Chapter 2 Summary & Key Term Check

Chapter 2 Main Ideas

2.1 Starting With a Big Bang

The universe began 13.8 billion years ago when energy, matter, and space expanded from a single point. Evidence for the big bang includes the cosmic “afterglow” from when the universe was still very dense. Also, red-shifted light from distant galaxies tells us the universe is still expanding.

2.2 Forming Planets from the Remnants of Exploding Stars

The big bang produced hydrogen and some helium, but heavier elements come from nuclear fusion reactions in stars. Large stars make elements such as silicon, iron, and magnesium, which are important in forming terrestrial planets. Large stars explode as supernovae and scatter the elements into space. Earth’s composition is closely related to the abundance of elements made by stars.

2.3 How to Build a Solar System

Solar systems begin with the collapse of a cloud of gas and dust. Material drawn to the centre forms a star, and the remainder forms a disk around the star. Material within the disk clumps together to form planets. In our solar system, rocky planets are closer to the sun, and ice and gas giants are farther away. This is because temperatures near the sun were too high for ice to form, but silicate minerals and metals could solidify.

2.4 Earth’s First 2 Billion Years

Early Earth was heated by radioactive decay, collisions with bodies from space, and gravitational compression. Heating caused molten metal to sink to Earth’s centre and form a core, and silicate minerals to form the mantle and crust. A collision with a planet the size of Mars knocked debris into orbit around Earth, and the debris coalesced into the moon. Earth’s atmosphere is the result of volcanic degassing, contributions by comets and meteorites, and photosynthesis.

2.5 Are There Other Earths?

The search for exoplanets has identified 60 planets that are similar in size to Earth and within the habitable zone of their stars. These are thought to be rocky worlds like Earth, but the compositions of these planets are not known for certain.

Key Term Check

What key term from Chapter 2 is each card describing? Turn the card to check your answer.

Debunk It!

The meme shown below contains a quote that was attributed to a primary candidate in the 2016 U. S. presidential election. How many errors can you find?

Image description: Picture of an explosion. Over top, it says, “The big bang is merely a theory. If by chance it was true, how would you explain that the Earth didn’t blow up in the explosion?”

Oh my, where to start…

First, saying the big bang is “merely a theory” implies that theories have little to support them. In fact, theories are hypotheses that have been confirmed over and over again. The big bang theory in particular has a wide range of supporting evidence, including the cosmic microwave background, and the red shift.

Second, the notion of an “explosion” is incorrect. What’s being described is a release of energy that broke up matter. The big bang was the creation of energy, matter, and space, so it isn’t an explosion in the “kaboom” sense.

Finally, the Earth would not have blown up during the explosion (that wasn’t actually an explosion) because Earth didn’t exist at the time of the big bang. The universe was almost entirely hydrogen and helium. It would take billions of years and many lifetimes of stars to make the heavier elements such as silicon, oxygen, iron, and magnesium, that are fundamental to making a terrestrial planet like Earth.


Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Physical Geology - H5P Edition Copyright © 2021 by Karla Panchuk is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book