Answer Key 9.11

First, the roots:

[latex]\begin{array}{ccc}&3& \\ &\textbf{44}& \\ 8&&4\end{array}[/latex] [latex]\begin{array}{ccc}&9& \\ &\textbf{32}& \\ 7&&2\end{array}[/latex] [latex]\begin{array}{ccc}&8& \\ &\textbf{75}& \\ 7&&\sqrt{x} \end{array}[/latex]

Check for pattern in the first box:

  1. [latex]3\cdot 8+4=28[/latex]
  2. [latex]4\cdot 8\cdot 3=35[/latex]
  3. [latex](8+3)\cdot 4=44\checkmark[/latex]

Check #3 pattern with the next box:

[latex](7+9)\cdot 2=32\checkmark[/latex]

Finally:

[latex]\begin{array}{rrl} (7+8)\sqrt{x}&=&75 \\ \\ 15\sqrt{x}&=&75 \\ \\ \dfrac{15}{15}\sqrt{x}&=&\dfrac{75}{15} \\ \\ \sqrt{x}&=&5 \\ \\ \therefore (\sqrt{x})^2&=&(5)^2 \\ \\ x&=&25 \end{array}[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book