹ͸ ͲǤͷͺ͵ͳ͹ ͲǤͷͺ͹Ͳ͸ ͲǤͷͻͲͻͷ ͲǤͷͻͶͺ͵ ͲǤͷͻͺ͹ͳ ͲǤ͸Ͳʹͷ͹ ͲǤ͸Ͳ͸Ͷʹ ͲǤ͸ͳͲʹ͸ ͲǤ͸ͳͶͲͻ 
ͲǤ͵ ͲǤ͸ͳ͹ͻͳ ͲǤ͸ʹͳ͹ʹ ͲǤ͸ʹͷͷʹ ͲǤ͸ʹͻ͵ ͲǤ͸͵͵Ͳ͹ ͲǤ͸͵͸ͺ͵ ͲǤ͸ͶͲͷͺ ͲǤ͸ͶͶ͵ͳ ͲǤ͸ͶͺͲ͵ ͲǤ͸ͷͳ͹͵ 
ͲǤͶ ͲǤ͸ͷͷͶʹ ͲǤ͸ͷͻͳ ͲǤ͸͸ʹ͹͸ ͲǤ͸͸͸Ͷ ͲǤ͸͹ͲͲ͵ ͲǤ͸͹͵͸Ͷ ͲǤ͸͹͹ʹͶ ͲǤ͸ͺͲͺʹ ͲǤ͸ͺͶ͵ͻ ͲǤ͸ͺ͹ͻ͵ 
ͲǤͷ ͲǤ͸ͻͳͶ͸ ͲǤ͸ͻͶͻ͹ ͲǤ͸ͻͺͶ͹ ͲǤ͹ͲͳͻͶ ͲǤ͹ͲͷͶ ͲǤ͹ͲͺͺͶ ͲǤ͹ͳʹʹ͸ ͲǤ͹ͳͷ͸͸ ͲǤ͹ͳͻͲͶ ͲǤ͹ʹʹͶ 
ͲǤ͸ ͲǤ͹ʹͷ͹ͷ ͲǤ͹ʹͻͲ͹ ͲǤ͹͵ʹ͵͹ ͲǤ͹͵ͷ͸ͷ ͲǤ͹͵ͺͻͳ ͲǤ͹Ͷʹͳͷ ͲǤ͹Ͷͷ͵͹ ͲǤ͹Ͷͺͷ͹ ͲǤ͹ͷͳ͹ͷ ͲǤ͹ͷͶͻ 
ͲǤ͹ ͲǤ͹ͷͺͲͶ ͲǤ͹͸ͳͳͷ ͲǤ͹͸ͶʹͶ ͲǤ͹͸͹͵ ͲǤ͹͹Ͳ͵ͷ ͲǤ͹͹͵͵͹ ͲǤ͹͹͸͵͹ ͲǤ͹͹ͻ͵ͷ ͲǤ͹ͺʹ͵ ͲǤ͹ͺͷʹͶ 
ͲǤͺ ͲǤ͹ͺͺͳͶ ͲǤ͹ͻͳͲ͵ ͲǤ͹ͻ͵ͺͻ ͲǤ͹ͻ͸͹͵ ͲǤ͹ͻͻͷͷ ͲǤͺͲʹ͵Ͷ ͲǤͺͲͷͳͳ ͲǤͺͲ͹ͺͷ ͲǤͺͳͲͷ͹ ͲǤͺͳ͵ʹ͹ 
ͲǤͻ ͲǤͺͳͷͻͶ ͲǤͺͳͺͷͻ ͲǤͺʹͳʹͳ ͲǤͺʹ͵ͺͳ ͲǤͺʹ͸͵ͻ ͲǤͺʹͺͻͶ ͲǤͺ͵ͳͶ͹ ͲǤͺ͵͵ͻͺ ͲǤͺ͵͸Ͷ͸ ͲǤͺ͵ͺͻͳ 
ͳ ͲǤͺͶͳ͵Ͷ ͲǤͺͶ͵͹ͷ ͲǤͺͶ͸ͳͶ ͲǤͺͶͺͶͻ ͲǤͺͷͲͺ͵ ͲǤͺͷ͵ͳͶ ͲǤͺͷͷͶ͵ ͲǤͺͷ͹͸ͻ ͲǤͺͷͻͻ͵ ͲǤͺ͸ʹͳͶ 
