"

Chapter 8: Rational Expressions

8.4 Addition and Subtraction of Rational Expressions

Adding and subtracting rational expressions is identical to adding and subtracting integers. Recall that, when adding fractions with a common denominator, you add the numerators and keep the denominator. This is the same process used with rational expressions. Remember to reduce the final answer if possible.

Example 8.4.1

Add the following rational expressions:

x4x22x8+x+8x22x8Same denominator, so you add the numerators and combine like terms.2x+4x22x8Factor the numerator and the denominator.2(x+2)(x+2)(x4)Divide out (x+2).2x4Solution.

Subtraction of rational expressions with a common denominator follows the same pattern, though the subtraction can cause problems if you are not careful with it. To avoid sign errors, first distribute the subtraction throughout the numerator. Then treat it like an addition problem. This process is the same as “add the opposite,” which was seen when subtracting with negatives.

Example 8.4.2

Subtract the following rational expressions:

6x123x615x63x6Add the opposite of the second fraction (distribute the negative).6x123x6+15x+63x6Add the numerators and combine like terms.9x63x6Factor the numerator and the denominator.3(3x+2)3(x2)Divide out the common factor of 3.(3x+2)x2Solution.

When there is not a common denominator, first find the least common denominator (LCD) and alter each fraction so the denominators match.

Example 8.4.3

Add the following rational expressions:

7a3a2b+4b6ab4The LCD is 6a2b4.2b32b37a3a2b+4b6ab4aaMultiply the first fraction by 2b3 and the second by a.14ab36a2b4+4ab6a2b4Add the numerators. No like terms to combine.14ab3+4ab6a2b4Factor the numerator.2ab(7b2+2)6a2b4Reduce, dividing out factors 2,a, and b.7b2+23ab3Solution.

Example 8.4.4

Subtract the following rational expressions:

x+1x4x+1x27x+12Add the opposite of the second fraction (distribute the negative).x+1x4+x1x27x+12Factor the denominators to find the LCD=(x4)(x3).(x3)(x+1)(x3)(x4)+x1(x3)(x4)Only the first fraction needs to be multplied by (x3).x22x3(x3)(x4)+x1(x3)(x4)Add the numerators and combine like terms.x23x4(x3)(x4)Factor the numerator.(x4)(x+1)(x3)(x4)Divide out the common factor of (x4).x+1x3Solution.

Questions

Add or subtract the rational expressions. Simplify your answers whenever possible.

  1. 2a+3+4a+3
  2. x2x26x8x2
  3. t2+4tt1+2t7t1
  4. a2+3aa2+5a64a2+5a6
  5. 56r58r
  6. 7xy2+3x2y
  7. 89t3+56t2
  8. x+58+x312
  9. x14x2x+3x
  10. 2cdc2dc+dcd2
  11. 5x+3y2x2y3x+4yxy2
  12. 2x1+2x+1
  13. xx2+5x+62x2+3x+2
  14. 2xx213x2+5x+4
  15. xx2+15x+567x2+13x+42
  16. 2xx29+5x2+x6
  17. 5xx2x618x29
  18. 4xx22x33x25x+6

Answer Key 8.4

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book