"

Answer Key 10.5

  1. let u=x2
    u25u+4=0
    factors to (u4)(u1)=0
    replace u:(x24)(x21)=0
    (x2)(x+2)(x1)(x+1)=0
    x=±2,±1
  2. let u=y2
    u29y+20=0
    factors to (u5)(u4)=0
    replace u:(y25)(y24)=0
    y25=0(y2)(y+2)=0y2=5y=±2y=±5
  3. u=m2
    u27u8=0
    (u8)(u+1)=0
    (m28)(m2+1)=0
    (m+8)(m8)(m2+1)=0
    m=±8 or ±22
    m2+1 has 2 non-real solutions
  4. u=y2
    u229y+100=0
    (u25)(u4)=0
    (y225)(y24)=0
    (y5)(y+5)(y2)(y+2)=0
    y=±5,±2
  5. let u=a2
    u250u+49=0
    (u49)(u1)=0
    (a249)(a21)=0
    (a7)(a+7)(a1)(a+1)=0
    a=±7,±1
  6. let u=b2
    u210u+9=0
    (u9)(u1)=0
    (b29)(b21)=0
    (b3)(b+3)(b1)(b+1)=0
    b=±3,±1
  7. x420x2+64=0
    let u=x2
    u220u+64=0
    (u16)(u4)=0
    (x216)(x24)=0
    (x4)(x+4)(x2)(x+2)=0
    x=±4,±2
  8. 6z6z312=0
    let u=z3
    6u2u12=0
    (3u+4)(2u3)=0
    (3z3+4)(2z33)=0
    3z3+4=02z33=03z3=42z3=3z3=43z3=32z=433z=323
  9. z619z3216=0
    let u=z3
    u219u216=0
    (u27)(u+8)=0
    (z327)(z3+8)=0
    (z3)(z2+3z+9)(z+2)(z22z+4)=0
    z=3,2
    2 non-real solutions each for the 2nd and 4th factors
  10. let u=x3
    u235u+216=0
    (u27)(u8)=0
    (x327)(x38)=0
    (x3)(x2+3x+9)(x2)(x2+2x+4)
    x=2,3
    2 non-real solutions each for the 2nd and 4th factors

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book