ͳǤͳ ͲǤͺ͸Ͷ͵͵ ͲǤͺ͸͸ͷ ͲǤͺ͸ͺ͸Ͷ ͲǤͺ͹Ͳ͹͸ ͲǤͺ͹ʹͺ͸ ͲǤͺ͹Ͷͻ͵ ͲǤͺ͹͸ͻͺ ͲǤͺ͹ͻ ͲǤͺͺͳ ͲǤͺͺʹͻͺ 
ͳǤʹ ͲǤͺͺͶͻ͵ ͲǤͺͺ͸ͺ͸ ͲǤͺͺͺ͹͹ ͲǤͺͻͲ͸ͷ ͲǤͺͻʹͷͳ ͲǤͺͻͶ͵ͷ ͲǤͺͻ͸ͳ͹ ͲǤͺͻ͹ͻ͸ ͲǤͺͻͻ͹͵ ͲǤͻͲͳͶ͹ 
ͳǤ͵ ͲǤͻͲ͵ʹ ͲǤͻͲͶͻ ͲǤͻͲ͸ͷͺ ͲǤͻͲͺʹͶ ͲǤͻͲͻͺͺ ͲǤͻͳͳͶͻ ͲǤͻͳ͵Ͳͻ ͲǤͻͳͶ͸͸ ͲǤͻͳ͸ʹͳ ͲǤͻͳ͹͹Ͷ 
ͳǤͶ ͲǤͻͳͻʹͶ ͲǤͻʹͲ͹͵ ͲǤͻʹʹʹ ͲǤͻʹ͵͸Ͷ ͲǤͻʹͷͲ͹ ͲǤͻʹ͸Ͷ͹ ͲǤͻʹ͹ͺͷ ͲǤͻʹͻʹʹ ͲǤͻ͵Ͳͷ͸ ͲǤͻ͵ͳͺͻ 
ͳǤͷ ͲǤͻ͵͵ͳͻ ͲǤͻ͵ͶͶͺ ͲǤͻ͵ͷ͹Ͷ ͲǤͻ͵͸ͻͻ ͲǤͻ͵ͺʹʹ ͲǤͻ͵ͻͶ͵ ͲǤͻͶͲ͸ʹ ͲǤͻͶͳ͹ͻ ͲǤͻͶʹͻͷ ͲǤͻͶͶͲͺ 
ͳǤ͸ ͲǤͻͶͷʹ ͲǤͻͶ͸͵ ͲǤͻͶ͹͵ͺ ͲǤͻͶͺͶͷ ͲǤͻͶͻͷ ͲǤͻͷͲͷ͵ ͲǤͻͷͳͷͶ ͲǤͻͷʹͷͶ ͲǤͻͷ͵ͷʹ ͲǤͻͷͶͶͻ 
ͳǤ͹ ͲǤͻͷͷͶ͵ ͲǤͻͷ͸͵͹ ͲǤͻͷ͹ʹͺ ͲǤͻͷͺͳͺ ͲǤͻͷͻͲ͹ ͲǤͻͷͻͻͶ ͲǤͻ͸Ͳͺ ͲǤͻ͸ͳ͸Ͷ ͲǤͻ͸ʹͶ͸ ͲǤͻ͸͵ʹ͹ 
ͳǤͺ ͲǤͻ͸ͶͲ͹ ͲǤͻ͸Ͷͺͷ ͲǤͻ͸ͷ͸ʹ ͲǤͻ͸͸͵ͺ ͲǤͻ͸͹ͳʹ ͲǤͻ͸͹ͺͶ ͲǤͻ͸ͺͷ͸ ͲǤͻ͸ͻʹ͸ ͲǤͻ͸ͻͻͷ ͲǤͻ͹Ͳ͸ʹ 
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Z   Ͳ ͲǤͲͳ ͲǤͲʹ ͲǤͲ͵ ͲǤͲͶ ͲǤͲͷ ͲǤͲ͸ ͲǤͲ͹ ͲǤͲͺ ͲǤͲͻ 
