"

Unit 2: Equivalent Fractions

Unit 2 Review

  1. Find all the factors for each number. If a number is a prime number, write “prime” next to it.
    1. 4                                                                                      
    2. 10                                                                                    
    3. 21                                                                                    
    4. 6                                                                                     
    5. 2                                                                                     
    6. 16                                                                                   
  2. Find the factors, common factors and the Greatest Common Factor (GCF).
    Factors Activity
    Factors Common Factors GCF
    [latex]\dfrac{2}{8}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{8}{16}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{24}{32}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{9}{12}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{5}{15}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{25}{30}[/latex] Numerator:

    Denominator:

    [latex]\dfrac{4}{12}[/latex] Numerator:

    Denominator:

  3. Express each fraction in lowest terms. Remember: be sure to write the greatest common factor (GCF) you are dividing with.
    1. [latex]\dfrac{6}{9}=[/latex]
    2. [latex]\dfrac{6}{18}=[/latex]
    3. [latex]\dfrac{12}{28}=[/latex]
    4. [latex]\dfrac{15}{30}=[/latex]
    5. [latex]\dfrac{4}{24}=[/latex]
    6. [latex]\dfrac{10}{18}=[/latex]
  4. Circle the fractions that are in lowest terms.
    1. [latex]\dfrac{1}{2}[/latex]
    2. [latex]\dfrac{3}{6}[/latex]
    3. [latex]\dfrac{4}{5}[/latex]
    4. [latex]\dfrac{3}{9}[/latex]
    5. [latex]\dfrac{4}{8}[/latex]
    6. [latex]\dfrac{5}{10}[/latex]
  5. Find all the fractions that are not already in lowest terms and reduce them. Write “lowest terms” next to those already reduced.
    1. [latex]\dfrac{4}{8}=[/latex]
    2. [latex]\dfrac{2}{5}=[/latex]
    3. [latex]\dfrac{8}{12}=[/latex]
    4. [latex]\dfrac{15}{35}=[/latex]
    5. [latex]\dfrac{42}{80}=[/latex]
    6. [latex]\dfrac{6}{36}=[/latex]
    7. [latex]\dfrac{9}{15}=[/latex]
  6. Indicate if each pair of fractions is equivalent (=) or not equivalent (≠).
    1. [latex]\dfrac{4}{5}\phantom{=}\dfrac{7}{8}[/latex]
    2. [latex]\dfrac{10}{12}\phantom{=}\dfrac{5}{6}[/latex]
    3. [latex]\dfrac{5}{15}\phantom{=}\dfrac{1}{3}[/latex]
    4. [latex]\dfrac{6}{7}\phantom{=}\dfrac{36}{41}[/latex]
    5. [latex]\dfrac{3}{5}\phantom{=}\dfrac{15}{25}[/latex]
  7. Round to the nearest whole number
    1. [latex]1\dfrac{1}{4}=[/latex]
    2. [latex]4\dfrac{3}{4}=[/latex]
    3. [latex]6\dfrac{4}{5}=[/latex]
    4. [latex]3\dfrac{1}{4}=[/latex]
    5. [latex]12\dfrac{8}{9}=[/latex]

Answers to Unit 2 Review

  1. Find all the factors for each number, some of the numbers are prime numbers, write “prime” next to it.
    1. 1, 2, 4
    2. 1, 2, 5, 10
    3. 1, 3, 7, 21
    4. 1, 2, 3, 6
    5. 1, 2, prime
    6. 1, 2, 4, 8, 16
  2. Find the factors, common factors and the Greatest Common Factor (GCF).

    Greatest Common Factors (GCF)
    Factors Common Factors GCF
    [latex]\dfrac{2}{8}[/latex] Numerator: 1, 2

    Denominator: 1, 2, 4, 8

    1, 2 2
    [latex]\dfrac{8}{16}[/latex] Numerator: 1, 2, 4, 8

    Denominator: 1, 2, 4, 8, 16

    2, 4, 8 8
    [latex]\dfrac{24}{32}[/latex] Numerator: 1, 2, 3, 4, 6, 8, 12, 24

    Denominator: 1, 2, 4, 8, 16, 32

    2, 4, 8 8
    [latex]\dfrac{9}{12}[/latex] Numerator: 1, 3, 9

    Denominator: 1, 2, 3, 4, 6, 12

    3 3
    [latex]\dfrac{5}{15}[/latex] Numerator: 1, 5

    Denominator: 1, 3, 5, 15

    5 5
    [latex]\dfrac{25}{30}[/latex] Numerator: 1, 5, 25

    Denominator: 1, 2, 3, 5, 6, 10, 15, 30

    5 5
    [latex]\dfrac{4}{12}[/latex] Numerator: 1, 2, 4

    Denominator: 1, 2, 3, 4, 6, 12

    24 4
  3. Express each fraction in lowest terms. Remember: be sure to write the GCF you are dividing with.
    1. [latex]\dfrac{2}{3}[/latex]
    2. [latex]\dfrac{1}{3}[/latex]
    3. [latex]\dfrac{3}{7}[/latex]
    4. [latex]\dfrac{1}{2}[/latex]
    5. [latex]\dfrac{1}{6}[/latex]
    6. [latex]\dfrac{5}{9}[/latex]
  4. Circle the fractions that are in lowest terms: [latex]\dfrac{1}{2}, \dfrac{4}{5}[/latex]
  5. Find all the fractions that are not already in lowest terms and reduce them. Write “lowest terms” next to those already reduced.
    1. [latex]\dfrac{1}{2}[/latex]
    2. lowest terms
    3. [latex]\dfrac{2}{3}[/latex]
    4. [latex]\dfrac{3}{7}[/latex]
    5. [latex]\dfrac{21}{40}[/latex]
    6. [latex]\dfrac{1}{6}[/latex]
    7. [latex]\dfrac{3}{5}[/latex]
  6. State if each pair of fractions is equivalent (=) or not equivalent (≠).
    1. =
    2. =
    3. =
  7. Round to the nearest whole number.
    1. 1
    2. 5
    3. 7
    4. 3
    5. 13

License

Icon for the Creative Commons Attribution 4.0 International License

Adult Literacy Fundamental Mathematics: Book 5 - 2nd Edition Copyright © 2023 by Liz Girard; Wendy Tagami; and Leanne Caillier-Smith is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book