Ͳ ͲǤͷ ͲǤͶͻ͸Ͳͳ ͲǤͶͻʹͲʹ ͲǤͶͺͺͲ͵ ͲǤͶͺͶͲͷ ͲǤͶͺͲͲ͸ ͲǤͶ͹͸Ͳͺ ͲǤͶ͹ʹͳ ͲǤͶ͸ͺͳʹ ͲǤͶ͸ͶͳͶ 
ͲǤͳ ͲǤͶ͸Ͳͳ͹ ͲǤͶͷ͸ʹ ͲǤͶͷʹʹͶ ͲǤͶͶͺʹͺ ͲǤͶͶͶ͵͵ ͲǤͶͶͲ͵ͺ ͲǤͶ͵͸ͶͶ ͲǤͶ͵ʹͷͳ ͲǤͶʹͺͷͺ ͲǤͶʹͶ͸ͷ 
ͲǤʹ ͲǤͶʹͲ͹Ͷ ͲǤͶͳ͸ͺ͵ ͲǤͶͳʹͻͶ ͲǤͶͲͻͲͷ ͲǤͶͲͷͳ͹ ͲǤͶͲͳʹͻ ͲǤ͵ͻ͹Ͷ͵ ͲǤ͵ͻ͵ͷͺ ͲǤ͵ͺͻ͹Ͷ ͲǤ͵ͺͷͻͳ 
ͲǤ͵ ͲǤ͵ͺʹͲͻ ͲǤ͵͹ͺʹͺ ͲǤ͵͹ͶͶͺ ͲǤ͵͹Ͳ͹ ͲǤ͵͸͸ͻ͵ ͲǤ͵͸͵ͳ͹ ͲǤ͵ͷͻͶʹ ͲǤ͵ͷͷ͸ͻ ͲǤ͵ͷͳͻ͹ ͲǤ͵Ͷͺʹ͹ 
ͲǤͶ ͲǤ͵ͶͶͷͺ ͲǤ͵ͶͲͻ ͲǤ͵͵͹ʹͶ ͲǤ͵͵͵͸ ͲǤ͵ʹͻͻ͹ ͲǤ͵ʹ͸͵͸ ͲǤ͵ʹʹ͹͸ ͲǤ͵ͳͻͳͺ ͲǤ͵ͳͷ͸ͳ ͲǤ͵ͳʹͲ͹ 
ͲǤͷ ͲǤ͵ͲͺͷͶ ͲǤ͵ͲͷͲ͵ ͲǤ͵Ͳͳͷ͵ ͲǤʹͻͺͲ͸ ͲǤʹͻͶ͸ ͲǤʹͻͳͳ͸ ͲǤʹͺ͹͹Ͷ ͲǤʹͺͶ͵Ͷ ͲǤʹͺͲͻ͸ ͲǤʹ͹͹͸ 
ͲǤ͸ ͲǤʹ͹Ͷʹͷ ͲǤʹ͹Ͳͻ͵ ͲǤʹ͸͹͸͵ ͲǤʹ͸Ͷ͵ͷ ͲǤʹ͸ͳͲͻ ͲǤʹͷ͹ͺͷ ͲǤʹͷͶ͸͵ ͲǤʹͷͳͶ͵ ͲǤʹͶͺʹͷ ͲǤʹͶͷͳ 
ͲǤ͹ ͲǤʹͶͳͻ͸ ͲǤʹ͵ͺͺͷ ͲǤʹ͵ͷ͹͸ ͲǤʹ͵ʹ͹ ͲǤʹʹͻ͸ͷ ͲǤʹʹ͸͸͵ ͲǤʹʹ͵͸͵ ͲǤʹʹͲ͸ͷ ͲǤʹͳ͹͹ ͲǤʹͳͶ͹͸ 
ͲǤͺ ͲǤʹͳͳͺ͸ ͲǤʹͲͺͻ͹ ͲǤʹͲ͸ͳͳ ͲǤʹͲ͵ʹ͹ ͲǤʹͲͲͶͷ ͲǤͳͻ͹͸͸ ͲǤͳͻͶͺͻ ͲǤͳͻʹͳͷ ͲǤͳͺͻͶ͵ ͲǤͳͺ͸͹͵ 
ͲǤͻ ͲǤͳͺͶͲ͸ ͲǤͳͺͳͶͳ ͲǤͳ͹ͺ͹ͻ ͲǤͳ͹͸ͳͻ ͲǤͳ͹͵͸ͳ ͲǤͳ͹ͳͲ͸ ͲǤͳ͸ͺͷ͵ ͲǤͳ͸͸Ͳʹ ͲǤͳ͸͵ͷͶ ͲǤͳ͸ͳͲͻ 
ͳ ͲǤͳͷͺ͸͸ ͲǤͳͷ͸ʹͷ ͲǤͳͷ͵ͺ͸ ͲǤͳͷͳͷͳ ͲǤͳͶͻͳ͹ ͲǤͳͶ͸ͺ͸ ͲǤͳͶͶͷ͹ ͲǤͳͶʹ͵ͳ ͲǤͳͶͲͲ͹ ͲǤͳ͵͹ͺ͸ 
ͳǤͳ ͲǤͳ͵ͷ͸͹ ͲǤͳ͵͵ͷ ͲǤͳ͵ͳ͵͸ ͲǤͳʹͻʹͶ ͲǤͳʹ͹ͳͶ ͲǤͳʹͷͲ͹ ͲǤͳʹ͵Ͳʹ ͲǤͳʹͳ ͲǤͳͳͻ ͲǤͳͳ͹Ͳʹ 
ͳǤʹ ͲǤͳͳͷͲ͹ ͲǤͳͳ͵ͳͶ ͲǤͳͳͳʹ͵ ͲǤͳͲͻ͵ͷ ͲǤͳͲ͹Ͷͻ ͲǤͳͲͷ͸ͷ ͲǤͳͲ͵ͺ͵ ͲǤͳͲʹͲͶ ͲǤͳͲͲʹ͹ ͲǤͲͻͺͷ͵ 
ͳǤ͵ ͲǤͲͻ͸ͺ ͲǤͲͻͷͳ ͲǤͲͻ͵Ͷʹ ͲǤͲͻͳ͹͸ ͲǤͲͻͲͳʹ ͲǤͲͺͺͷͳ ͲǤͲͺ͸ͻͳ ͲǤͲͺͷ͵Ͷ ͲǤͲͺ͵͹ͻ ͲǤͲͺʹʹ͸ 
ͳǤͶ ͲǤͲͺͲ͹͸ ͲǤͲ͹ͻʹ͹ ͲǤͲ͹͹ͺ ͲǤͲ͹͸͵͸ ͲǤͲ͹Ͷͻ͵ ͲǤͲ͹͵ͷ͵ ͲǤͲ͹ʹͳͷ ͲǤͲ͹Ͳ͹ͺ ͲǤͲ͸ͻͶͶ ͲǤͲ͸ͺͳͳ 
ͳǤͷ ͲǤͲ͸͸ͺͳ ͲǤͲ͸ͷͷʹ ͲǤͲ͸Ͷʹ͸ ͲǤͲ͸͵Ͳͳ ͲǤͲ͸ͳ͹ͺ ͲǤͲ͸Ͳͷ͹ ͲǤͲͷͻ͵ͺ ͲǤͲͷͺʹͳ ͲǤͲͷ͹Ͳͷ ͲǤͲͷͷͻʹ 
ͳǤ͸ ͲǤͲͷͶͺ ͲǤͲͷ͵͹ ͲǤͲͷʹ͸ʹ ͲǤͲͷͳͷͷ ͲǤͲͷͲͷ ͲǤͲͶͻͶ͹ ͲǤͲͶͺͶ͸ ͲǤͲͶ͹Ͷ͸ ͲǤͲͶ͸Ͷͺ ͲǤͲͶͷͷͳ 
ͳǤ͹ ͲǤͲͶͶͷ͹ ͲǤͲͶ͵͸͵ ͲǤͲͶʹ͹ʹ ͲǤͲͶͳͺʹ ͲǤͲͶͲͻ͵ ͲǤͲͶͲͲ͸ ͲǤͲ͵ͻʹ ͲǤͲ͵ͺ͵͸ ͲǤͲ͵͹ͷͶ ͲǤͲ͵͸͹͵ 
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Table D �continued) some values of ࢻࢆ  
2

0.05 1.96Z    � 

Z   Ͳ ͲǤͲͳ ͲǤͲʹ ͲǤͲ͵ ͲǤͲͶ ͲǤͲͷ ͲǤͲ͸ ͲǤͲ͹ ͲǤͲͺ ͲǤͲͻ 
ͳǤͺ ͲǤͲ͵ͷͻ͵ ͲǤͲ͵ͷͳͷ ͲǤͲ͵Ͷ͵ͺ ͲǤͲ͵͵͸ʹ ͲǤͲ͵ʹͺͺ ͲǤͲ͵ʹͳ͸ ͲǤͲ͵ͳͶͶ ͲǤͲ͵Ͳ͹Ͷ ͲǤͲ͵ͲͲͷ ͲǤͲʹͻ͵ͺ 
ͳǤͻ ͲǤͲʹͺ͹ʹ ͲǤͲʹͺͲ͹ ͲǤͲʹ͹Ͷ͵ ͲǤͲʹ͸ͺ ͲǤͲʹ͸ͳͻ ͲǤͲʹͷͷͻ ͲǤͲʹͷ ͲǤͲʹͶͶʹ ͲǤͲʹ͵ͺͷ ͲǤͲʹ͵͵ 
ʹ ͲǤͲʹʹ͹ͷ ͲǤͲʹʹʹʹ ͲǤͲʹͳ͸ͻ ͲǤͲʹͳͳͺ ͲǤͲʹͲ͸ͺ ͲǤͲʹͲͳͺ ͲǤͲͳͻ͹ ͲǤͲͳͻʹ͵ ͲǤͲͳͺ͹͸ ͲǤͲͳͺ͵ͳ 
ʹǤͳ ͲǤͲͳ͹ͺ͸ ͲǤͲͳ͹Ͷ͵ ͲǤͲͳ͹ ͲǤͲͳ͸ͷͻ ͲǤͲͳ͸ͳͺ ͲǤͲͳͷ͹ͺ ͲǤͲͳͷ͵ͻ ͲǤͲͳͷ ͲǤͲͳͶ͸͵ ͲǤͲͳͶʹ͸ 
ʹǤʹ ͲǤͲͳ͵ͻ ͲǤͲͳ͵ͷͷ ͲǤͲͳ͵ʹͳ ͲǤͲͳʹͺ͹ ͲǤͲͳʹͷͷ ͲǤͲͳʹʹʹ ͲǤͲͳͳͻͳ ͲǤͲͳͳ͸ ͲǤͲͳͳ͵ ͲǤͲͳͳͲͳ 
ʹǤ͵ ͲǤͲͳͲ͹ʹ ͲǤͲͳͲͶͶ ͲǤͲͳͲͳ͹ ͲǤͲͲͻͻ ͲǤͲͲͻ͸Ͷ ͲǤͲͲͻ͵ͻ ͲǤͲͲͻͳͶ ͲǤͲͲͺͺͻ ͲǤͲͲͺ͸͸ ͲǤͲͲͺͶʹ 
ʹǤͶ ͲǤͲͲͺʹ ͲǤͲͲ͹ͻͺ ͲǤͲͲ͹͹͸ ͲǤͲͲ͹ͷͷ ͲǤͲͲ͹͵Ͷ ͲǤͲͲ͹ͳͶ ͲǤͲͲ͸ͻͷ ͲǤͲͲ͸͹͸ ͲǤͲͲ͸ͷ͹ ͲǤͲͲ͸͵ͻ 
ʹǤͷ ͲǤͲͲ͸ʹͳ ͲǤͲͲ͸ͲͶ ͲǤͲͲͷͺ͹ ͲǤͲͲͷ͹ ͲǤͲͲͷͷͶ ͲǤͲͲͷ͵ͻ ͲǤͲͲͷʹ͵ ͲǤͲͲͷͲͺ ͲǤͲͲͶͻͶ ͲǤͲͲͶͺ 
ʹǤ͸ ͲǤͲͲͶ͸͸ ͲǤͲͲͶͷ͵ ͲǤͲͲͶͶ ͲǤͲͲͶʹ͹ ͲǤͲͲͶͳͷ ͲǤͲͲͶͲʹ ͲǤͲͲ͵ͻͳ ͲǤͲͲ͵͹ͻ ͲǤͲͲ͵͸ͺ ͲǤͲͲ͵ͷ͹ 
ʹǤ͹ ͲǤͲͲ͵Ͷ͹ ͲǤͲͲ͵͵͸ ͲǤͲͲ͵ʹ͸ ͲǤͲͲ͵ͳ͹ ͲǤͲͲ͵Ͳ͹ ͲǤͲͲʹͻͺ ͲǤͲͲʹͺͻ ͲǤͲͲʹͺ ͲǤͲͲʹ͹ʹ ͲǤͲͲʹ͸Ͷ 
ʹǤͺ ͲǤͲͲʹͷ͸ ͲǤͲͲʹͶͺ ͲǤͲͲʹͶ ͲǤͲͲʹ͵͵ ͲǤͲͲʹʹ͸ ͲǤͲͲʹͳͻ ͲǤͲͲʹͳʹ ͲǤͲͲʹͲͷ ͲǤͲͲͳͻͻ ͲǤͲͲͳͻ͵ 
ʹǤͻ ͲǤͲͲͳͺ͹ ͲǤͲͲͳͺͳ ͲǤͲͲͳ͹ͷ ͲǤͲͲͳ͸ͻ ͲǤͲͲͳ͸Ͷ ͲǤͲͲͳͷͻ ͲǤͲͲͳͷͶ ͲǤͲͲͳͶͻ ͲǤͲͲͳͶͶ ͲǤͲͲͳ͵ͻ 
͵ ͲǤͲͲͳ͵ͷ ͲǤͲͲͳ͵ͳ ͲǤͲͲͳʹ͸ ͲǤͲͲͳʹʹ ͲǤͲͲͳͳͺ ͲǤͲͲͳͳͶ ͲǤͲͲͳͳͳ ͲǤͲͲͳͲ͹ ͲǤͲͲͳͲͶ ͲǤͲͲͳ 



397 

 

 

Table E    MATLAB commands related to some distributions 
Prob. Dist. Fun/ 
Prob. Func Cum. Dist Func. Inverse of cum. 

dist. Func. 
Random number 
Generator 

Parameter 
Estimator Distribution 

����ሺ�ǡ��ͳǡ�ʹሻ ����ሺ�ǡ��ͳǡ�ʹሻ ϐ���ሺ�ǡ��ͳǡ�ʹሻ ����ሺ�ͳǡ�ʹǡ�ǡ�
)  F 

gevpdf(C,B,A) gevcdf(x,C,B,A) gevinv 
(P,C,B,A) 

gevrnd(C,B,A) gevfit(X) GEV 
gppdf gpcdf gpinv gprnd gpfit GPD 
raylpdf(x,B) raylcdf(x,B) raylinv(P,B) raylrnd(B,m,n) raylfit(X) Rayleigh 
tpdf(x,V) tcdf(x,V) tinv(P,V) trnd(V,m,n)  T 
betapdf(x,A,B) betacdf(x,A,B) betainv(P,A,B) betarnd(A,B,m,

n,o,.) betafit(X) beta 
poisspdf(x, ) poisscdf(x, ) poissinv(P,

) 
poissrnd(
m,n) 

poissfit(X
) 

Poisson 
binopdf(x,N,P) binocdf(x,N,P) binoinv(Y,N,P) binornd(N,P,m,

n) 
binofit(X,
n) 

Binomial 
nbinpdf(x,R,P) nbincdf(x,R,P) nbininv(Y,R,P) nbinrnd(R,P,m,

n) nbinfit(X) Negat. Bin. 
hygepdf(x,M,K,
N) 

hygecdf(x,M,K,
N) 

hygeinv(P,M,K
,N) 

hygernd(M,K,N,
m,n)  Hyper Geo 

gampdf(x,A,B) gamcdf(x,A,B) gaminv(P,A,B) gamrnd(A,B,m,
n) gamfit(X) Gamma 

lognpdf(x,ì, ó) logncdf(x,ì, ó) logninv(P,ì, ó) lognrnd(ì, 
ó,m,n) lognfit(X) Lognormal 

���ʹ���ሺ�ǡ�ሻ ���ʹ���ሺ�ǡ�ሻ ���ʹ���ሺ�ǡ�ሻ ���ʹ���ሺ�ǡ�ǡ�ሻ  Chi  Squ. 
normpdf(x, ì, 
ó) 

normcdf(x ì, 
ó) 

norminv(P,ì, 
ó) 

normrnd(ì, 
ó,m,n) 

normfit(X
) 

Normal 
exppdf(x, mu) expcdf(x, mu) expinv(P,mu) exprnd(mu,m,n

) expfit(X) Exponential 
geopdf(x,P) geocdf(x,P) geoinv(Y,P) geornd(P,m,n)  Geometric 
wblpdf(x, B,C) wblcdf(x, B,C) wblinv(P, B,C) wblrnd(B,C,m,n

) wblfit(X) Weibul 
unifpdf(x,A,B) unifcdf(x,A,B) unifinv(P,A,B) unifrnd(A,B,m,

n) unifit(X) Uniform 


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Table 	����������������������������͸�������������� 

Density /probability Function mean Variance Moment Gen Func��߶ሺݐሻ  Distribution 

  ሺܾ െ ܽሻଶ
ͳʹ

 Unifotm on [a   b] 

����ݎ݋���ఒ௫ି݁ߣ ͳߠ ݁
ିఏ௫ ߠ ൌ ͳ

ߣ
  Exponential with 

0 0or  
     Normal with parametrs 

(ì, ó) 

 
 

Binomial with 
parametrs n &0≤p≤1 

 � � 
 

Poisson with parameter 
0 

 

ܣ ൅ ߛ,ܤߛ ൌ
ͲǤͲͷ͹͹ʹϬ 

  

Weibul 

1 ,a x b
b a

 


( )
2

a b
( )

tb tae e
t b a




2
1
t


 

 2
221

2

x

e x




 

 

 2
2 2

exp
2

t
t



 

 
 

(1 ) 0,1, ,x n xn
p p x n

x
 

  
 

np(1 )np p[ (1 )] t npe p

0,1,2,...
!

x

e x
x

  exp[ ( 1)]te 

Ax

C
B

Ax

eB

Ax

B

C C




 

)()(
1

6

22B
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

Ytୀඨ
Ϯ��K
�Ś

 ൜ �d>�������
�d> െ <Yכ������ d�t ൌ ඥϮ��K�Ś ൌ �ŚYt /ŵĂǆ ൌ Yt 

/ ҧ ൌ Yt

Ϯ
 

Classic 
Econimic 

order(EOQ) 

YכሺYכ െ Ŷሻ ൑
2

WQ
൑ YכሺYכ ൅ Ŷሻ 

    EOQ- Discrete 

Yŝ
כ ൌ ඨϮ�ŝ�Kŝ

�Śŝ
 

 *TVC ൌ෍ටϮ�ŝ�Kŝ�Śŝ

Ŷ

ŝୀϭ
 

  Multiple-item 
EOQ 

No constraint 
Yũ
כ ൌ �ũd

    כ
��dכ ൌ ට Ϯ�K

σ �Śũ�ũ
 

 *TVC

ൌ �K
d
൅෍ �Śũ ൬

�ũd

Ϯ
൰

Ŷ

ũୀϭ
 

  Multiple-item 
EOQ 

No constraint 
The same T 
One  Co for 
ordering all 

together 

Yũ
כ ൌ �ũd

כ����d  כ ൌ ඨϮσ �Kũ
σ �Śũ�ũ

 
 *TVC

ൌ෍ �Kũሺ
ϭ

d
ሻ

Ŷ

ũୀϭ
൅෍�Śũ�ũ

d

Ϯ

Ŷ

ũୀϭ
 

  Multiple-item 
EOQ 

No constraint 
The same T 

separate  Co for 
each item 
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

Yכ ൌ �dכ�����dכ ൌ ඨϮ�K
��Ś

 
  /ŵĂǆ ൌ �dכ ൅ �d>  Economic order 

interval 
(Single-item  EOI) 

��Yכ ൌ ʋ�

�Ś
൅ ൬ϭ ൅ ʋො

�Ś
൰ ďכ 

ďכ ൌ ϭ

ʋො ൅ �Ś
ሺ�ŚYכ െ ʋ�ሻ 

൜ �d> െ ďכ������������������
�d> െ ďכ െ ŬYכ��������� 

 /ŵĂǆ ൌ כ^ ൌ Yכ െ ďכ 

 

 Back-ordered  
EOQ(Ɏ ് Ͳሻ 

��Yכ ൌ�Yt�ඨʋො ൅ �Ś
ʋො  

ďכ ൌ Yכሺ �Ś
ʋො ൅ �Ś

ሻ 

ƌ ൌ �d> െ ďכ *TVC ൌ d�tඨ ʋො
ʋො ൅ �Ś

 

/ŵĂǆ ൌ כ^

ൌ Yכ
ʋො

ʋො ൅ �Ś
 

 Back-ordered  
EOQ(Ɏෝ ് Ͳ�
Ɏ ൌ Ͳሻ 

ە
۔
ۓ Y ൌ Ϭ������dϮכ ൌ ь����������ʋ� ൏ d�t��

Yכ ൌ ʋ�

�Ś
���Y|¬»��Å��dϮכ�� ���ʋ� ൌ d�t

Y ൌ Yt�������dϮכ ൌ Ϭ������ʋ� ൏ d�t���������������
� 

    Lost-sale  EOQ 

Yכ� ൌ Ě�

/ሺWെ Ěሻ ൅
WYt

Wെ Ě
��െ �Ƌ  'כ ൌ �KሺWିĚሻ

W
ቀYכ�
Yt
െ ϭቁϮ     ൌ Ϭ   Temporary 

reduction in proce 

�ᇱכ ൌ �ୟכ ൅ �
�ሺ��ୟ

כ ൅ �ሻ െ �
൅ � LT �ୟכ

ൌ ඨ ʹ��୓
�ሺ� ൅ �ሻ 

 �ሻ'כ ൌ �KሾቀY
כ�

Yt
ቁϮ െ ϭ] 

B)'כ ൌ �K ቀY
כ�

Yt
െ ϭቁϮ  q=ROP 

  EOQ-increase of 
price(inflation) 
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

�WY ൌ Yכ ൌ ඨ
Ϯ��K

/W ቀϭെ �
Zቁ

 
 

൞
�d> െ <Y������������������������������������

d>ሺ� െ Zሻ ൅
ሺ< ൅ ϭሻ ൬Z

�
െ ϭ൰Y��������

*TVC ൌ ඨʹ��୓�୦ ൬ͳ െ ��൰

ൌ �୦�୵ඨͳെ �� 

 
/ ҧ ൌ Yכ

Ϯ
ൈ 

൬ϭ െ �

Z
൰ 

EPQ-single item 

Yכ

ൌ ඩ
Ϯ��K

�Ś ቀϭെ �
Zቁ
െ ʋϮ�Ϯ

�Śሺ�Ś ൅ ʋොሻඨ
ʋො ൅ �Ś

ʋො

ďכ ൌ ሾ�ŚYכ െ ʋ�ሿሺϭെ �
Zሻ

ʋො ൅ �Ś
 

  
/ŵĂǆ ൌ Yכ ൬ϭെ �

Z
൰

െ ďכ 

 EPQ-single item: 
Back ordered 

 

כ� ൌ ඨ
ʹ��୓

�୦ ቀͳ െ ��ቁ
ඨɎෝ ൅ �୦Ɏෝ  

 
�ŚY

כ ൬ϭ െ �

Z
൰ඨ ʋො

ʋො ൅ �Ś
 

  EPQ-single item: 
Back ordered 

(Ɏ ൌ Ͳ) 

Yŝ
כ ൌ ඩ

Ϯ�ŝ�Kŝ

�Śŝ ቀϭെ �ŝ
Zŝ
ቁ

 

 

෍ ඨϮ�ŝ�Kŝ�Śŝ ൬ϭ െ
�ŝ

Zŝ
൰

*TVC ୀ
Ŷ

ŝୀϭ
 

 
/ ҧŝ ൌ Yŝ

Ϯ
ൈ 

൬ϭെ �ŝ

Zŝ
൰ 

Multiple-item EPQ 

No constraint 
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

Yŝ
כ ൌ �ŝd

 כ
dכ ൌ DĂǆሼdϬכǡ dŵŝŶሽ 

����dϬכ ൌ ඩ
Ϯσ ሺ�KሻŝŶ

ŝୀϭ
σ ሺ�Śሻŝ�ŝ ቀϭെ �ŝ

Zŝ
ቁŶ

ŝୀϭ
 

dŵŝŶ ൌ σ ^ŝ

ϭ െ σ �ŝ
Zŝ

Ŷ
ŝୀϭ

 

 d·Zu�ÉY�]dכ ൌ dϬ
 כ

*TVC ൌ �Ϯ෍ ሺ�Kሻŝ
dכ

Ŷ

ŝୀϭ

ൌ Ϯŵכ෍ሺ�Kሻŝ
Ŷ

ŝୀϭ
 

 
iI ൌ �ŝ

Ϯŵ
ൈ 

൬ϭെ �ŝ

Zŝ
൰ 

Multiple-item EPQ 
One  station& 

The same T for all 

෍�ŝ

Zŝ

Ŷ

ŝୀϭ
൏ ϭ 

* ( )o

h

C E D
Q

C


2
 

ϭሻƉ ൌ �Wƌ�ሺ�>ሻ ൑ ƌሻ 
Ϯሻƌ ൌ
ൌ ŵĂǆሺ�ሻ ൈ ��ሺd>�ሻ 
ϯሻƌ ൌ �ŵĂǆ�ሺd>�ሻ ൈ �ሺ�ሻ 

�Ë�Âe�> �µZ»�¿�  
ƌ ൌ �ሺ�>ሻ ൅ �ϭିƉ��ʍ�> 

 sĂƌሺ�>ሻ ൌ ʅ�
Ϯʍ>

Ϯ ൅ ʅ>ʍ�
Ϯ  

 
I ൌ Y

Ϯ
൅ ^Ǥ ^ 

^^ ൌ ƌכ െ �ሺ�>�ሻ 
��³Y�> �µZ»�¿�  

^^ ൌ �ϭିƉʍ�> 
ďതሺƌሻ ൌ ʍ�>'hሺŬሻ       

Ŭ ൌ ƌିʅ�>
ʍ�>

 

(r, Q)=FOS 

 
 

*C Q* hA)F (r )=1-D ðDL

*
) ( )

*
( )

C QhB f rDL gD

C Qhp r
D gDL





 

  ^^ ൌ ƌെ �ሺ�>�ሻ (r    Q) 
Back ordered 
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

2 ( )
* o

h

C E D
Q

C


 
 

A)
*

Pr( *)
* ( )

h
L

h

C Q
D r

C Q E D
 



B)
*

*

( )

( )
L

L

D h

D

f r C Q

F r gD


 

  
* ( )

( )

L

SS

r E D

b r




  

(r Q) 
Lost-Sale 

* 02

h D

C
T

C 


 
( )

( )

T L

T L

D

D

F R pDT L

Discrete

F R pDT L

Continuous 








Normal��

1
R Z

D p D
T L T L

  


 

 

 

Var( )

2 Var( )

D
T L

D
T L

T L
D













 

- ( )SS R E DT L   
T LD  ��µZ»�¿  

1 DT L
S S Z

p



 

( )

( )DT L U

b R

G k




Ŭ ൌ Zିʅ�>శd
ʍ�>శd

 

(R    T) =FOI 
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Table G Some useful formulas for  Inventory  Models 
T  �or Q r  �� (ROP) *TVC  

  Model 

 )

*
*Pr( )

A

C ThD RL T 
 

*) ( )
L T

h
D

C T
B f R

g


 

   (R  T): back 
ordered 

 A)

L+T

C ThPr( D > R) =
ð + C Th

B)  

   (R  T)  Los sale 

 
 






